The mass of the Baryon Junction in (2+1)d

Dario Panfalone

Based on the work: 2508.00608

M. Caselle, N. Magnoli, D. Panfalone and L. Verzichelli

University of Turin

Outline

- Effective string theory of the color flux tube: Nambu-Gotō string and beyond
- Baryons in the EST
- Open string channel: Baryon Junction mass determination on the lattice
- Closed string channel: High temperature results and comparison with Svetitsky-Yaffe mapping

Flux tube as a string

Confinement is related to the formation of **chromoelectric flux tubes** connecting color sources

Effective String Theory provides an accurate description of confining strings in Yang-Mills theories

Polyakov loop correlator:

$$G(R) \sim \int DX e^{-S_{EFT}(X)} \equiv Z_{EST}$$

Nambu-Gotō string

Nambu-Gotō (NG) string model:

$$S_{NG} = \sigma \int_{\Sigma} d^2 \xi \sqrt{g}$$

The Polyakov loop correlator at large distance is dominated by:

$$\label{eq:GR} G(R) \sim \textit{K}_0(\textit{E}_0R), \quad \textit{E}_0 = \sigma \textit{N}_t \sqrt{1 - \frac{\pi}{3\sigma N_t^2}}$$

EST corrections beyond Nambu-Gotō

To obtain the correct EST describing the gauge theory, it is essential to go beyond the NG approximation...

$$S_{EST} = \int d^2 \xi [\sigma + \gamma_1 \mathcal{R} + \gamma_2 \mathcal{K}^2 + \gamma_3 \mathcal{K}^4 + \dots]$$

- ullet $\mathcal R$ is topological invariant
- \mathcal{K}^2 is proportional to EoM \rightarrow can be eliminated

Low-energy universality of the EST \Longrightarrow First correction BNG can [O. Aharony, Z. Komargodski, 1906.08098] only appear at the order $1/N_t^7$

S-matrix approach \Longrightarrow First two correction $(1/N_t^7 \text{ and } 1/N_t^9 \text{ terms})$ are [J.E. Miró controlled by the same parameter, next parameter et al, 1906.08098] appears at $1/N_t^{11}$ order.

SU(3) numerical results

[M.Caselle et al, 2407.10678]

Combined best fits of the SU(3) data including all terms up to $1/N_t^{11}$

SU(3) numerical results

 $T_{E_0=0}=0.995(5)\sqrt{\sigma}$ compatible with $T_c=0.9890(31)\sqrt{\sigma}$ found in [J. Liddle, M. Teper, 0803.2128]

SU(2) numerical results

Baryons in the Effective String Theory

Baryon Junction: N confining flux tubes that meet at a common point

- Calculations are more complex than in the standard $\langle P^+(0)P(R)\rangle$ setting
- In the SU(3) theory the EFT of three static quarks positioned at the vertices of a triangle is determined by M and σ up to $\mathcal{O}(1/R^2)$

[Z. Komargodski, S. Zhong, 2405.12005]

Baryon Junction mass

- Sign and magnitude of M play a crucial role in the understanding of EST and of colour confinement.
 - M>0: Confining strings are weakly coupled in the long-distance regime, perturbative stability and unitarity
 - M < 0: Strong coupling, perturbative instability and possible violations of unitarity
- ② In the closed channel, the junction can be seen as an interaction vertex
- Involved in models of exotic hadrons
- Can be used to test existing models based on the AdS/QCD duality

Open string channel $(N_t \gg R)$

$$\langle P(x_1) P(x_2) P(x_3) \rangle = A_{open}(N_t) e^{-N_t E_0(R)}$$

With:

•
$$A_{open}(N_t) = A(N_t)e^{-N_tM}$$

•
$$E_0(R) = 3R\sigma - \frac{(d-2)\pi}{16R} - \frac{(d+2)M\pi}{144\sigma R^2} + \mathcal{O}(1/R^3)$$

[O. Jahn, P. de Forcrand, 0309115, 0502039][M. Pfeuffer et al, 0810.1649]

[Z. Komargodski, S. Zhong, 2405.12005]

Space dimension d=2 case particularly effective to measure the junction mass M

Baryon Junction mass on the lattice

We consider $N_t\gg R$ in the low temperature regime ($T/T_c\simeq 0.18$)

$$\begin{split} G^{(3)}(R) &= A e^{-N_t E_0} \\ E_0 &= 3R(\sigma a^2) - \frac{M\pi}{36(\sigma a^2)R^2} \end{split}$$

β	R_{min}/a	R _{max} /a	σ a^2	σa^2 from lit.	$M/\sqrt{\sigma}$
36.33	4.64	12.68	0.009022(53)	0.009344(17)	0.142(13)
39.65	4.64	13.93	0.007518(23)	0.007831(58)	0.137(6)
42.97	4.64	13.93	0.006378(18)	0.006645(59)	0.129(5)
46.29	5.87	15.17	0.005460(27)	0.005716(59)	0.133(12)

