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Outline
Talk at the intersection of lattice field theory and quantum systems, in particular topological 
phases in driven systems. 

Introduce some of the striking similarities between static quantum systems and lattice.

Are there similar ties between lattice field theory and driven quantum systems?

Yes. 

Will motivate where these ties can arise from. 

Show an explicit example in one spatial dimension connecting the two. 



Straight to the point

𝑥 →

t
→

space-time lattice for lattice QFT

𝑥 →
t
→

Real world, time is continuous. 
Spatial lattice can be found



And yet
Periodically driven quantum systems (Floquet)

t →



Sometimes loosely referred to as discrete 
time systems (are they really?)

t →

Yes, I’ll show you 
examples where true. 



Insulators two types: 

1.  Uninteresting                             Trivial, uninteresting bulk and          
boundary. Gapped bulk and boundary

2.  Interesting                                 Topological, sometimes boring bulk physics
but interesting with a boundary.  
Gapped bulk, gapless boundary.

The ties in continuous space-time,static quantum 
systems (topological insulators) and Dirac fermion

(For the purpose of this talk)



The ties in continuous space-time

Relativistic fermion with a domain wall in mass: 

Massive fermion                          Gapped bulk

Domain wall                               Boundary

Relativistic fermion with open boundary condition: 

Positive mass: Trivial, no boundary modes.

Negative mass: Topological, boundary modes etc. 

Domain wall is a boundary between boring and interesting



Relativistic fermion: Quantum Hall 
Effect(QHE)(Callan-Harvey 1984)

Right moving

Left moving 𝑬𝟏 = 𝝏𝟎𝑨𝟏 − 𝝏𝟏𝑨𝟎

Step function in Dirac 
mass 𝑚 in 𝑥& (domain 
walls)

𝒎 < 𝟎
𝒎 > 𝟎𝒎 > 𝟎

𝒙𝟏

𝒙𝟐

𝐴 𝐴

0

Quantum Hall current

Take a 2 + 1 dimensional 
Dirac fermion



Transition to boring (non-topological)

Right moving

Left moving 𝑬𝟏 = 𝝏𝟎𝑨𝟏 − 𝝏𝟏𝑨𝟎

𝒎 > 𝟎 𝒎 > 𝟎𝒎 > 𝟎

𝒙𝟏

𝒙𝟐

𝐴 𝐴

0

0



Some interesting points about lattice

• Discretization of space-time or space alone lead to new 
features (topological phases) in both. 

• Set of new features in the latter, a subset of the former. 



Brilliuoin zones(Weyl)
discrete space and time

-3 -2 -1 1 2 3 p

-1.0

-0.5

0.5

1.0

sin p

Continuum

Lattice

−𝜋 𝜋

−𝜋 𝜋

−𝜋

𝜋

0,0 , 0, 𝜋 , 𝜋, 0 , (𝜋, 𝜋)Weyl Fermion modes lattice :

𝑝

𝐸

𝐸 = 𝑝

𝐸 = sin 𝑝

sin 𝐸 = sin 𝑝



Discrete space discrete time domain wall 
setup

0,0

0, 𝜋

𝜋, 0

𝜋, 𝜋

Wilson-Dirac model with a domain wall
(Kaplan, Jansen, Golterman, 1992; Jansen Schmaltz 1992) 

Gap 
closing

𝑚
𝑅

Wall height 
Parameter

0,0 , 0, 𝜋 , 𝜋, 0 , (𝜋, 𝜋)

Weyl Fermion modes:



Discrete time vs continuous time

0,0

0, 𝜋

𝜋, 0

𝜋, 𝜋 0,0

0, 𝜋

Wilson-Dirac with a domain wall
(Kaplan, Jansen, Golterman, 1992; Jansen Schmaltz 1992) 

BHZ model (Wilson-Dirac with continuous time)
with a domain wall (Similar to TKNN)

Gap 
closing

Gap 
closing

𝑚
𝑅

𝑚
𝑅

Wall height 
Parameter

Wall height 
Parameter

Weyl Fermion modes: 0,0 , 0, 𝜋 , 𝜋, 0 , (𝜋, 𝜋)



Curious case of Floquet insulators (free 
fermion)

Continuous time but periodically driven.

Can exhibit novel phases: similar to undriven case.

Topological transition associated with gap closing.

What’s needed for this talk :



Curious case of Floquet insulators

Continuous time but periodically driven.

Can exhibit novel phases: similar to undriven case.

