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The Density of States



  

The Density of states – Definition 

The complete knowledge about the system is contained in the partition function Z, defined as

The density of states is defined as

“the number of states with 
energy between E and E+dE ”

Vacuum expectation values (VEVs) can then be computed as



  

The Density of states 

When is it useful to compute the DoS?
➢ When strong metastabilities are present: first order phase transitions,...
➢ When observables cannot be expressed as VEVs: interface free energies,...
➢ When path-integral measure is not positive semi-definite: sign problem,...

[Liquid-Gas interface. Taken 
from PhD Thesis of L. Coquille]

[Trace of a 1st order phase transition on the history of the elementary 
plaquette in a 3AS+2F Sp(4) LGT. Taken from D.V. et al PRD 106 (2022)] 



  

➢ With discrete degrees of freedom, the Wang-Landau algorithm 
“Random Walk in energy space with a flat histogram”.

➢ With continuous degrees of freedom, the LLR algorithm.

[The density of states for the 3d Ising model. 
Taken from Wang & Landau PRL (2001)]

The LLR idea:
1)Approximate ρ(E) in the interval [ E−δE/2, E+δE/2 ] 
2)Find a such that ρ(E)e−aE is flat

The Density of states – How to compute it? 



  

The LLR algorithm



  

The LLR algorithm – The approximate DoS 

Consider the energy interval [Ek−δE/4, Ek + δE/4], expand 
in a Taylor’s series,

where

And define

where continuity imposes

Questions:
➢ How good an approximation is   to ρ ?
➢ How to compute ak ?

for

Ek-1 Ek Ek+1

δE/4 δE/4 δE/4 δE/4

δE



  

The LLR algorithm – How good an approximation is it?

From

One obtains, by recursion 

Hence:
➢ The density of states is approximated at constant relative error,

➢ For observables,



  

The LLR algorithm - How to compute ak ? 

Define the double-bracket e.v.

For the appropriate value of a, ρ(E) e−aE    is a constant, and

Two ingredients are necessary to obtain a:

➢ A way to compute double bracket e.v. --→ Very similar to a simulation at inverse coupling 
a with energy constraints.

➢ A way to solve the framed equation --→ Highly non-linear and stochastic, has to be solved 
iteratively.

where



  

The LLR algorithm - How to compute ak ? 

To solve the framed equation, one can use the Newton-Raphson method and relatives,

However, the framed equation is stochastic, so 
we use the related Robbins-Monro algorithm!!

Since this becomes

where

To compute the double bracket e.v., several strategies are possible:

➢ Perform a constrained Heat Bath, this is a hard implementation of the constraint.

➢ Perform a Global HMC simulation with an additional force, this is a soft implementation 
of the constraint.



  

The Robbins-Monro algorithm 

[The case of SU(3) LGT. Taken from D.V. et 
al. PRD (2023)]

In practice:

➢ How many updates to measure << E >>n ? The more, the 
best: more lead to smaller oscillations around 
asymptotic value a*!! In any case, at least enough to 
sample the entire energy interval [ E−δE/4,  E+δE/4]. 

➢ How do we choose the initial value of ak? It is 
convenient to perform initial evolutions with the NR 
algorithm, and then switch to RM updates.

➢ When do we stop the iterations of the RM algorithm? 
Iterations can be stopped at any time once the 
distribution of repetitions of the algorithm are 
normally distributed.



  

Ergodicity - Umbrella sampling 

Each replica might remain trapped around 
a local action minimum. 

For intervals k and l,

[Taken from Langfeld et al. EPJ C (2016)]

[The behaviour of a for replicas as a function of iterations 
of the RM algorithm. Taken from D.V. et al. PRD (2023)]

To avoid this:
➢ Overlapping energy intervals
➢ Replica exchange



  

ak as a function of E – at last!!

[an as a function of up for different values of δE for 
the SU(3) LGT. Taken from D.V. et al. PRD (2023)]

To summarize:
➢ Partition the energy axis in (overlapping) 

sub-intervals of amplitude δE centred at En

➢ For each interval, compute <<E>>n and 
update a

➢ Exchange replicas to prevent ergodicity 
problems.

➢ After an appropriate number of iterations, 
collect a for each energy interval.

One finally obtains
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Application to the deconfinement transition of the 
SU(3) and Sp(4) LGTs



  

Phase transitions in YM theories – ElectroWeak BaryoGenesis

The spectrum of the generated 
GW background depends on:
➢ The latent heat.
➢ The critical temperature.
➢ The bubble nucleation rate.
➢ The Sphaleron Rate.

➢ EWBG in the SM requires a strong 1st order phase transition, which in the SM 
requires a light enough Higgs (~70  GeV).

➢ Bubbles are created during the transition: turbulence and their collisions source 
a background of GWs whose spectrum could be accessible today.