Results

Closed string channel $(N_t \ll R, N_t \sqrt{\sigma} \gg 1)$

$$\langle P(x_1)P(x_2)P(x_3)\rangle = A_{closed}(N_t) \left(\frac{N_t}{R}\right)^{\frac{2d-3}{2}} e^{-3RE_0(N_t)}$$

With:

•
$$E_0(N_t) = \sigma N_t - \frac{\pi(2d-3)}{6N_t}$$

•
$$A_{closed}(N_t) = A(N_t) e^{-MN_t \left[1 - \frac{\pi(d-2)}{18\sigma N_t^2}\right]}$$

In the high-T regime of the theory, near the critical temperature T_c , N_t is small and $N_t\sqrt{\sigma}\sim 1$. Higher order terms of the Nambu-Goto action become important, but we have no EST result for these terms

• Fixing *d* = 2:

$$\langle P(x_1) P(x_2) P(x_3) \rangle \sim \frac{e^{-3RE_0(N_t)}}{\sqrt{R}}$$

$$E_0(N_t) = \sigma N_t \left(1 - \frac{\pi}{6\sigma N_t^2} \right)$$

High Temperature results (0.75 $< \frac{T}{T_c} < 0.9$)

Svetitsky-Yaffe mapping

In the vicinity of the deconfinement point:

$$SU(3)$$
 LGT in $(2+1)d \iff$ Three-state Potts model in $2d$

- Spin operator ←⇒ Polyakov loop
- Energy operator ←⇒ Plaquette
- Ordered phase of the spin model \iff Deconfined phase of the gauge theory

Predictions for both the short- and long-distance behaviour of the two- and three-point correlators

Svetitsky-Yaffe mapping

This conjecture was already tested for the SU(2) and for the SU(3) gauge theory in (2+1)d [M.Caselle, et al, 2407.10678, 2109.06212]

 E_0 extracted from the short-range fits of $\langle P^+P \rangle$ is in good agreement with the large distance fit using the EST prediction

Correlators in the spin model

[M. Caselle, G. Delfino, P. Grinza, O. Jahn, N. Magnoli, 0511168]

• Large distance limit (recall: $K_0(x) \sim \frac{e^{-x}}{\sqrt{x}}$):

$$\langle s^+(0)s(R)\rangle \sim K_0(mR)$$

 $\langle s(x_1)s(x_2)s(x_3)\rangle \sim K_0(mR_Y)$

- The mass scale governing the two-point and the three-point functions coincides
- Agrees with EST in the closed string channel if $m \longleftrightarrow E_0$

This suggests that:

$$E_0(N_t) = \sigma N_t \left(1 - \frac{\pi}{6\sigma N_t^2} \right) \quad \longrightarrow \quad E_0(N_t) = \sigma N_t \sqrt{1 - \frac{\pi}{3\sigma N_t^2}}$$

Comparison with Svetitsky-Yaffe prediction

EST first order calculation (linear): $E_0 = \sigma N_t \left(1 - \frac{\pi}{6\sigma N_t^2}\right)$ S-Y mapping (square root) : $E_0 = \sigma N_t \sqrt{1 - \frac{\pi}{3\sigma N_t^2}}$

Conclusion and outlook

- The determination of the baryon junction mass is relevant from the theoretical and phenomenological perspectives
- Lattice data shows excellent agreement with an independent description based on the S-Y mapping
- σ extracted from $\langle P^+P \rangle$ should coincide with that extracted from $\langle PPP \rangle$
- What happens in 3 + 1 dimensions and in full QCD?
- What is the shape of the flux tube in the vicinity of the baryon junction?

Closed string channel $(N_t \ll R, N_t \sqrt{\sigma} \gg 1)$

Fixing d = 2:

$$\langle P(x_1) P(x_2) P(x_3) \rangle \sim \frac{e^{-3RE_0(N_t)}}{\sqrt{R}}$$

• $E_0(N_t) = \sigma N_t \left(1 - \frac{\pi}{6\sigma N_t^2}\right)$

Similar to the two-point correlator:

$$\langle P^+(0)P(R)\rangle \sim \frac{e^{-RE_{P^+P}(N_t)}}{\sqrt{R}}$$

• $E_{P^+P}(N_t) = \sigma N_t \sqrt{1 - \frac{\pi}{3\sigma N_t^2}} \simeq \sigma N_t \left(1 - \frac{\pi}{6\sigma N_t^2} + \cdots \right)$

High Temperature results $(0.75 < \frac{T}{T_c} < 0.9)$

Large distance: $G^{(3)}(R_Y) = A_3 K_0(R_Y E_0)$ Short distance: $G^{(3)}(r) = \frac{A_0}{r^{2/5}} \left(c_1 + c_2 r^{4/5} + b r^{6/5}\right)$, $r = E_0 R_Y$

High Temperature results

