different system sizes

Effective String Theory on the Torus the 3d Ising interface

José Matos

WIP to appear on 2509.xxxxx with David Lima, João Penedones and João Viana

August 27, 2025

Summary

Motivation

Flux tubes, confinement a string theory

ES1

Low energy universality and non-universal term

Known resu

Non-univers

QM Approach

TBA and partitio function

Monte Carlo

The setup: 3d Isin

Free energy for different system sizes

at u = 1Free energy as a

Area-independs

Extrapolation to t

inite transverse

D=3 ONLY!!

- EST predictions for generic interfaces $\tau=\alpha+iu$, perturbative only in the Wilson coefficients.
- Modified multicanonical algorithm for high-precision free energy data;
- Preliminary value of γ_3 ;

Known resu

Non-univers

QM Approac

Tunction

Monte Carl

Multicanonical method

different system size at u = 1

function of the ar

contr

Extrapolati

critical point

nite transverse

Flux tubes, confinement and string theory

At leading order flux tubes are described by "string theory"

$$S_{NG} = \sigma \int d^2 \xi \sqrt{\partial_\mu X^i(\xi)} \, \partial^\mu X_i(\xi)$$

More generally, symmetry allows

$$S = \int d^2 \xi \underbrace{\sqrt{-h} \left[\sigma\right]}_{NG} + 2\gamma_3 \frac{K^4}{\sigma} + \dots ,$$
(2)

with $\gamma_3 \ge -\frac{1}{768}$ [1906.08098].

Figure: Lattice QCD simulation of a proton. Source: physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/

Summa

Motivat

Flux tubes, confinement ar string theory

ES

Low energy universality and non-universal terms

Known rest

Non-univers

QM Approacl

TBA and partitio function

Monte Carlo

Multicanonical method

Free energy for different system siz at u = 1

function of the are

contribution

γ₃ Extrapola critical po

Finite transverse

volume correction

Effective string theory in the static gauge:

$$S = \mathcal{A} + S_{\mathsf{free \; boson}} + rac{S_1}{\mathcal{A}} + rac{S_2}{\mathcal{A}^2} + rac{S_3}{\mathcal{A}^3} + 2\gamma_3 rac{S_{\mathsf{NU}}}{\mathcal{A}^3} + \mathcal{O}\left(\mathcal{A}^{-4}
ight) \qquad \mathcal{A} \equiv \sigma R \mathcal{T},$$

model-independent

(3)

$$\begin{split} S_1 &= \frac{1}{8} \int d^2 \xi \left(\partial_i \pi \partial^i \pi \right)^2 \\ S_2 &= -\frac{1}{16} \int d^2 \xi \left(\partial_i \pi \partial^i \pi \right)^3 \end{split}$$

:

$$S_{\mathsf{NU}} = 2\gamma_3\sigma^2\int d^2\xi \left(\partial_i\partial_j\pi\partial^i\partial^j\pi
ight)^2.$$

Neatly packaged as

$$2\delta(s) = s/4 + \gamma_3 s^3 + \gamma_5 s^5 + \cdots \tag{4}$$

plus non-integrable corrections at s^8 in $2 \rightarrow 2$; lower orders in other channels.

Name of the second

Qivi Approac

function

Monte Carl

Multicanonical method

different system sizes at u=1Free energy as a

function of the a

contribution

Extrapolation to to critical point

inite transverse

Polyakov formalism

It is equivalent to the EST description [Billò, Caselle, Ferro '06]

$$Z = \int \frac{d^2 \tau}{\tau_2} Z^{b} (q, \bar{q}) Z^{gh} (q, \bar{q}) \qquad Z^{b} (q, \bar{q}) = \operatorname{Tr} \left[q^{L_0 - 1/24} \bar{q}^{\bar{L}_0 - 1/24} \right], \tag{5}$$

