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Symmetry of massless Dirac fermions

® |n even spacetime D, a free massless Dirac fermion y has
the symmetry

U(l)v X U(l)A
Lo

Gy =

U(1)y : 1 — e .
Ua:p— ey LT

® Mixed 't Hooft anomaly: turning on a U(1),, background
gauge field A, breaks U(1),, and vice versa.

® This is the origin of the ABJ anomaly.



Massless fermions of the lattice

We all know that discretizing QFTs on lattices is very useful.

It is also subtle, especially when dealing with massless
fermions.

The basic reason is that it is tricky to get anomalies right on
the lattice.

There is a famous no-go theorem, the Nielsen-Ninomiya
theorem, that says it can’t be done, under some
assumptions.



Nielsen-Ninomiya Theorem

® Rough statement: there is no discretization of the Dirac
operator & = y#d, which enjoys all of

1. Continuity in p, Locality
2. D(p)=ytp,foralp| <1 Free fermion asa — 0O
3. D invertible exceptat |p| = 0 No doublers

4. (T, 2} =0 Chiral symmetry



Naive lattice fermions Wilson, ...

® Replacing the continuum derivatives by naive lattice

finite difference operators gives the naive lattice fermion
discretization.

® I invertible except at each corner ot the Brilloin zone,

leading to 2P massless fermions.



Wilson fermions

® The Wilson fermion discretization explicitly breaks chiral

symmetry completely as well as the degeneracy
between doubler modes.

® Must tune the bare mass to get a massless fermions in
the continuum limit.



Staggered fermicns Kogut, Susskind, ...

® The reduced staggered fermion discretization preserves
a discrete subgroup of chiral symmetry.

® This is enough to forbid a fermion mass term from being
generated, but leaves a smaller number of doubler/
‘taste’ modesin D > 1.

® Example: two ‘tastes’ in D = 2 rather than 2% = 4
doublers with naive fermions.



Kaplan; Shamir;

Domain wall fermions N

® QOverlap lattice fermions preserve a modified version of
chiral symmetry, and the associated Dirac operator is not
ultra-local.

® The same is true for domain-wall fermions when the
extent of the extra dimensions goes to .

® Hersh’s talk: the resulting chiral symmetry is R, not U(1).



Symmetric mass generation

® The NN theorem has an extra assumption, which is that
the lattice fermion action is bilinear.

® |n the SMG approach (which is extremely closely related
to older mirror fermion ideas), the idea is to give some
unwanted lattice fermion excitations large masses by
introducing carefully designed interactions, so that the
lattice action is not bilinear in y .

Eichten, Preskill, ... ; Poppitz, Giedt, ...; Wang, Wen, ...

® Near the continuum limit, one ends up producing an
effective Dirac operator with its own non-localities
associated with propagator zeros.

Golterman + Shamir; You + Xu, ...



Recent developments

® |t has become relatively widely appreciated that even
scalars can have anomalies, and some anomalies can be
preserved on lattice, without making the symmetry action
any less local than it is in the continuum.

® People also found ways to preserve topological symmetries
on lattice.

Sulejmanpasic, Shao, Seiberg, Lam, Fazzi, Gorantla, Gattringer, Cheng, Seitnashri...
2019 - now

Cond-mat, hep-lat antecedents:
Catterall et al, Lieb+Shutz+Mattis, Kitaev, Kapustin+Thorngren, ...

® |'ll focus on a single 2d Dirac fermion for the rest of talk.
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I’ll explain this Continuum
part first limit

Villain lattice
scalar ¢



ldea of the talk

Then I'll focus
on this part.

® Much remains unclear about the lattice
fermion theory.

® |'l| focus on what we understood so far, and
highlight how it connects to the NN theorem.

Bosonization

> Villain lattice
—
scalar ¢

Fermionization

Sowme Lattice
fermion theory?



2d Abelian bosonization

Free 1+1d Dirac fermion QFT
with gauged fermion parity (—1)"

® Some entries in the dictionary:

p_thy ~e'?
1

2n-periodic boson QFT
2

R 1
L =—(dp)*,R> = —
472( #) 2

vytah ~ — =€ D,

2T
_ )
PYTY ~ Oy
T

PP ~ e

R%dyp =i db



2d Abelian bosonization

Free 1+1d Dirac fermion QFT 27r—peri02dic boson QFT
with gauged fermion parity (—1)" P = f_ﬂ(d(p)z,Rz — %

¢ \What about y, ?

w__ -~ eiH::igo/Q

® The left-hand side is ill-defined on its own. [t must live at the

end of the suitable topological line operator.

e Natural given that (—=1)f is gauged.