Topological transition associated with gap closing.

What’s needed for this talk :

What does this mean? Energy is 
not conserved.



Driving a Hamiltonian over period 𝑇.

Observe the system at integer multiples of 𝑇.

Define quasi energy:

Time evolution operator 𝑈! 𝑇 . Quasi energy is the "
#
log𝑈!(𝑇).

Conserved. 

Curious case of Floquet insulators



Identify phase boundaries by considering gap closing in quasi 
energy. 

Interestingly, we observe boundary modes of quasi energy: !
"
.

Curious case of Floquet insulators

Reminiscent of time doublers in lattice field theory. 



SSH model(very similar to lattice 
staggered fermion: Dirac)

spatial lattice

unit cell,
two sites –> two components
of Dirac fermion

𝑢 𝑢 𝑢 𝑢𝑣 𝑣 𝑣

−
𝜋
2

𝜋
2

Periodic boundary (PBC) condition
leads to Dirac dispersion



SSH model: Static topological 
Hamiltonian

𝑢 − 𝑣 is Dirac mass.  

𝑣 − 𝑢 > 0: topological phase with zero energy edge mode for OBC (open boundary)

𝑢 − 𝑣 > 0: non-topological phase with zero energy edge mode for OBC (open boundary)

PBC: 𝐸 𝑝 = ± 𝑢 − 𝑣 $ + 4𝑢𝑣 sin$ 𝑝

Open boundary is the same as having mass defect



Edge states (with OBC)

𝑢 𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝐻%

𝐻& 𝑣 ≠ 0, 𝑢 = 0

𝑢 ≠ 0, 𝑣 = 0

Zero energy edge stateZero energy edge state

No edge stateNo edge state



Driven SSH model 

𝑡%

𝑡&

𝑇
=
𝑡 %
+
𝑡 &

Time

𝑢 𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑈' 𝑇 = 𝑒%
()*!+!𝑒() *"+" ≡ 𝑒() *#, Get the quasi-energy 𝜖 by taking a log

Inspired by Keyserlingk and Sondhi, Majorana model

𝐻%

𝐻&

𝑡 = 𝑇 = stroboscopic time

𝑡 = 0



Quasi-energy Phase diagram (PBC, 
OBC)



Energy eigenvalues with PBC 

Along that line
energy eigenvalues
come in pairs.

i.e. 𝜖 and  -
,
− 𝜖

appear together.



The two regions 
indistinguishable
with PBC. They have the 
same
eigenvalues

Reflection symmetric about 
t& =

-
.
.

With OBC, one has zero and pi
modes. The other has none. 

Appears mappable to a 
discrete time 
lattice Hamiltonian.

What is this Hamiltonian like?



The zero eigenvalue map
Zeroes of (𝑖𝜕# −𝐻$) to the zeroes discrete time operator  (𝑖∇# −𝐻)

Clearly, 𝐻 has to have half the dimensions as that of 𝐻$.

What is 𝐻 ?

𝑝! − 𝜖"! = 0 sin 𝑝!𝑇 − 𝜖"𝑇 = 0

𝜖*# are eigenvalues of 𝐻'
𝜖* are eigenvalues of 𝐻



The Floquet spectrum on the symmetric 
line (PBC)

Obtained by evolving the 
Hamiltonians under PBC  

for the two different sets of 𝑢 and 𝑣
for time 𝑡% and 𝑡&.

The blue and black regions 
are 𝜋 paired with each other. 



Discard half of the eigenvalues of 𝐻$. Which ones?

Discard half

Keep the blue line, discard the black one. 

If we solve the discrete time Schroedinger
equation with these eigenvalues for energy, 
what solutions do we obtain?

sin( 𝑇𝑝H) = 𝑇 𝜖

⇒ 𝑝H=
1
𝑇
sinIJ 𝑇𝜖 and 𝑝H=

K
L −

J
L sin

IJ 𝑇𝜖

Not what we want. We need to solve sin( 𝑇𝑝%) = sin 𝑇𝜖



The sine transformed eigenvalues (PBC)



This works. But more is true..



Lattice Dirac/SSH 
Hamiltonian



Surprise

SSH/Dirac

𝐸



Two choices

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

Axes in units of 𝑇

𝑢 =
1 − sin 2𝜂

2𝑇
𝑣 =

1 + sin 2𝜂
2𝑇

or



The appropriate 
assignment

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

As 𝜂 goes from +ve to –ve, u and v switch. 