It is better to compute the universal partition function

$$Z_{U} = \sqrt{2\pi} \left(\frac{\sigma L_{z}^{2}}{\pi^{2} u} \right)^{1/2} \sqrt{\mathcal{A}} \sum_{k,k'} c_{k} c_{k'} \varepsilon_{k,k'} \mathcal{K}_{1} \left(\mathcal{A} \varepsilon_{k,k'} \right)$$
 (6)

where c_k are the partitions of k and

$$\varepsilon_{k,k'} = \sqrt{1 + \frac{4\pi u}{\mathcal{A}} \left(k + k' - \frac{1}{12}\right) + \left(\frac{2\pi u}{\mathcal{A}} \left(k - k'\right)\right)^2}.$$
(7)

Known results

Non-univers

QM Approac

TBA and parti

ivionte Can

Multicanonical

Free energy for different system sizes at u=1

Free energy as a function of the are

Area-Independ contribution

 γ_3

Extrapolation to t critical point

inite transverse olume correctio

Free energy expansion

The free energy at any order is

$$F_{U} = -\log Z_{U} = \mathcal{A} - \frac{1}{2}\log\left(\frac{\sigma}{2\pi u}L_{z}^{2}\right) + 2\log|\eta(iu)| + \sum_{n=1}^{\infty}\frac{g_{n}(iu)}{\mathcal{A}^{n}}, (8)$$

with

$$\begin{split} g_1 &= \frac{\pi^2 u^2}{72} \left| E_2 \left(i u \right) \right|^2 - \frac{\pi u}{12} E_2 + \frac{3}{8} \\ g_2 &= -\frac{\pi^4 u^4}{5184} \left(2 E_4 \left(i u \right) E_2 \left(i u \right)^2 - 2 E_4 \left(i u \right)^2 \right) \\ &+ \frac{\pi^3 u^3}{432} E_4 \left(i u \right) E_2 \left(i u \right) \\ &- \frac{\pi^2 u^2}{576} \left(6 E_2 \left(i u \right)^2 + 2 E_4 \left(i u \right) \right) + \frac{\pi u}{16} E_2 \left(i u \right) - \frac{3}{16} \\ g_3 &= \text{ommited for space} \end{split}$$

Summa

. . .

Flux tubes, confinement ar

EST

ow energy iniversality and ion-universal te

Known results

Non-universa

QM Approa

TBA and parti

Marta Carl

Monte Car

Multicanonical

Free energy for different system sizes at u=1

Free energy as a function of the are

Area-independer

γ₃ Ev

Extrapolation to the critical point

volume correction

What is the validity of the asymptotic expansion?

$$F_{\mathsf{U}}^{(n)} + \log(Z_0) = 1 + \sum_{n=1}^{n} \frac{g_n(iu)}{\mathcal{A}^n} = -\log(Z_U) + \log(Z_0)$$
 (9)

with

$$Z_{0} = e^{-A} \left(\frac{\sigma L_{z}^{2}}{2\pi u}\right)^{\frac{1}{2}} \frac{1}{|\eta(\tau)|^{2}}.$$

$$Z_{U} = \left(\frac{\sigma L_{z}^{2}}{\pi^{2} u}\right)^{1/2} \sqrt{A} \sum_{k,k'} c_{k} c_{k'} \varepsilon_{k,k'} K_{1} \left(A \varepsilon_{k,k'}\right)$$

Non-universal

QM Approac

TBA and partition

Monte Carlo

Multicanonical method

Free energy for different system sizes at u=1

function of the a Area-independer

contr γ₃

Extrapolat

critical point
Finite transverse

inite transverse olume correctio

Non-universal corrections: Path integral

The correction is

$$V_{\text{NU}}[\pi] = -2\frac{\gamma_3}{\mathcal{A}^3} \int d^2\xi \left(\partial_i \partial_j \pi \partial^i \partial^j \pi \right)^2, \tag{10}$$

Requires regularizing series of the type [Dietz, Filk '83]

$$\sum_{(m,n)\neq(0,0)} \frac{n^4}{m^2 + u^2 n^2} \tag{11}$$

The non-universal correction for $\tau = iu$ is

$$F_{\text{NU}}(A, iu) = -\frac{32\gamma_3\pi^6}{225A^3}u^4E_4^2(iu),$$
 (12)