Compact boson review

R2

L =—do), ¢ ~@+2r

A

® Conserved currents:

R2
° = _d
JA > @

® Conserved charges:
R2

O4(C) =J * J =_J * do
C

C 27

@ shift charge

Conserved due to e.o.m.

. 1
Jy=—%dg

—1
Oy(C) = J * Jy = —J de
C

C 27
Winding number charge

Tautologically conserved



The lattice

® \Work on a square lattice with sites s, links £, plaquettes p,

and cells on dual lattice §, 7, p.

® “Hodge star” map from lattice to dual lattice
*xs=p, k=0, %p=3§

® (dw)erir = Y  wer,sothat (dp)y = ¢, ;— ¢s, d° =0.

c’ 6807"—|—1

: = Lattice

- Du\a[ ld;é/l'(,&




Villain 1970s;
Gross, Klebanov 1990s;

Villain scalar Cheng, Gattringer,
Gorantla, Fazzi, Lam,
Seiberg,
Shao,Sulejmanpasic, ...
A continuum scalar can be represented as 2019 - now
vs € R
p(x) —
Ny € 2

Impose a discrete gauge redundancy involving k, € Z

s — s + 2Tk
Ny — Ny + (dk)g

Then {@,n} describe a 2z-periodic scalar.

Discrete-gauge invariant derivatives look like

Opp(x) — (do); — 2mn;



Villain gauge field

A U(1) gauge field has a similar discretization:
{ag c R

au(z) —
ry, € 4

Impose a discrete gauge redundancy involving m, € Z
and a continuous gauge redundancy involving i, € R

Ay — Ay + (dh)g + 27mmy

rp = Tp + (dm),
Then {a, r} describes a U(1) gauge field.

The gauge invariant field strength is

fuv(x) — (da), — 277y,

Villain 1970s;



Topology on the lattice

® The Villain discretization ensures that winding number and
instanton number are quantized at finite lattice spacing:

winding of ¢ = ;—; Z (dp); — 2mn;| = Z n; € Z

ZEC e’

—1
instanton number of a,, = o Z (da), — 27r,| = Z ry, € Z
d peES peES

® Gives us a chance to get things right!

20



Winding number conservation

® |n the 70s Villain construct, the Cconservation equation for j, is

|
2ﬂd [(dga)f — 27mf] = (dn)p

® dn can be any integer, so jy is not conserved.

d* jy =

® Physically, (dn), # 0 whenever there's a vortex at p.

Dynamical vortices mean that winding number can jump by
any integer.

e Modified Villain idea: constrain (dn)p to be zero!

21



Cheng, Gattringer,

MOdified Villain Iattice Scalar Gorantla, Fazzi, Lam,

Seiberg,
Shao,Sulejmanpasic, ...
2019 - now

e Add a Lagrange multiplier 8 living on dual sites:

5 = LS (dg)e — 20n? 41 0uydn),
14 D

® Now both U(1), and U(1), are present on the lattice, and
actas 0; = 0.+ a, ¢, = @, + P respectively.

® (. is the lattice version of 8, the T-dual of ¢.

® 't Hooft anomaly captured exactly:

. 1 | 1
d*]A — %dAV — (d*jA)ﬁ = % [(dAv)ﬁ — 27TR]5]
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QED and chiral gauge theory on lattice

® One can use this formalism to formulate e.g. U(1) gauge
theory coupled to one or more massless Dirac fermions.

® Preserves all Abelian symmetries at finite lattice spacing
® Can also find a discretization of '3450' chiral gauge theory
with a dynamical gauge field that preserves all its

symmetries.
® And one can even do Monte Carlo simulations of it.

Berkowitz, AC, Jacobson 2024
+ Work in progress with Evan Berkowitz

23



Nielsen-Ninomiya theorem

® The NN theorem simply doesn’t apply to our construction.
It constrains discretization of Dirac operators.

® \We do not start with a continuum Dirac operator at all.

® Starting point is a different path integral that doesn’t
even have fermions.

® But it would be nice to make contact with the NN theorem!

® |dea: if we compute the fermion-operator two-point
function using the moditied Villain theory, it will tell us what
type of lattice fermion theory we are dealing with.

24



ldea of the talk

Bosonization

> Villain lattice
—
scalar @

Fermionization

Sowe lattice
fermion theory?

® \We can compute some correlation functions
of the lattice fermion theory above to try to
understand what it looks like.

25



Fermion two-point function

® The thing to compute in the fermion theory is (y, (X), ).

® |n the bosonic variables this is

Cac,O

® On the lattice, we should calculate a correlation function
that looks like

exp(i0(x))

| I—

exp(ip(x)/2) l.
exp | —
p ) fz g

ST y



@ correlators

The thing we want to calculate is a bit complicated.