➢ BSM sectors are necessary to make the transtion stronger and to generate a strong 
enough CP asymmetry.

[Bubble nucleation, growth and collisions source GWs. Taken from 
Servant et al. JCAP04014]



  

Lattice Gauge Theories

We specialize to a system defined on a Ns
 3 × Nt  hypercubic lattice of spacing a, 

with an action

➢ Deconfining phase transition provided the number of fermions is not too large.
➢ For Nc>3, the phase transition is first order and its strength grows with Nc.
➢ Order parameter: the Polaykov loop, corresponding to broken centre symmetry.
➢ Pure gauge theories allow non-perturbative calculations at moderate computational cost.

The partition function is then

The temperature is set by T = 1/Nta, where Nt is the number of lattice spacings in the 
time direction.

Nc number of colors
Up elementary plaquette



  

Lattice Gauge Theories

Our aims:
➢ Compute the density of states
➢ Compute the critical temperature
➢ Compute the Latent heat
➢ …?

Our approach:

➢ We define a workflow and benchmark our approach on the best understood 
SU(3) theory on one representative lattice of geometry 4 x 203.

➢ We explore more systematically the Sp(4) theory, i.e. we attempt an 
infinite (spatial) volume limit.



  

Observables with the LLR

For observables O that depend on E,

Hence, if we approximate ϱ(E)    with

we obtain

with



  

Observables with the LLR - <up >

Simplest example and a useful check:

[Average plaquette in SU(3) gauge theory on a 4× 204 
lattice. Taken from D.V. et al. PRD 108(2023)]

Analogously one can obtain the specific heat and 
the Binder cumulant,



  

Observables with the LLR – CV and BL 

[The specific heat and the Binder cumulant as functions of the inverse coupling in SU(3) 
gauge theory on a 4× 204 lattice. Taken from D.V. et al. PRD 108(2023)]



  

Observables with the LLR - up distribution 

[The distribution of E in the SU(3) LGT for several 
different values of β on a 4 x203 lattice. Taken from D.V. 
et al. PRD (2023)]

One can easily compute the probability of E

where

Note:

➢ Two peaks are present, as expected from a 1st 
order phase transition

➢ Small discrepancies can be observed around the 
peaks and near the bottom of the distributions



  

Critical β 

We define the critical inverse coupling in 
several different ways:
➢ As the β at which

➢ As the β at which

Have peaks
[The distribution of E in the SU(3) LGT at βc on a 4 x203 
lattice. Taken from D.V. et al. PRD (2023)]



  

The Latent Heat 
The latent heat can defined from the internal energy 
density,

where

as

Where ε∓   are the internal energies of each of the 
coexisting phases at the critical temperature.

Then

[The distribution of E in the SU(3) LGT at βc on a 
4 x203 lattice. Taken from D.V. et al. PRD (2023)]



  

The δE→0 limit for βc and ∆up

[The results for the calculation of βc and ∆<up> on a 4× 203 lattice for 
several values of δE

 2. Taken from D.V. et al. PRD (2023)]
Note: for SU(3) in infinite 
volume at Nt=4, βc=5.69236(15)

From [ Lucini, Teper, Wegner JHEP 01 061(2005)]



  

The LLR algorithm – Thermodynamics

with

From

One obtains

(inverse) microcanonical temperature.

[Taken from D.V. et al. PRD (2023)]

Note the color coding:
➢ In black, f is single valued
➢ In blue, f is multivalued, we have metastable 

states
➢ In red, unstable states



  

A snapshot of the results for the Sp(4) LGT



  

The Sp(4) LGT – critical βc and Latent Heat



  

The Sp(4) LGT – critical β 

Early estimate:

In [Pepe, Wiese, Holland, Nucl. Phys. B 694 
(2008)].

Note thatm in the Nt/Ns→ 0 limit:
➢ Our results are compatible with the early 

estimate
➢ Our errors are two orders of magnitude 

smaller
➢ Our errors are perhaps a bit too small!! 

(systematics…?)

Early 
estimate



  

The Sp(4) LGT – Thermodynamics



  

Conclusions

Thank you for your attention!

➢ An LLR workflow for the SU(3) LGT was probed for one representative lattice.

➢ The Sp(4) LGT were explored more systematically. Preliminary results seem to be 
compatible with expectations, but some more work is needed to reach the 
continuum limit.

➢ In general, the LLR seems to offer interesting possibilities, namely access 
information that is otherwise difficult to obtain.