Axes in units of 𝑇

With OBC, one gives you a zero mode, the other doesn’t.
Discretizing time gives you a pi mode for the former and 
none for the other.



The appropriate 
assignment

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

As 𝜂 goes from +ve to –ve, u and v switch. 

Axes in units of 𝑇

With OBC, one gives you a zero mode, the other doesn’t.
Discretizing time gives you a pi mode for the former and 
none for the other.

Topological to non-topological transition



Utilize pairing to get two flavors?

Increase the stroboscopic time by a factor of two. 

𝑈' 𝑇 = 𝑒() *!+!𝑒() *"+" ≡ 𝑒() *#, Previous drive

New drive𝑈(2𝑇) = 𝑈' 𝑇 $ = 𝑒() *!+!𝑒() *"+"𝑒() *!+!𝑒() *"+" ≡ 𝑒() *#,%$,



𝑡%

𝑡&

𝑇
=
𝑡 %
+
𝑡 &

Time

𝑢 𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝐻%

𝐻&

𝑡%

𝑡&

𝑇
=
𝑡 %
+
𝑡 &

𝑢 𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝐻%

𝐻&

𝑡 = 2𝑇 = stroboscopic time

𝑡 = 0



What this achieves

Achieved by 
staggering
in the time 
direction



What follows

A map between correlation functions on the two sides. 

Incorporating interactions in this correspondence.

Observables match in the long wavelength limit in both 
free and interacting theory in perturbative expansion.



Summary
Periodically driven systems are sometimes termed as discrete time systems in a loose way. 

We make this comparison concrete. 

The target Hamiltonian 𝐻 ends up being a topological Hamiltonian itself !!

We find a that the Floquet transition maps to a topological transition of a
static Hamiltonian with discrete time. 

𝜋 pairing can be used to replicate fermion doubling and construct a two-flavor theory.

You can simulate one in terms of the other.

Interactions can be incorporated in the correspondence and the equivalence holds in the long 
wavelength limit. 



Further work
• There is a way to make this comparison off the 𝑡! =

#
$

line as well. See 
Phys.Rev.Res. 6 (2024) 1, 013098

• We found a similar correspondence connecting 2+1 dimensional Floquet systems with 
2+1 dimensional discrete time fermion action formulation. (SciPost Phys.Core 8 (2025) 035)



Open questions
• Can we extend the correspondence for interacting theories beyond the long 

wavelength limit?

• What about strongly coupled theories?

• Floquet systems are sought after in quantum circuits due to their tunability in 
designing target Hamiltonian. Here, the same system can be tuned to simulate a single 
flavor theory and a two-flavor theory.

Possible applications?



Big picture
Many common threads between different areas of physics. 
Sometimes recognized in hindsight. 

The ties of topological phases and fermion field theories go deep. 

We understand these ties for equilibrium, free and some interacting 
theories. 

Exploring such ties between periodically driven systems and lattice 
field theorymay provide new perspective in both.



Two choices from PBC

Dirac Hamiltonian with a negative mass 
and a positive mass: indistinguishable with PBC.

The green and the purple region in this diagram: 
indistinguishable with PBC.

Green Negative mass 

Purple Positive mass 

Green Positive mass 

Purple Negative mass 



Only one choice from OBC

Dirac Hamiltonian negative mass: zero energy edge 
state (with discrete time, also 𝜋 modes)
Dirac Hamiltonian positive mass:  No edge state

Green region of the diagram: zero and 𝜋 edge states
Purple region of the diagram: No edge states

Green Negative mass 

Purple Positive mass 

Green Positive mass 

Purple Negative mass 



Only one choice from OBC

Dirac Hamiltonian negative mass: zero energy edge 
state (with discrete time, also 𝜋 modes)
Dirac Hamiltonian positive mass:  No edge state

Green region of the diagram: zero and 𝜋 edge states
Purple region of the diagram: No edge states

Green Negative mass 

Purple Positive mass 

Green Positive mass 

Purple Negative mass So, we have been able to map a Floquet phase transition
to an equilibrium topological transition!



