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The Standard Model of Particle physics is an enormously successful theory.

But it has a rather embarrassing problem.
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The problem is that the Standard Model is a chiral guage theory.

And we do not know how to do computer simulations of a chiral gauge theory.
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• This is not a “technical” problem about algorithms or hardware.
• It means that we really do not how to define the Standard Model in a
nonperturbative way.

There is no nonperturbative lattice construction of 4d nonabelian chiral gauge theories
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Dirac fermion and global chiral symmetry

• Recall that the massless Dirac fermion action in d = 2k,

S =

∫
d4x ψ̄/Dψ

has both a vector and chiral U(1) symmetry

ψ
U(1)V−−−−→ eiθψ

ψ
U(1)χ−−−−→ eiθγ5ψ

• The chiral matrix γ5 lets us define left and right handed Weyl fermions

ψ± =
1

2
(1± γ5)ψ.

• There is a famous mixed ’t Hooft anomaly between U(1) and U(1)χ
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Two avatars of the chiral fermion problem

• Anomalous Global Chiral symmetry
◦ Think: QCD
◦ The theory has a global chiral symmetry, with a ’t Hooft anomaly
◦ (Perfectly fine as a global symmetry, but cannot be gauged)
◦ Physical consequences: like the π → γγ cross-section

• (Anomaly-free) Gauged chiral symmetry
◦ Think: Electroweak
◦ If fermions multiplets are in the right representation, then the ’t Hooft anomaly may
cancel.

◦ There is no obstruction to gauging, and the chiral symmetry can be gauged.
◦ This is a chiral gauge theory

On the lattice, there has been impressive progress in acheiving a global chiral
symmetry with exact ’t Hooft anomaly.
(the “easy” problem of chiral fermions)

However, the case of gauged chiral symmetry is open.
(the “hard” problem of chiral fermions)
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In its simplest version, the problem is this:

Naive attempts to get a Weyl fermion on the lattice leads to doublers
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Fermion doubling problem

What goes wrong when you try to put a Weyl fermion on the lattice?

• Hamiltonian for a Weyl fermion in 1+1d

H =

∫
dx ψ†(x)i∂1ψ(x) =

∫
dp ψ†

−ppψp

• Naive discretization: Replace the derivatives with finite differences

position space: ∂1ψ(x) →
1

2a
(
ψi+1 − ψi−1

)
momentum space: ipψp →

i
a

sin(ap)ψp

• This gives the lattice Hamiltonian (a = 1)

H =
i
2

∑
x
ψ†
x (ψx+1 − ψx−1)

=
∑
p
ψ†
−p sin(p)ψp

• At low-energies,

h(q) = sin(q) = +q+ O(q2)

h(π + q) = sin(π + q) = −q+ O(q2)

Extra massless particle with opposite chirality!
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Fermion doubling problem

There are infinitely many ways to discretize the free fermion Hamiltonian.

Can you be clever with the discretization and avoid this problem?
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A no-go theorem

• Consider the free Dirac fermion action on the lattice

S =

∫ π/a

−π/a

d2kp
(2π)2k

Ψ̄−pD(p)Ψp

• In fact, the following 4 conditions cannot all hold simultaneously (Nielsen-Ninomiya ’81,
Karsten ’81)

1 D(p) is a periodic, analytic function of p (locality)
2 D(p) ∝ γµpµ for a|p| � 1 (continuum limit)
3 D(p) is invertible everywhere except p = 0 (no doublers)
4 {D(p), γ5} = 0 (chirality)
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Fermion doubling in 1+1d

• Take a general translationally-invariant lattice Hamiltonian for a single component
fermion field. In momentum space,

H = ψ†
−ph(p)ψp

• h(p) ∼ +p near p → 0 for the correct continuum limit (Right-moving Weyl
fermion).

• Locality implies h(p) is analytic, periodic function of p ∈ [−π, π)
• So if h(p) ∼ +p near p → 0, it must cross h(p) = 0 again somewhere. Therefore
h(p) ∼ −p for some p 6= 0. This is a left-moving Weyl fermion!

• Therefore, we end up with a Dirac fermion, instead of Weyl fermion.
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Fermion doubling problem

To get a lattice theory free of doublers, we need to violate at least one of the
assumptions of Nielsen-Ninomiya.