  

Appendices



  

The effect of the Interface

[Taken from D.V. et al. PRD 108 (2023)]

If we ignore mixed phases, then

Where are Gaussians

➢ A discrepancy with a sum of two Gaussians 
is apparent in the internal region

➢ We expect this to be caused by an interface 
with tension

Pmax

Pmin

where

Confined-deconfined interface tension



  

The average plaquette – SU(2) LGT



  

The Robbins-Monro algorithm 

It was shown by Robbins and Monro that:
➢ The values of a are normally distributed around asymptotic value
➢ The variance decreases as 1/n2 

[The case of the U(1) theory. Taken from Langfeld et 
al. EPJ C (2016)]

If cn satisfies

And other very general assumptions, then

Is normally distributed around 0.

We can choose cn=c/(n+1) and 



  

SU(3) Polyakov loop and its susceptibility

[The Polyakov loop e.v. and its susceptibility as functions of the inverse coupling in 
SU(3) gauge theory on a 4× 204 lattice. Taken from D.V. et al. PRD 108(2023)]


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37




















































LLR a'Ag/6V=0.0063
LLR a'Ag/6V=0.0030
LLR a'Ag/6V=0.0015
LLR a'Ag/6V=0.0007
LLR a'Ag/6V=0.0004

T Importance sampling
==
-
5.680 5.685 690 5.69¢ 5.700





16

14

xi(6)

o

LLR a'Ag/6V=0.0063
LLR a'Ag/6V=0.0030
LLR a'Ag/6V=0.0015
LLR a'Ag/6V=0.0007
LLR a'Ag/6V=0.0004

T Importance sampling
£
=
-
5.680 5.685 5.700





1.0005 |- 4

1.001f -

©.1.0015 - -

-1.002

1.0025 - -

E | | |
1.0035 100 200 300 200

Robbins-Monro iteration





0.8

0.6

0.4

0.2

— B/, fiomdos.
o EE_ from IHMC
— yfomdos.





Pmin Nt2
Poax  4N2









x1076

V = 4x20%x20%20
A, = 0.00048

V = 4x24x24x 24
A, = 0.00048

V = 4x28x 28 % 28
A, = 0.00025

V = 4x40x40x 40
A,, = 0.00013

V = 4x48x 48 x 48
A,, = 0.00013

“ ———————————————————— — —

—— ¥ &7
2

7

0.13620

0.13622

0.13624 0.13626 0.13628

t





B. = "7.339(1)




7.342 4

7.341 4

£

i — ||i
! V = 4x20%20%20 i
A,, = 0.00048 i
~ i
V = 4x24x24x24 i
A,, = 0.00048 i
N i
V = 4x28%x28%28 i
A,, = 0.00025 i
~ i
V = 4x40x40x40 i
A, = 0.00013 i
~ i
V = 4x48x48x48 i
A,, = 0.00013 i

ST
\
NS

.340 1 I d
I I
I I
I I
I I
I I
I I
I I
I I
i I £ I
7.339- i i ) 4 i
I I '«.”, I
1 I I
1 I I
1 I I
1 I I
1 I I
I I I
' o I I
11 I I
7.338 1 o I I
I I I
1l I I
o I I
11 I I
o I I
11 I I

|I I I |I T T T T I T

0.5700 0.5705 0.5710 0.5715 0.5720 0.5725 0.5730

(up)n




4x20%x20x%20
u, = 0.00048

4x 24 %24 %24
up = 0.00048

4 X 28X 28X 28
u, = 0.00025

4x40x40x40
uy = 0.00013

4x48x 48 x 48
u, = 0.00013

v
A

< <
I I

<
I

""/
A

Pﬁcv(up)

0.572 0.574 0.576 0.578 0.580

Up

0.566 0.568 0.570












Ft)=E —ts= f(t)V




s(E) = log p(E) ~log | | et~ 5w
k=1




5.69210

5.69200

5.69180

5.69170

x
x
x
x

% x x
x x
x
x x
x
x —4— All intervals x
—4— Odd intervals
x
0.0 1.0 1.5 2.0
%1070

(a*Ap/(6V))





Bev

caq] 1 Bov(f) -
I ﬁCV(Cv) I
I 6CV(Bv> A
7341031 T Bevia) __
7.3402-
<+«
o e LT o
I\ _——’:::EEE%:E—==—==:::
~ g====="
:E.-
7.3400 1 *;:\
\\\\
7.3399- .~
s
\\\\
7.3398 1 “
»
7.3397
0.000  0.001  0.002 0.003 0004 0.005 0.006 0.007  0.008

NP/N;





0.00260

0.00255

0.00240

0.00235

—+— All intervals
—4— Odd intervals

0.0

x1076












/Ek+6E/2
Ey—65/2

dE p(E)e oF




0) = [ dEO(E)p(E)e "








ﬁ(E) _ 6cn—l—an(E—En)




Eip+0r/2
[

dEO(E)p(E)e ¥




058
057
056}
055

054

5000 10000 15000 20000 25000 30000
Trajectory








0) = [ dEOE)HE) + 0(3%) = (0°7) + O(6%)




F(at™) = (AE?))(a)™)