The ground state shift matches TBA [1906.08098]

$$\Delta E_0(R) \equiv \lim_{L \to \infty} \frac{\Delta F_{\text{NU}}(\mathcal{A}, iu)}{L} = -\frac{32\pi^6}{225} \frac{\sqrt{\sigma} \gamma_3}{(\sqrt{\sigma}R)^7}.$$
 (13)

Jose Man

Summa

Flux tubes,

confinement a string theory

ES

Low energy universality and non-universal te

Known result

Non-universal

QM Approach

TBA and partition

Monte Carl

Multicanonical method Free energy for

Free energy for different system size at u = 1

Free energy as a function of the ar

contribution

γ_3

Extrapolation to the critical point

ite transverse

Considering an object with internal quantum numbers I and momentum ρ_z in the transverse direction. The partition function is

$$Z = \operatorname{Tr}\left[e^{-LH}\right] = \sum_{I,p_z} C_I e^{-\mathcal{A}\mathcal{E}_{I,p_z}} \tag{14}$$

where C_I is their degeneracy and \mathcal{E}_I its their **energy density**

$$\mathcal{E}_{I,p_z} = \sqrt{\mathcal{E}_I^2 + \frac{p_z^2}{\sigma R^2}}.$$
 (15)

The integral over p_z can be done explicitly (matches [Billò, Caselle, Ferro '06])

$$Z = \sqrt{\frac{2\mathcal{A}}{\pi}} \left(\frac{\sigma}{2\pi u}\right)^{\frac{d-2}{2}} V_{\mathcal{T}} \sum_{l} C_{l} \mathcal{E}_{l}^{\frac{d-1}{2}} K_{\frac{d-1}{2}}(\mathcal{A}\mathcal{E}_{l}). \tag{16}$$

Twist is added by inserting $e^{\alpha LP}$ into the trace.

(18)

$$2\delta\left(s\right) = s/4 + \gamma_3 s^3 \tag{17}$$

_

TBA spits out

$$\frac{\Delta E_{k,k',s,s'}}{R} = -\frac{32\pi^6 u^4 \gamma_3}{225\mathcal{A}^4} \frac{(240s+1)(240s'+1)}{\mathcal{E}_{k,k'} \left(\left(\mathcal{E}_{k,k'} + 1 \right)^2 - \frac{\pi^2 u^2}{\mathcal{A}^2} \left(k - k' \right)^2 \right)^3} + \mathcal{O}\left(\gamma_3^2 \right)^{\frac{1}{2}}$$

with $k = \sum_i n_i$, $s = \sum_i n_i^3$ and

$$\varepsilon_{k,k'} = \sqrt{1 + \frac{4\pi}{A} \left(k + k' - \frac{1}{12} \right) + \left(\frac{2\pi u}{A} \left(k - k' \right) \right)^2}. \tag{19}$$

Ground state shift

$$\begin{split} \Delta E_0(R) &= -\frac{32\pi^6\gamma_3}{225R^7} \frac{1}{\sqrt{1 - \frac{\pi}{3R^2}} \left(\sqrt{1 - \frac{\pi}{3R^2}} + 1\right)^6} + \mathcal{O}\left(\gamma_3^2\right) \\ &= -\frac{32\pi^6\gamma_3}{225R^7} - \frac{64\pi^7\gamma_3}{675R^9} - \frac{2\pi^8\gamma_3}{45R^{11}} - \frac{22\pi^9\gamma_3}{1215R^{13}} + \mathcal{O}\left(R^{-15}\right) + \mathcal{O}\left(\gamma_3^2\right) \end{split}$$

Motivation

Flux tubes, confinement and

EST

Low energy universality and non-universal to

Known result

QM Approach
TBA and partition

function

Monte Carl

Multicanonical method Free energy for

at u = 1Free energy as a

function of the ar Area-independent

 γ_3 Extrapolation to the

critical point
Finite transverse

Summa

Motivation

Flux tubes, confinement an

FS.