But which one?
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Wilson’s idea

Here’s an example of how to get rid of the doublers for Dirac fermions.
• Add a momentum-dependent mass term so that the doublers become heavy and
decouple.

H =

∫
dp ψ̄

[
γi sin(pi) +mF(p)

]
ψ

• Choose F(p) such that F(0) = 0 but F(p) ∼ 1 at the corners of BZ.

F(p) =
∑
i

1− cos(pi)

=⇒

• Doublers are gone, but so is the exact chiral symmetry
• The U(1) chiral symmetry of the action is recovered only in the continuum limit
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We can come up with many other such ideas to violate one of the assumptions of NN
(and indeed people have).

But is there an “optimal” way to do this?

In Euclidean spacetime, the answer is yes.
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Ginsparg-Wilson relation

Observation:
The continuum theory has an exact chiral symmetry of the action, but the lattice theory

does not.

Ginsparg and Wilson (1982) asked:
If you obtain a lattice theory by “RG blocking” a continuum theory, what happens to the

chiral symmetry?
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Ginsparg-Wilson relation

Start with a continuum theory and construct a lattice theory by RG blocking:

Z =

∫
DψDψ̄ e−ψ̄Dψ

If the continuum Dirac operator D has an exact chiral symmetry, GW found that the
lattice Dirac operator D satisfies

{D, γ̄} = 0 =⇒ {D, γ̄} = aDγ̄D

This is the Ginsparg-Wilson relation.

Why is this interesting?
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An exact chiral symmetry on the lattice

• The GW relation implies an exact “modified” chiral symmetry of the action (Lüscher
’98)

S = ψ̄Dψ

• The exact symmetry is

γ̂5 = γ5(1− aD)

δψ = γ̂5ψ, δψ̄ = ψ̄γ5

• The variation in the action is

δ(ψ̄Dψ) = (δψ̄)Dψ + ψ̄D(δψ)

= ψ̄
(
γ5D+ Dγ̂5

)
ψ

= ψ̄
(
{D, γ5} − aDγ5D

)
ψ = 0.

• This means that any Dirac operator satisfying the GW relation automatically will
not have additive mass renormalization (no fine tuning)
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“No anomaly on the lattice”

• But the chiral symmetry supposed to be anomalous
• The free 4D Dirac fermion has a global chiral symmetry.
• However, the chiral symmetry is afflicted by a famous mixed U(1)V × U(1)A
anomaly.

• If the lattice action is invariant, where does the anomaly come from?

Lore

There are no anomalies on the lattice.

(Fermion doubling occurs because the lattice cannot reproduce anomalies.)
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“No anomaly on the lattice”

• The exact symmetry is:

ψ → Uψ ≈ (1 + iεγ̂5)ψ, ψ̄ → ψ̄Ū ≈ ψ̄(1 + iεγ5)

• This implies that the measure transforms with the Jacobian

dψdψ̄ −−−→ dψdψ̄ det(UŪ)

= dψdψ̄ exp(iε tr(γ̂5))

= dψdψ̄ exp(−iε tr(γ5D))
= dψdψ̄ exp(−iε index D)

• This is a subtle calculation in the continuum theory! (Fujikawa ’79)
• On the lattice, it is almost trivial once you identify the correct modified symmetry

(Lüscher ’98).

Many other examples of lattice anomalies in recent years: (Catterall et al; Nguyen, HS; Sulejmanpasic, Gattringer; Shao, Seiberg; Berkowitz,
Cherman, Jacobson, ... )
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Naive argument: doubling occurs because lattice cannot reproduce the anomaly.

But the GW relation implies the anomaly on the lattice.
If so, it may allow for a solution to the doubling problem.

But is there actually a Dirac operator which actually satisfies it?
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A solution to the GW relation

• Consider writing

D = 2
h

h+ 1

where h is some operator. The GW relation implies

{γ5,D} = Dγ5D =⇒ {γ5, h} = 0

Therefore, h can be any operator which satisfies the chiral symmetry.
• So choose h ∼ /D/m = γµDµ/m, the continuum Dirac operator!
• Therefore this Dirac operator satisfies the GW relation (with a ∼ m−1)

D =
/D

/D+m

• But this is just a Pauli-Villars regulated Dirac fermion!

For more details, see Clancy, Kaplan, HS ’24
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A solution to the GW relation: the overlap operator

• Any D = 1
2
(1 + V) with V unitary satisfies the GW relation

• A “continuum” solution to the GW relation:

V =
/D−m
/D+m

The overlap operator provides a nonperturbative lattice version of this construction.