Apt1 = Ap — Cp, (N(ay) — a)












2.697517

2.697516

2.697514

2.697513

5.6925
§'5.692()
5.6915
0.548  0.549 0.550 0.551
Up
7566 0.17568 0.17570 0.17572 0.1757

175









o(E) = / Do (E — S[o))




An+1 = An —

12
n+1

UAL))n

0%,








—— LLR distribution

p '\ -=-=-- Double Gaussian

| Mixed Phase

Pﬁcv(up)

0568  0.569 0570 0571 0572 0573 0574 0575 0576
Up








log ﬁ(E) = CL + ak(E — Ek)
























2N —1 E,.+8r/4
Cn_anE an — E
Z(B)= ) e / dE elan=h)
n—1 E,—0g/4
















a |
K

UNIVERSITY OF
PLYMOUTH




R

Science and
Technology
Facilities Council




dlog p(E)
dE

log p(E) = log p (Ex) + (E — Ex) + Ry (E)












P(1 —2)= mn(

o

N—"

s
/N

e
~~
&
\V)
~—




05000 10000 15000 20000 25000 30000

Trajectory








— LLR

—— Importance sampling

A

0.540 0.545 0.550 0.555 0.560








log((9(E))

800

600

400

200

2 -1 0 2
EN
32x32
simulation
- exact
-1 0 2 3





WEE \,.‘,;s-:a.@].v;‘_

\
.





E € [Ek — 5E/4, E} +5E/4]












5.6645

5.6640

5.6635

5.6630

5.6620

5.6615

5.6610

5.6605

5.66220

=
S 5.66215

5.66210

0 100 200 300 100 500
RM iteration m









I - .
5.73 ﬁl r T i I
1T Il

5.72

5.71 I i ImIim

5.69 |

i
5.68 e I

5.67 I f e

100 200 300 100 500
RM iteration m





ﬁ(E) — H eci—i—ai(E—Ek) — ecn—i—an(E—En)
k=1








action

configuration

action

configuration




PSVVap — mln (1, e(ak_al)(Ek_El))




Fitted Double Gaussian

LLR
Peak locations

(fn)er

0.547

0.546




O

5
=
&

5.696

5.694

a'Ag/6V=0.0063
a'Ag/6V=0.0030
a'Ag/6V=0.0015
a'Ag/6V=0.0007
a'Ag/6V= 0.0004

wt

Tt








Z(B) = /DU e P5




Cv(B) = 6NN, ((uz)s — (up)




wt

T
]

LLR a'Ag/6V=0.0063
LLR a'Ag/6V=0.0030
LLR a'Ag/6V=0.0015
LLR a'Ag/6V=0.0007
LLR a'Ag/6V=0.0004

T Importance sampling
=
<+
5.680 5.685 690 5.69¢ 5.700









0.6666675 Ty
______________________________ ---= B, =2/3

—— LLR a'Ag/6V=0.0063
—— LLR a'Ag/6V=0.0030
—— LLR a'Ag/6V=0.0015

— 4 T v
0.6666625 LLR a*Ap/6V/= 0.0007
LLR a*Ag/6V= 0.0004

Importance sampling

0.6666650

X
=

0.6666600 =+ *

—

-
&
CS 0.6666575

.=

0.6666550

]

0.6666525

0.6666500









—— LLR a'Ag/6V=0.0063
—— LLR a'Ag/6V=0.0030
—— LLR a'Ag/6V=0.0015
—— LLR a'Ag/6V=0.0007
—— LLR a'Ag/6V=0.0004

T Importance sampling

=
2
-
=
0
%









Ps (E4)

Ps (E_)








Lh = ‘64_ — &E_




The 60 liait for 4 and Au,

i

i3

i

s am6(15)




The LLR method in Lattice Gauge Theories



Davide Vadacchino



[Based on Phys.Rev.D 108 (2023) and Phys.Rev.D 111 (2025)]

In collaboration with B. Lucini, M. Piai, D. Mason, E. Bennett, F. Zierler, E. Rinaldi



TELOS collaboration

Centre for Mathematical Sciences

University of Plymouth









Bridging analytical and numerical methods in QFT – 24th-30th of August 2025





Outline



		The density of states in statistical mechanics and LGT



		The LLR algorithm



		Application to the deconfinement transition of the SU(3) and Sp(4) LGTs.



		Conclusions









The Density of States





The Density of states – Definition 





TexMaths20§display§Z(\beta) = \int \mathcal{D} \phi e^{-\beta S[\phi]} = \int dE {\color{red} \rho(E)} e^{-\beta E}§png§600§TRUE§

TexMaths20§display§\rho(E) = \int \mathcal{D} \phi \delta(E-S[\phi]) §png§600§TRUE§The complete knowledge about the system is contained in the partition function Z, defined as



The density of states is defined as



“the number of states with energy between E and E+dE ”





TexMaths20§display§\langle O \rangle = \frac{1}{Z} \int dE O(E) \rho(E) e^{-\beta E}§png§600§TRUE§Vacuum expectation values (VEVs) can then be computed as





The Density of states 



When is it useful to compute the DoS?