ow energy universality and non-universal te

Known result

Non-universa

OM Approx

TBA and partition

function

Monte Cari

method

Free energy for different system sizes

at u = 1Free energy as a function of the area

Area-independent

γ₃ Evt

Extrapolation critical poin

inite transverse

Non-universal partition function: TBA

Then

$$Z = Z_U + \gamma_3 Z_{\gamma_3} + \mathcal{O}\left(\gamma_3^2\right) \Longrightarrow F = -\log\left(Z_U\right) - \gamma_3 F_{\gamma_3} + \mathcal{O}\left(\gamma_3^2\right) \ \ (20)$$

with

$$F_{\gamma_3} = A \frac{\sum_{k,k',s,s'} p(k,s) p(k',s') \Delta \mathcal{E}_{k,k',s,s'} \mathcal{E}_{k,k'} K_0 \left(A \mathcal{E}_{k,k'} \right)}{\sum_{k,k'} p(k) p(k') \mathcal{E}_{k,k'} K_1 \left(A \mathcal{E}_{k,k'} \right)}, \quad (21)$$

whose large area expansion for square interfaces $(\tau = i)$ is

$$F_{\gamma_3} = \frac{32\pi^6}{225\,\mathcal{A}^3} E_4(i)^2 \left(1 - \frac{13}{2\mathcal{A}} + \frac{14013 + 280\pi^4 E_4(i)^2}{432\mathcal{A}^2} + \mathcal{O}(\mathcal{A}^{-2})\right)$$

ES⁻

Low energy universality and non-universal te

Known resul

Non-univers

QM Approac

TBA and partition function

Monte Carlo

The setup: 3d Multicanonical

Free energy for different system sizes

Free energy as a function of the ar

Area-indepen contribution

 γ_3

Extrapolation to t critical point

-inite transvers volume correcti

Higher-order Wilson Coefficients

The spectrum at first order in γ_n is

$$\Delta E_{k,k',s,s'} = -2^{6n-1} \pi^{2n} \zeta \left(-n\right)^2 \frac{\left(1 + \frac{2}{\zeta(-n)}s\right) \left(1 + \frac{2}{\zeta(-n)}s'\right)}{R^{1+2n} \mathcal{E}_{k,k'} \left(\left(\mathcal{E}_{k,k'} + 1\right)^2 - \frac{4\pi^2 \left(k - k'\right)}{R^4}\right)^n},$$
(22)

with $k=\sum_i n_i$ and $s=\sum_i n_i^n$. The free energy correction is

$$F_{\gamma_{n}} = A \frac{\sum_{k,k',s,s'} p(k,s) p(k',s') \Delta \mathcal{E}_{k,k',s,s'} \mathcal{E}_{k,k'} K_{0} (A \mathcal{E}_{k,k'})}{\sum_{k,k'} p(k) p(k') \mathcal{E}_{k,k'} K_{1} (A \mathcal{E}_{k,k'})}$$

$$= -\frac{1}{2} (4^{n} \pi^{n} \zeta (-n))^{2} \frac{u^{n+1}}{A^{n}} (|E_{n+1} (\tau)|^{2} + \mathcal{O}(A^{-n-1}))$$

Summary

Motivation

Flux tubes, confinement as string theory

EST

Low energy universality and non-universal term

Tenovii resu

Non-universa

QM Approach TBA and partition

TBA and partitio function

Monte Carlo

The setup: 3d Isi Multicanonical

Free energy for different system sizes

at u=1Free energy as a

function of the are Area-independent contribution

Extrapolation to the critical point

inite transverse

How can we realize an interface? Ising... It is always the Ising.

Non-univers

QM Approach

TBA and partiti

Monte Carl

The setup: 3d Ising
Multicanonical

Free energy for different system sizes at u = 1

Free energy as a function of the a

Area-indepen contribution

 γ_3

Extrapolation to th critical point

inite transverse olume correction

The 3d Ising

Domain wall in the 3d Ising

$$H[\{s\};J] = \sum_{\langle i,j\rangle} J_{ij} s_i s_j \tag{23}$$

and

$$Z[\beta, J] = \int dJ e^{-F(J)} \qquad e^{-F(J)} \equiv \sum_{\{s_i\}} e^{-\beta H[\{s_i\}; J]}.$$
 (24)

The interface free energy is

$$F^{\text{Interface}} = -\log\left(\frac{Z\left[\beta, -1\right]}{Z\left[\beta, 1\right]}\right) \tag{25}$$