V =


/D−m
/D+m Pauli-Villars

DW/
√
D†
WDW Overlap (Neuberger ’98)

where DW is a Wilson-Dirac operator.
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Ginsparg-Wilson for chiral symmetry: summary

• Continuum Dirac fermions in d = 2k dimensions.

S =

∫
ψ̄(D+m)ψ

• Chiral symmetry for m = 0:

ψ → eiεγ
5
ψ, ψ̄ → ψ̄ eiεγ

5

• GW relation:

{γ5,D} = aDγ5D

• Lüscher symmetry: ψ → ψ + εδψ

δψ = γ̂5ψ, δψ̄ = ψ̄γ5

• Exact anomaly from the noninvariance of the measure

dψdψ̄ → dψdψ̄ e−iε tr γ5D = dψdψ̄ e−iε(n+−n−)

• GW relation implies
X An exact symmetry of the action
X Exact anomaly on the lattice (noninvariance of the measure)
X No doublers
X No additive mass renormlization
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So far, everything I said was strictly in a Euclidean spacetime setting.

But many important questions require us to go beyond Euclidean lattice Monte Carlo
methods, such as nonequilibrium phenomenon, realtime evolution, or formulations

with sign problems θ vacua,

Quantum computing and tensor network methods may help us go beyond lattice MC.
But we need a Hamiltonian formulation.

Is there a Hamiltonian formulation of Ginsparg-Wilson fermions?
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A Hamiltonian overlap operator

• There is actually a very natural guess for a Hamiltonian overlap operator
(Cruetz-Horvath-Neuberger (2002))

• Start with the continuum Dirac Hamiltonian

H =

∫
ddx ψ†γ0(γi∂i)ψ.

• Replace the continuum spatial Dirac operator with a spatial overlap operator

ψi∂i → D

which satisfies the usual GW relation

γ5D+ Dγ5 = 2aDγ5D

• Also impose γ5 hermiticity γ5Dγ5 = D† which gives a GW relation

D+ D† = 2aD†D

• Does this work?
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A Hamiltonian overlap operator (CHN)

• CHN overlap Hamiltonian

H = ψ†hψ = ψ†γ0Dψ

with h = γ0D, and where D is now a spatial Dirac operator which satisfies the GW
relation.

Is there a conserved chiral charge in this model?

• An exactly conserved charge can again be defined with a “modified” γ5

Q̂5 = ψ†γ̂5ψ

with

γ̂5 = γ5(1− aD)

• The GW relation implies that this charge is conserved!

[Q̂5,H] = 0
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Chiral charge

• Since both h and γ̂5 are defined in terms of D,

h = γ0D
γ̂5 = γ5(1− aD)

there is actually an interesting relationship between the two

(ah)2 + γ̂25 = 1

• What does this mean?
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Chiral charge

(ah)2 + γ̂25 = 1

𝛾̂5

−1.0 −0.5 0.0 0.5 1.0

h

−1.0

−0.5

0.0

0.5

1.0

Energy and chiral charge

• Charge varies with energy
◦ Low-energy modes |ah| ∼ 0 =⇒ γ̂5 ∼ ±1,
◦ High-energy modes |ah| ∼ 1 =⇒ γ̂5 ∼ 0
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Chiral anomaly

• The chiral anomaly equation in 1+1d says

∂µjµ5 =
1

2π
εµνFµν

• On a spatial circle, with temporal gauge A0 = 0, and spatially constant A1 = A

∂0

∫
dx j05 +

∫
dx ∂1j15 =

1

π

∫
dx ∂0A1

=⇒ ∂0Q̂5 =
L
π
∂0A

=⇒ Q̂5(A) =
AL
π

+ const

• The chiral charge must increase linearly with the gauge field
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Chiral anomaly the Hamiltonian overlap

𝛾̂5
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Energy and chiral charge
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Charge quantization

Note that the chiral charge is not quantized.