		When strong metastabilities are present: first order phase transitions,...



		When observables cannot be expressed as VEVs: interface free energies,...



		When path-integral measure is not positive semi-definite: sign problem,...









[Liquid-Gas interface. Taken from PhD Thesis of L. Coquille]







[Trace of a 1st order phase transition on the history of the elementary plaquette in a 3AS+2F Sp(4) LGT. Taken from D.V. et al PRD 106 (2022)] 



See Landau Binder page 270 for wang landau





		With discrete degrees of freedom, the Wang-Landau algorithm “Random Walk in energy space with a flat histogram”.











		With continuous degrees of freedom, the LLR algorithm.









[The density of states for the 3d Ising model. Taken from Wang & Landau PRL (2001)]



The LLR idea:

		Approximate ρ(E) in the interval [ E−δE/2, E+δE/2 ] 



		Find a such that ρ(E)e−aE is flat







The Density of states – How to compute it? 





TexMaths15§display§P(1\rightarrow 2) = \min\left( \frac{\rho(E_1)}{\rho(E_2)},\,1\right)§png§600§TRUE§

The LLR algorithm





The LLR algorithm – The approximate DoS 



Consider the energy interval [Ek−δE/4, Ek + δE/4], expand in a Taylor’s series,





TexMaths15§display§\log \rho(E) = \log \rho\left(E_k\right)
+ \left.\frac{\mathrm d \log \rho(E)}{\mathrm dE}\right|_{E_k} \left( E-E_k\right)
+ R_k(E)§png§600§TRUE§

TexMaths15§display§R_k(E) = \frac{1}{2}\left.\frac{\mathrm d^2 \log \rho}{\mathrm d E^2}\right|_{E_k}
\left( E - E_k\right)^2 + O(\delta_E^3)§png§600§TRUE§where





TexMaths20§display§{\color{red} \log \tilde\rho(E) = c_k + a_k(E-E_k)}§png§600§TRUE§

TexMaths15§display§E\in\left[E_k-\delta_E/4,\,E_k+\delta_E/4\right]§png§600§TRUE§And define



where continuity imposes



Questions:

		How good an approximation is  to ρ ?



		How to compute ak ?







for





TexMaths15§display§{\color{red} \tilde\rho}§png§600§TRUE§







Ek-1



Ek





Ek+1









δE/4



δE/4



δE/4



δE/4





δE





TexMaths15§display§c_k = c_1 + (a_1+a_k) \frac{\delta_E}{4} + \frac{\delta_E}{2}\sum_{l=1}^{k-1} a_l§png§600§TRUE§





The LLR algorithm – How good an approximation is it?





TexMaths20§display§\rho(E) = \tilde\rho(E) e^{\left\{O(\delta_E^2)\right\}}§png§600§TRUE§

TexMaths20§display§\ln \frac{ \rho(E_{k+1})  }{  \rho(E_k)  } =
\int_{E_k}^{E_{k+1}} \mathrm{d}E \frac{\mathrm d \ln \rho}{\mathrm d E} = \frac{\delta_E}{4} (a_k + a_{k+1} ) + O(\delta_E^3)§png§600§TRUE§

TexMaths20§display§1-\frac{\tilde\rho(E)}{\rho(E)} = O(\delta_E^2)§png§600§TRUE§From



One obtains, by recursion 



Hence:

		The density of states is approximated at constant relative error,







		For observables,









TexMaths20§display§\langle O \rangle = \frac{1}{Z} \int dE O(E) \tilde \rho(E) e^{-\beta E} + O(\delta_E^2) =  \langle O^{\text{app}} \rangle + O(\delta_E^2)§png§600§TRUE§

The LLR algorithm - How to compute ak ? 





TexMaths20§display§\langle\langle O \rangle\rangle_k (a) = \frac{1}{\mathcal{N}(a)} \int_{E_k-\delta_E/2}^{E_k+\delta_E/2} dE 
O(E) {\color{red} \rho(E) e^{-a E}} §png§600§TRUE§

TexMaths20§display§\langle\langle E-E_k \rangle\rangle_k ({\color{red}a}) = f({\color{red}a}) = 0§png§600§TRUE§Define the double-bracket e.v.



For the appropriate value of a, ρ(E) e−aE   is a constant, and



Two ingredients are necessary to obtain a:

		A way to compute double bracket e.v. --→ Very similar to a simulation at inverse coupling a with energy constraints.



		A way to solve the framed equation --→ Highly non-linear and stochastic, has to be solved iteratively.