Warm up:
<€ZSOS 6_2S03/> :?

ldea: if we integrate out 8, dn = 0. If we work on R? we

can fix a gauge where n, = 0 everywhere.

This means the action simplities to

K R?

_ R 2 . _ U

The Green'’s function of ¢ with this action is known!

27



@ Green'’s function

® The exact expression for the Green'’s function is a bit
complicated:

1

No +
Ghny>0my>0 = 5 [ —log2 —(ni1 +1/2) — v —

1

1
i?)FQ (1,1,n2+%,2,n1—|—%,—1)
2

|52

2

k=1

® G can also be defined recursively.

® [or large separations, it behaves as

1 4+ 31n?2 1
Grcos@rsin@”\“__lnr B 2 O — 9
’ 2T 2T

28



@ vertex operator correlator

® | et us define

<5((JQ)> = <exp (iq Z(dgp — 27m)) >
C

® When g € Z, this is just a two-point function ot local

operators. Otherwise it is an open line operator.

e \\Ve find

2wq2
) - oo

Gwy) 9 gq — €XP

. . i
! (7E+—1n2>

22 2

® Result is independent of the contour C, as one would

expect.

29



0 vertex operator correlator

® Next warm up step: let's compute
(M) (p,p')) = (exp (iwh),) exp (—iwb,))

® But we integrated out , so we have to view this as a
correlator of defect operators.

® This amounts to doing the path integral with the constraint

(dn)p = w, (dn)y = —w

30



0 vertex operator correlator

e \\Ve find

(w) N\ 2 2 2 - CKk2w? §
M (pap ) — Cw eXp (27‘-% w Gp—p’) 7Cw — €Xp 9 YE + 9 In 2

® The techniques involved in the calculation are fairly
standard, so I'm not explaining them in this talk.

)

31




Fermion correlator from Villain scalar

® The fermion two-point function can be written as

(0 (8)B(s)) = (MO (p, p') €5/

® \We find that

(MO (p, ) ESTHY = (MDD (p, ) (€577 exp

where 6 = % d % .

—im Y (6G, — 6Gy),
eC _

® The first two factors are positive, while the last factor is a

non-vanishing phase. This is the same structure one sees

in a continuum CFT calculation.

32



Magnitude of lattice Weyl correlator
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Phase of lattice Weyl correlator
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Fermion correlator from Villain scalar

® For large separations, we find

<¢H:(81)¢§:(82)>==

1

_vof
S+ 1S ‘82

1

1
where §; = %(Sl +5),5, = (51 = 5) .

),mﬂ)

PNE

® This is exactly what we expect in the continuum, where

(-

:(5131)%0:

1

(22)) =

L1 3

- iQZ’Q

® So the lattice Weyl correlators reduce to the continuum

correlators in terms of lattice “light-cone’ coordinates.

35



What about the NN theorem?

® To see how this can be reconciled with the NN theorem,
we can study the Fourier transform of the lattice Wey!
correlator.

® The result is easiest to explain via pictures.

® Sublety: numerically we do the Fourier transtorm in a
spacetime box. This leads to some artifacts in the plot that
should be ignored.

36



Magnitude of momentum-space
Weyl correlator

15

Gl

lattice
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What about the NN theorem?

® The momentum-space correlator has a pole at the origin.

® |t also has three zeros in the Brilloin zone at

(z, 7), (7,0), (0,7).
® This means that the associated Dirac operator is not locall

® |s this a disaster? Yes and no.

38



Yes, it's a disaster

The non-locality means that is not at all obvious how to
couple the ‘fermionic’ lattice theory to gauge fields.

Moreover, we have calculated the fermion four-point
function using our lattice theory, and compared to what it
would be it the theory was quadratic.

® The results are not the same.

So the lattice fermion theory associated to the modified
Villain scalar is both non-local and interacting.

At least we can see how the NN theorem is obeyed.

® The NN theorem certainly does not apply to lattice
fermion models of this sort.

39
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No, it's not a disaster

® \We have the bosonic version of the theory, which is very
nice for concrete calculation, and does not suffer from any
of these problems!

® \We can just use It.

® Also, despite the weird features of the related lattice
fermion model, we suspect it is worth exploring further.

41



Conclusions

® The moditied Villain approach allows one to describe the
physics of massless Dirac fermions while preserving all
their symmetries and anomalies, thanks to bosonization.

® The symmetries act locally on the lattice scalar fields,
enabling clean discussions of lattice gauge theories.

® The lattice fermion theory associated to the moditied
Villain scalar turns out to be neither local nor free, so
Nielen-Ninomiya theorem does not apply to it.

® Yet it has the desired continuum limit anyway, by
construction.

® |t would be nice to describe this exotic lattice fermion
theory more explicitly!

42



Thanks for listening!
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