That is a bit strange from a continuum perspective.
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Charge quantization

Recently, there has been some discussion about the quantization of the axial charge

• Recent (Shao, Chatterjee, Pace ’25) and earlier work Horvath, Thacker ’98:
◦ a definition of a quantized charge in 1+1D but it does not commute with the vector charge
Q = ψ†ψ

◦ Has been used to propose a construction of the 3-4-5-0 model in 1+1 dimensions (Xu, 2025)
• (Gioai, Thorgren ’25)

◦ Construct local Hamiltonians and unquantized charges in 3+1d

• No-go theorem (Xu, Fidkowski ’23): impossible to have a quantized charge for local
Hamiltonian for a Weyl fermion

• (Haegeman, Lootens, Mortier, Stottmeister, Ueda, Verstraete ’24)

◦ Tensor network methods which use a quantized charge by construction run into trouble
when trying to reproduce the anomaly

Can we gain insight into this using a GW approach?
Is there a way to improve the charge quantization?
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Domain-wall fermions

• Domain-wall fermions provide a very physically transparent setting for
understanding how the anomaly arises

Callan-Harvey ’85, Kaplan ’92, Creutz-Horvath ’94

• Consider a massive Wilson-Dirac Hamiltonian h in 2+1 dimensions
• Choose PBC along the boundary, and OBC in the bulk.

• Tune the mass m through a topological phase transition.
• Plot the energy h vs the x5 coordinate along the bulk direction of the eigenmodes
of h

γ0h(p) = iγ5δ̂5 −
r
2
∆5 +m+

d∑
a=1

[
γa sin(pa) + r(1− cos pa)

]
.
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Domain-wall fermions and the anomaly
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Domain-wall fermions and the overlap operator

𝛾̂5
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h
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Energy and chiral charge

• In the domain-wall picture a reasonable definition of the boundary chiral charge
simply the distance from the center. So we identify (Creutz, Horvath ’94)

〈x5〉 ∼ 〈γ̂5〉

• When going from the domain-wall to the overlap operator, the purely bulk bands
are discarded.

• The Hamiltonian overlap captures the essential “bulk” modes – those which
participate in anomaly inflow
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What does it mean to “improve” the chiral symmetry?

𝛾̂5

−1.0 −0.5 0.0 0.5 1.0

h
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0.5

1.0

Energy and chiral charge

• In the domain-wall picture, it seems clear that the violations to the quantization
of the chiral charge are coming from the bulk modes.

• These bulk modes are necessary for anomaly inflow
• To improve the quantization, the best we can do is imagine “pushing the bulk
modes closer to wall.”

Can we implement this idea directly in the overlap operator?
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Fujikawa’s generalization of the GW relation

• Interestingly, Fujikawa (2000) proposed an algebraic generalization of the
(Euclidean) GW relation

D† + D = 2aD†D
↓

D† + D = 2a2k+1(D†D)k+1

to improve the chiral properties of the overlap operator. For k = 0, this reduces to
the standard GW relation.

• What happens if we replace the GW relation in the Hamiltonian overlap with
Fujikawa’s generalization of the GW relation?
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CHN Overlap + Fujikawa’s generalized GW

• The construction of the CHN Hamiltonian overlap goes through:

H = ψ†γ0Dψ

where D now satisfied the order (2k+ 1)-GW relation

D† + D = 2a2k+1(D†D)k+1

• Again, a modified chiral charge can be defined

γ̂5 = γ5[1− D(γ5D)2k]

• Relation between the modified chiral charge γ̂5 and energies h?

γ̂25 + (ah)2 = 1y Order-(2k + 1) GW relation

γ̂25 + (ah)4k+2 = 1
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Chirality-improved Hamiltonian overlap

γ̂25 + (ah)4k+2 = 1

This is doing exactly what we wanted: “pushing all the low-energy modes closer to the
wall,” improving the charge quantization at low-energies

The charge-quantization for modes |h| < 1 becomes exact at k → ∞.
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Locality vs Quantization

• An interesting tension seems to appear as we change k
• As we make k larger, the Hamiltonian and charge both become more nonlocal.
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Locality vs Quantization

• As quantization improves, locality becomes worse
• The k → ∞ limit shows how you get a compact U(1) symmetry with power-law
locality,

◦ (this may not be a problem for certain quantum hardware such as those based on ion
traps)

You cannot get an exponentially local theory without the “bulk” modes necessary for
reproducing anomaly

• Consistent with the no-go theorem of Fidkowski, Xu ’23
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But there is more to this story...
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Let’s look at the question of quantization again.
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A quantized charge

• Recall the Staggered Fermion in 1+1D

H =
i
2

∑
j

c†j cj+1 + h.c.