Summa

Motivati

Flux tubes, confinement a

ES

Low energy universality and non-universal te

Known resul

Non-universa

QM Approach

TBA and partit

Monto Carlo

The setup: 3d

Multicanonical

Free energy for different system sizes

Free energy as a function of the an

Area-indeper contribution

γ3

Extrapolation to the critical point

nite transverse

Multicanonical method

Deform the partition function with a function ω

$$Z[J;\omega] = \int dJ e^{-F(J)+\omega(J)}$$
 (26)

such that

$$e^{-F(J)+\omega(J)} = \text{constant}.$$
 (27)

Moreover, we split ω as

$$\omega(J) = bJ + cJ^2 + \Delta\omega(J). \tag{28}$$

The EST free energy becomes

$$F^{\text{Interface}} = 2b + \Delta\omega (1) - \Delta\omega (-1). \tag{29}$$

Summary

Flux tubes, confinement ar

EST

Low energy universality an non-universal

Known resu

Non-univers

TBA and partition

Monte Carlo

The setup: 3d

Free energy for different system sizes

at u = 1Free energy as a function of the are

Area-indeper contribution

Extrapolation to critical point

inite transvers

Free energy for different system sizes at u=1

Julilliar

Flux tubes, confinement ar

EST

ow energy universality and non-universal te

Known resu

Non-univers

TBA and partition

Monto Carl

The setup: 3d Is Multicanonical

Free energy for different system sizes

Free energy as a function of the area

Area-indepen

Extrapolation to the

Finite transverse

Free energy as a function of the area

$$F_{U} = -\log(Z_{U}) = -\log\left[\left(\frac{\sigma L_{z}^{2}}{\pi^{2}u}\right)^{1/2} \sqrt{A} \sum_{k,k'} c_{k} c_{k'} \varepsilon_{k,k'} K_{1}\left(A \varepsilon_{k,k'}\right)\right]$$
(30)

Summar

Flux tubes, confinement ar

EST

Low energy universality and

Known resu

Non-univers

14011 UIIIVCIS

TBA and partition

.. .

The setup: 3d Isi Multicanonical

Free energy for different system sizes

Free energy as a function of the an

Area-independent contribution

Extrapolation to th critical point

inite transverse

Area-independent contribution

$$c_0 = -\frac{1}{2}\log\left(\frac{\sigma}{2\pi u}\right) + 2\log|\eta(iu)| \tag{31}$$

Cummu

Flux tubes, confinement a string theory

EST

Low energy universality and non-universal ten

Known resul

Non-universa

QM Appr

TBA and partition

Monte C

The setup: 3d Isin

Free energy for different system sizes at u = 1

Free energy as a function of the ar Area-independent

 γ_3

Extrapolation to the critical point

inite transverse

For $\tau = i$ the EST predicts

$$\gamma_3^{\mathsf{MC}} \equiv \frac{F_{\mathsf{MC}} - F_{\mathsf{U}}}{F_{\gamma_3}} + \mathcal{O}\left(\gamma_3\right) \qquad \gamma_3^{\mathsf{min}} \equiv -\frac{1}{768} \tag{32}$$

Summar

Flux tubes, confinement a

EST

Low energy universality and

Known resu

Non univers

ivon-univers

TBA and partition

Monto Carlo

The setup: 30

method Free energy for

different system sizes at u=1

function of the a

conti

Extrapolation to the critical point

inite transverse

Extrapolation to the critical temperature

Summa

Motivat

Flux tubes, confinement as

EST

Low energy universality ar

Known resu

Non-univers

QM Approac

TRA and partit

Worke Cario

Multicanonical method

different system sizes at u = 1

function of the are Area-independent

γ₃

critical point

Finite transverse volume corrections

Finite transverse volume corrections: to appear 251x.xxxxx

We define an effective string tension as

$$\sigma_{\text{eff}}(L_z) \equiv \lim_{A \to \infty} \frac{F(A, u, L_z; \sigma)}{A}.$$
 (33)

The EST prediction is

$$\sigma_{\rm eff}(L_z) = \sigma_{\rm eff}(\infty) \equiv \sigma_{\infty}$$
 (34)