TexMaths15§display§\mathcal{N}(a) = \int_{E_k-\delta_E/2}^{E_k+\delta_E/2} \mathrm d E\,\rho(E) e^{-a E}§png§600§TRUE§where





The LLR algorithm - How to compute ak ? 



To solve the framed equation, one can use the Newton-Raphson method and relatives,





TexMaths20§display§a^{(n+1)}_k = a^{(n)}_k - \frac{f(a^{(n)}_k)}{f'(a^{(n)}_k)} §png§600§TRUE§

TexMaths15§display§f'(a^{(n)}_k) = \langle\langle \Delta E^2 \rangle\rangle(a^{(n)}_k)§png§600§TRUE§

TexMaths15§display§a^{(n+1)}_k = a^{(n)}_k - \frac{12}{n+1} \frac{ \langle\langle \Delta E\rangle\rangle_k}{ \langle\langle \Delta E^2\rangle\rangle_k}§png§600§TRUE§However, the framed equation is stochastic, so we use the related Robbins-Monro algorithm!!



Since



this becomes





TexMaths20§display§\cdots \rightarrow a_k^{(n-1)}
\rightarrow a_k^{(n)}
\rightarrow a_k^{(n+1)}\rightarrow\cdots§png§600§TRUE§where



To compute the double bracket e.v., several strategies are possible:

		Perform a constrained Heat Bath, this is a hard implementation of the constraint.



		Perform a Global HMC simulation with an additional force, this is a soft implementation of the constraint.









TexMaths20§display§{\color{red} a^{(n+1)}_k = a^{(n)}_k - \frac{12}{n+1} \frac{ \langle\langle \Delta E\rangle\rangle_k}{ \delta_E^2}}§png§600§TRUE§

The Robbins-Monro algorithm 





[The case of SU(3) LGT. Taken from D.V. et al. PRD (2023)]



In practice:

		How many updates to measure << E >>n ? The more, the best: more lead to smaller oscillations around asymptotic value a*!! In any case, at least enough to sample the entire energy interval [ E−δE/4,  E+δE/4]. 



		How do we choose the initial value of ak? It is convenient to perform initial evolutions with the NR algorithm, and then switch to RM updates.



		When do we stop the iterations of the RM algorithm? Iterations can be stopped at any time once the distribution of repetitions of the algorithm are normally distributed.











Ergodicity - Umbrella sampling 







Each replica might remain trapped around 

a local action minimum. 







TexMaths20§display§P_\text{swap} = \min\left( 1,\, e^{(a_k-a_l)(E_k-E_l)}\right)§png§600§TRUE§For intervals k and l,



[Taken from Langfeld et al. EPJ C (2016)]



[The behaviour of a for replicas as a function of iterations of the RM algorithm. Taken from D.V. et al. PRD (2023)]



To avoid this:

		Overlapping energy intervals



		Replica exchange









ak as a function of E – at last!!





[an as a function of up for different values of δE for the SU(3) LGT. Taken from D.V. et al. PRD (2023)]



To summarize:

		Partition the energy axis in (overlapping) sub-intervals of amplitude δE centred at En



		For each interval, compute <<E>>n and update a



		Exchange replicas to prevent ergodicity problems.



		After an appropriate number of iterations, collect a for each energy interval.









TexMaths20§display§ {\color{red} \tilde\rho(E) = \prod_{k=1}^n e^{c_i + a_i(E-E_k)} \,\,\,= e^{c_n + a_n(E-E_n)}}§png§600§TRUE§One finally obtains
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A bit of literature





Application to the deconfinement transition of the SU(3) and Sp(4) LGTs





Phase transitions in YM theories – ElectroWeak BaryoGenesis



The spectrum of the generated GW background depends on:

		The latent heat.



		The critical temperature.



		The bubble nucleation rate.



		The Sphaleron Rate.







		EWBG in the SM requires a strong 1st order phase transition, which in the SM requires a light enough Higgs (~70  GeV).



		Bubbles are created during the transition: turbulence and their collisions source a background of GWs whose spectrum could be accessible today.



		BSM sectors are necessary to make the transtion stronger and to generate a strong enough CP asymmetry.









[Bubble nucleation, growth and collisions source GWs. Taken from Servant et al. JCAP04014]





Lattice Gauge Theories



We specialize to a system defined on a Ns 3 × Nt  hypercubic lattice of spacing a, with an action





TexMaths20§display§S = \sum_{p} \left( 1- \frac{1}{N_c}\,\Re\,\mathrm{Tr}\, U_p \right) ~~\left( = E \right)§png§600§TRUE§		Deconfining phase transition provided the number of fermions is not too large.



		For Nc>3, the phase transition is first order and its strength grows with Nc.



		Order parameter: the Polaykov loop, corresponding to broken centre symmetry.