Only one choice from OBC

Axes in units of 𝑇

Green region of the diagram: Dirac Hamiltonian negative mass 
Purple region of the diagram: Dirac Hamiltonian positive mass

Discretization of time leads to boundary 
zero mode and 𝜋 mode for the Dirac 
Hamiltonian in the negative mass region

Discretization of time in the positive mass 
region: No zero mode, no 𝜋 mode

A Floquet phase transition got mapped to a 
static topological to non-topological transition



Two choices

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

Axes in units of 𝑇

𝑢 =
1 − sin 2𝜂

2𝑇
𝑣 =

1 + sin 2𝜂
2𝑇

or



Wilson term for Dirac

Add a momentum dependent mass 
term

-3 -2 -1 1 2 3 p

-1.0

-0.5

0.5

1.0

sin p

−𝜋 𝜋

Wilson term removes this. 

Single particle Hamiltonian:

H = −𝑖𝛾&∇& +𝑚 + /
$
∇

∇%= Symmetric finite difference in space
∇= symmetric discrete spatial Laplacian

∇→ (1 − cos 𝑝)

Wilson term. 



The appropriate 
assignment

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

As 𝜂 goes from +ve to –ve, u and v switch. 

Axes in units of 𝑇

With OBC, one gives you a zero mode, the other doesn’t.
Discretizing time gives you a pi mode for the former and 
none for the other.



The appropriate 
assignment

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

As 𝜂 goes from +ve to –ve, u and v switch. 

Axes in units of 𝑇

With OBC, one gives you a zero mode, the other doesn’t.
Discretizing time gives you a pi mode for the former and 
none for the other.

Topological to non-topological transition



Static topological Hamiltonian: Wilson-
Dirac
Hamiltonian of the form 

H01 = 𝛾2(−𝑖 𝛾3∇3 +𝑚 − 4
5
∇35)

!
"
> 0 :    non-topological phase, no edge states with OBC 

!
"
< 0 :    topological phase, edge state with OBC

Domain wall between the two hosts domain wall fermion. 

−𝜋 𝜋

𝐸0 = sin$ 𝑝 + 𝑅 1 − cos 𝑝 + 𝑚 $

PBC



Static topological Hamiltonian: SSH 
model (also Dirac)

𝑣 − 𝑢 is Dirac mass.  

𝑣 − 𝑢 > 0: topological phase with zero energy edge mode for OBC

𝑢 − 𝑣 > 0: non-topological phase with zero energy edge mode for OBC

PBC: 𝐸 𝑝 = ± 𝑢$ + 𝑣$ − 2𝑢𝑣 cos 2𝑝



Discrete space-time

This is unwanted in lattice QFT! We want a single massless flavor. So, we add a 
Wilson term to shift the mass 𝑚 + 𝑅 1 − cos 𝑝% + 𝑅(1 − cos 𝑝&) to kill all doublers.

Play with Wilson term and you can kill one or some doublers. 

+ chirality: 0,0 , 𝜋, 𝜋

- chirality: 0, 𝜋 , {𝜋, 0}

If you start with a Weyl fermion in 1+1 and then discretize



Cool thing about doubling
In 3D with a domain wall in the third direction, you can get chiral edge states
on the wall.

Different doublers can appear simultaneously. 

Edge mode chirality with a domain wall

𝑚
𝑅



Floquet Hamiltonian in position space 
(local)

1
log[abs[𝐻122[𝑥3 = 10]]]

𝑥

MatrixPlot[𝐻122]
𝑥

𝑥′



Sine of the Floquet Hamiltonian in 
position space (ultralocal)

MatrixPlot[sin(𝑇 𝐻122)]
𝑥

𝑥′

1
log[abs[𝐻122[𝑥3 = 10]]]



Domain wall in 1+1 D

𝛾%𝑝% + 𝛾&∇& +𝑚 + 𝑅∇&$ 𝜓 𝑝%, 𝑥& = 0

Zero for both 𝑝% = 0
and 𝑝% = 𝜋.

Solve this to get normalizable transverse profile

𝛾%sin 𝑝% + 𝛾&∇& +𝑚 + 𝑅∇&$ 𝜓 𝑝%, 𝑥& = 0

Zero for 𝑝% = 0

Continuous time edge mode

Discrete time edge mode

Takeaway: there is no time doubling for continuous 
time systems. 



Domain wall in 1+1 D

𝛾%𝑝% + 𝛾&∇& +𝑚 + 𝑅∇&$ 𝜓 𝑝, 𝑥& = 0

Zero for both 𝑝% = 0
and 𝑝% = 𝜋.

Solve this to get normalizable transverse profile

𝛾%sin 𝑝% + 𝛾&∇& +𝑚 + 𝑅∇&$ 𝜓 𝑝, 𝑥& = 0

Zero for both 𝑝% = 0

Continuous time edge mode

Discrete time edge mode

Takeaway: there is no time doubling for continuous 
time systems. 