		Pure gauge theories allow non-perturbative calculations at moderate computational cost.







The partition function is then





TexMaths20§display§Z(\beta) = \int \mathcal{D} U ~ e^{-{\color{red} \beta} S}§png§600§TRUE§The temperature is set by T = 1/Nta, where Nt is the number of lattice spacings in the time direction.



Nc number of colors

Up elementary plaquette





Lattice Gauge Theories



Our aims:

		Compute the density of states



		Compute the critical temperature



		Compute the Latent heat



		…?







Our approach:

		We define a workflow and benchmark our approach on the best understood SU(3) theory on one representative lattice of geometry 4 x 203.



		We explore more systematically the Sp(4) theory, i.e. we attempt an infinite (spatial) volume limit.









Observables with the LLR





TexMaths20§display§Z(\beta) = \sum_{n=1}^{2N-1} e^{c_n-a_n E}\, \int_{E_n-\delta_E/4}^{E_n+\delta_E/4}\mathrm d E \, e^{(a_n-\beta) E}§png§600§TRUE§For observables O that depend on E,





TexMaths20§display§\langle O \rangle = \frac{1}{Z(\beta)} \int dE O(E) \rho(E) e^{-\beta E}§png§600§TRUE§

TexMaths20§display§\tilde\rho(E) = e^{c_n + a_n(E-E_n)}§png§600§TRUE§Hence, if we approximate ϱ(E)  with





TexMaths20§display§\langle O \rangle = 
\sum_{n=1}^{2N-1} \frac{e^{c_n-a_n E_n}}{Z(\beta)}
\int_{E_n-\delta_E/4}^{E_n+\delta_E/4}\mathrm d E \, O(E) \, e^{(a_n-\beta)E}
§png§600§TRUE§we obtain



with





Observables with the LLR - <up >



Simplest example and a useful check:





TexMaths18§display§\langle u_p \rangle = 
\sum_{n=1}^{2N-1} \frac{e^{c_n-a_n E_n}}{Z(\beta)}
\int_{E_n-\delta_E/4}^{E_n+\delta_E/4}\mathrm d E \, u_p \, e^{(a_n-\beta)E}
§png§600§TRUE§[Average plaquette in SU(3) gauge theory on a 4× 204 lattice. Taken from D.V. et al. PRD 108(2023)]





TexMaths20§display§C_V(\beta) = 6 N_t N_s^3\left( \langle u_p^2\rangle_\beta -\langle u_p\rangle_\beta^2\right)§png§600§TRUE§

TexMaths20§display§B_V(\beta) = 1- \frac{\langle u_p^4\rangle_\beta}{3\langle u_p^2\rangle_\beta^2}§png§600§TRUE§Analogously one can obtain the specific heat and the Binder cumulant,







TexMaths18§display§u_p =  1- \frac{E}{6N_s^3 N_t}§png§600§TRUE§

Observables with the LLR – CV and BL 



[The specific heat and the Binder cumulant as functions of the inverse coupling in SU(3) gauge theory on a 4× 204 lattice. Taken from D.V. et al. PRD 108(2023)]









Observables with the LLR - up distribution 







TexMaths20§display§P_\beta(E) = \rho(E) \frac{e^{-\beta E}}{Z(\beta)}§png§600§TRUE§[The distribution of E in the SU(3) LGT for several different values of β on a 4 x203 lattice. Taken from D.V. et al. PRD (2023)]



One can easily compute the probability of E





TexMaths20§display§E=\frac{6\tilde V}{a^4} (1-u_p)§png§600§TRUE§where



Note:

		Two peaks are present, as expected from a 1st order phase transition



		Small discrepancies can be observed around the peaks and near the bottom of the distributions









Critical β 





TexMaths20§display§P_{\beta_c}(E_+) = P_{\beta_c}(E_-)§png§600§TRUE§

We define the critical inverse coupling in several different ways:

		As the β at which











		As the β at which







Have peaks





TexMaths20§display§C_V(\beta) = \frac{6\tilde V}{a^4} \left( \langle u_p^2\rangle_\beta -\langle u_p\rangle_\beta^2\right)§png§600§TRUE§

TexMaths20§display§B_V(\beta) = 1- \frac{\langle u_p^4\rangle_\beta}{3\langle u_p^2\rangle_\beta^2}§png§600§TRUE§[The distribution of E in the SU(3) LGT at βc on a 4 x203 lattice. Taken from D.V. et al. PRD (2023)]





The Latent Heat 







TexMaths20§display§\frac{L_h}{T^4} = -\left( 6 N_t^4 a \frac{\partial \beta}{\partial a} \Delta \langle u_p \rangle_\beta \right)_{\beta=\beta_c}§png§600§TRUE§The latent heat can defined from the internal energy density,





TexMaths20§display§\Delta \langle u_p \rangle_\beta =
| u_{p+}-u_{p-}|§png§600§TRUE§where





TexMaths20§display§\varepsilon(T) = \frac{T^4}{V} \frac{\partial \ln Z(T)}{\partial T}§png§600§TRUE§as





TexMaths20§display§L_h = |\varepsilon_+-\varepsilon_-|§png§600§TRUE§Where ε∓  are the internal energies of each of the coexisting phases at the critical temperature.