But, something curious happens for periodically driven systems. 



Dirac fermion and Quantum Hall Effect(QHE)

current

currentcurrent

Right moverLeft mover

𝐸

Figure credit: physicstoday



The edge world: 1+1 D massless Dirac 
fermion spectrum

Dispersion for a
Dirac Hamiltonian

Minkowski space-time.

Relativistic dispersion: 

𝜔& − 𝑝& = 0

⇒ 𝜔 = ±𝑝
𝑝

𝜔



The edge world: 1+1 D massless Dirac fermion spectrum

Quantum Hall sample

Anomalous transport on 
the edges

Right movingLeft moving

𝑝

𝜔

𝑑(𝑛& − 𝑛')
𝑑𝑡

=
𝑒𝐸
𝜋

𝐸 𝑑𝑛&
𝑑𝑡

=
𝑒𝐸
2𝜋

𝑑𝑛'
𝑑𝑡

= −
𝑒𝐸
2𝜋

Vector current or charge 𝑛& + 𝑛'
conserved, axial not so.

Current ∝ 𝐸



Edge world: Anomaly, chiral fermion

Edge of QHE 
sample

Right moving

𝑝

𝜔

𝑑(𝑛& + 𝑛')
𝑑𝑡

=
𝑒𝐸
𝜋

𝐸
𝑑𝑛&
𝑑𝑡 =

𝑒𝐸
2𝜋

𝑑𝑛'
𝑑𝑡

= 0

Vector current not conserved, 
edge by itself is sick in an electric 
field.

Current ∝ 𝐸

Fermion number 
current ( from the 
bulk) Right moving

Fe
rm

io
n 

nu
m

be
r 

cu
rr

en
t (

ed
ge

)

Vector current is conserved, 
when Hall current from bulk is 
taken into account.



Relativistic fermion: Quantum Hall 
Effect(QHE)(Callan-Harvey 1984)

Right moving

Left moving 𝑬𝟏 = 𝝏𝟎𝑨𝟏 − 𝝏𝟏𝑨𝟎

Step function in Dirac 
mass 𝑚 in 𝑥& (domain 
walls)

𝒎 < 𝟎
𝒎 > 𝟎𝒎 > 𝟎

𝒙𝟏

𝒙𝟐

𝐴 𝐴

0

Quantum Hall current

Take a 2 + 1 dimensional 
Dirac fermion



Transition to boring (non-topological)

Right moving

Left moving 𝑬𝟏 = 𝝏𝟎𝑨𝟏 − 𝝏𝟏𝑨𝟎

𝒎 > 𝟎 𝒎 > 𝟎𝒎 > 𝟎

𝒙𝟏

𝒙𝟐

𝐴 𝐴

0

0



Massless Dirac Dispersion (1 spatial 
dimension)

Continuum dispersion for a
Dirac Hamiltonian

Minkowski space-time.

Relativistic dispersion: 

𝐸& − 𝑝& = 0

⇒ 𝐸 = ±𝑝
𝑝

𝐸



Brilliuoin zones (Dirac)

Lattice in space. 

Time not discretized. 

Solving the naively discretized 
Dirac Hamiltonian with 
eigenvalues ±sin 𝑝

𝐸 = ±sin 𝑝

-3 -2 -1 1 2 3 p

-1.0

-0.5

0.5

1.0

sin p

Two Dirac fermions

−𝜋 𝜋



Brilliuoin zones discrete time (Dirac)

-3 -2 -1 1 2 3 p

-3

-2

-1

1

2

3

Arcsin(sin p),-Arcsin(sin p) Solving the discrete time Dirac 
equation with naïve discretization

sin 𝑝! = sin 𝑝

Solutions:

𝑝H = ArcSin(± sin 𝑝) = ±𝑝, 𝜋 ∓ 𝑝

Differently colored Dirac flavors

−𝜋 𝜋

−𝜋

𝜋



Is there an explicit way to connect Floquet
insulators to discrete time systems?

Can the Floquet spectrum be reinterpreted as a time lattice 
theory of some undriven Hamiltonian (with time lattice spacing 
T)?

Even if this was the case, what kind of undriven Hamiltonian 
would those be?



Floquet and lattice

Answer: We don’t know if this is generally true.

But possible for certain models for certain parameters. 

Simple example: driven SSH (Dirac) Hamiltonian. 