Then



[The distribution of E in the SU(3) LGT at βc on a 4 x203 lattice. Taken from D.V. et al. PRD (2023)]





The δE→0 limit for βc and ∆up







[The results for the calculation of βc and ∆<up> on a 4× 203 lattice for several values of δE 2. Taken from D.V. et al. PRD (2023)]



Note: for SU(3) in infinite volume at Nt=4, βc=5.69236(15)



From [ Lucini, Teper, Wegner JHEP 01 061(2005)]





The LLR algorithm – Thermodynamics





TexMaths20§display§s(E) = \log \rho(E) \simeq \log \prod_{k=1}^n e^{c_k + a_k(E-E_k)}§png§600§TRUE§

TexMaths20§display§F(t) = E - t\,s = f(t) \tilde V§png§600§TRUE§

TexMaths20§display§\frac{1}{t} = \frac{\partial s(E)}{\partial E} = a_i§png§600§TRUE§with



From



One obtains



(inverse) microcanonical temperature.





[Taken from D.V. et al. PRD (2023)]



Note the color coding:

		In black, f is single valued



		In blue, f is multivalued, we have metastable states



		In red, unstable states









A snapshot of the results for the Sp(4) LGT





The Sp(4) LGT – critical βc and Latent Heat









The Sp(4) LGT – critical β 





Early estimate:





TexMaths20§display§\beta_c = 7.339(1)§png§600§TRUE§In [Pepe, Wiese, Holland, Nucl. Phys. B 694 (2008)].



Note thatm in the Nt/Ns→ 0 limit:

		Our results are compatible with the early estimate



		Our errors are two orders of magnitude smaller



		Our errors are perhaps a bit too small!! (systematics…?)







Early estimate







The Sp(4) LGT – Thermodynamics







Conclusions



Thank you for your attention!



		An LLR workflow for the SU(3) LGT was probed for one representative lattice.



		The Sp(4) LGT were explored more systematically. Preliminary results seem to be compatible with expectations, but some more work is needed to reach the continuum limit.



		In general, the LLR seems to offer interesting possibilities, namely access information that is otherwise difficult to obtain.









Appendices





The effect of the Interface



[Taken from D.V. et al. PRD 108 (2023)]







TexMaths20§display§P_{\beta}(E) = P_{\beta}^{+}(E) + P_{\beta}^{-}(E)§png§600§TRUE§If we ignore mixed phases, then



Where





TexMaths15§display§P_\beta^{\pm}(E)§png§600§TRUE§are Gaussians



		A discrepancy with a sum of two Gaussians is apparent in the internal region



		We expect this to be caused by an interface with tension









TexMaths20§display§\tilde I = -\frac{N_t^2}{2 N_s^2} \log\frac{P_\text{min}}{P_\text{max}}
-\frac{N_t^2}{4 N_s^2} \log(N_s)§png§600§TRUE§

Pmax





Pmin





TexMaths20§display§\lim_{N_t/N_s\to 0} \tilde I = \frac{\sigma_{cd}}{T_C^3}§png§600§TRUE§where





TexMaths15§display§\sigma_{cd}§png§600§TRUE§Confined-deconfined interface tension





The average plaquette – SU(2) LGT







The Robbins-Monro algorithm 





TexMaths20§display§a_{n+1} = a_n - \frac{12}{n+1} \frac{ \langle\langle \Delta E\rangle\rangle_n}{ \delta_E^2}§png§600§TRUE§It was shown by Robbins and Monro that:

		The values of a are normally distributed around asymptotic value



		The variance decreases as 1/n2 









[The case of the U(1) theory. Taken from Langfeld et al. EPJ C (2016)]





TexMaths20§display§a_{n+1} = a_n - c_n \left( N(a_n)-\alpha)§png§600§TRUE§If cn satisfies





TexMaths15§display§\sum c_n = \infty§png§600§TRUE§

TexMaths15§display§\sum c_n^2 < \infty§png§600§TRUE§And other very general assumptions, then





TexMaths20§display§\sqrt{n} \left( a_n - a^\star\right)§png§600§TRUE§Is normally distributed around 0.



We can choose cn=c/(n+1) and 





SU(3) Polyakov loop and its susceptibility







[The Polyakov loop e.v. and its susceptibility as functions of the inverse coupling in SU(3) gauge theory on a 4× 204 lattice. Taken from D.V. et al. PRD 108(2023)]