• Conserved vector charge

QV =
∑
j

c†j cj

• Standard (unquantized) chiral charge

Q0
A =

1

2

∑
i

c†j cj+1 + h.c.

• Curiously, there is also a quantized chiral charge (Chatterjee-Pace-Shao ’25, Horvath-Thacker ’98)

Q1
A =

1

2

∑
j

(cj + c†j )(cj+1 − c†j+1
)

But [Q1
A ,Q] 6= 0.

Does the quantized charge fit into the Ginsparg-Wilson picture?

HS ’25, in preparation

44



A quantized charge

• Recall the Staggered Fermion in 1+1D

H =
i
2

∑
j

c†j cj+1 + h.c.

• Conserved vector charge

QV =
∑
j

c†j cj

• Standard (unquantized) chiral charge

Q0
A =

1

2

∑
i

c†j cj+1 + h.c.

• Curiously, there is also a quantized chiral charge (Chatterjee-Pace-Shao ’25, Horvath-Thacker ’98)

Q1
A =

1

2

∑
j

(cj + c†j )(cj+1 − c†j+1
)

But [Q1
A ,Q] 6= 0.

Does the quantized charge fit into the Ginsparg-Wilson picture?

HS ’25, in preparation

44



A quantized charge

• Recall the Staggered Fermion in 1+1D

H =
i
2

∑
j

c†j cj+1 + h.c.

• Conserved vector charge

QV =
∑
j

c†j cj

• Standard (unquantized) chiral charge

Q0
A =

1

2

∑
i

c†j cj+1 + h.c.

• Curiously, there is also a quantized chiral charge (Chatterjee-Pace-Shao ’25, Horvath-Thacker ’98)

Q1
A =

1

2

∑
j

(cj + c†j )(cj+1 − c†j+1
)

But [Q1
A ,Q] 6= 0.

Does the quantized charge fit into the Ginsparg-Wilson picture?

HS ’25, in preparation

44



A quantized charge

• Recall the Staggered Fermion in 1+1D

H =
i
2

∑
j

c†j cj+1 + h.c.

• Conserved vector charge

QV =
∑
j

c†j cj

• Standard (unquantized) chiral charge

Q0
A =

1

2

∑
i

c†j cj+1 + h.c.

• Curiously, there is also a quantized chiral charge (Chatterjee-Pace-Shao ’25, Horvath-Thacker ’98)

Q1
A =

1

2

∑
j

(cj + c†j )(cj+1 − c†j+1
)

But [Q1
A ,Q] 6= 0.

Does the quantized charge fit into the Ginsparg-Wilson picture?

HS ’25, in preparation

44



A quantized charge

• Recall the Staggered Fermion in 1+1D

H =
i
2

∑
j

c†j cj+1 + h.c.

• Conserved vector charge

QV =
∑
j

c†j cj

• Standard (unquantized) chiral charge

Q0
A =

1

2

∑
i

c†j cj+1 + h.c.

• Curiously, there is also a quantized chiral charge (Chatterjee-Pace-Shao ’25, Horvath-Thacker ’98)

Q1
A =

1

2

∑
j

(cj + c†j )(cj+1 − c†j+1
)

But [Q1
A ,Q] 6= 0.

Does the quantized charge fit into the Ginsparg-Wilson picture?

HS ’25, in preparation
44



A GW perspective on quantization

• A symmetry between the CHN overlap Hamiltonian and Chiral charge if you
exchanged γ0 ↔ γ5 and V → −V :

h = γ0(1 + V)

γ̂5 =
1

2
γ5(1− V)

• The chiral charge itself can be thought of as a (doubler-free) Hamiltonian with
gapless modes at k = π.

• To get a quantized charge, we need to give mass to the k = π modes

γ̂′5 =
1

2
γ5(1− V) + M

such that [γ̂′5, h] = 0
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Quantization = Gapping charge operator

• To make the charge quantized, we need to add “mass” term to the charge which
would gap the massless mode at k = π.

h = γ0(1 + V)

γ̂5 =
1

2
γ5(1− V)

γ̂′5 = γ̂5 + M(1− V)

• In the traditional (CHN) GW formulation, this is impossible! (Any mass term for the
Hamiltonian breaks chiral symmetry, and vice versa)
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But what about Majorana mass terms?
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the quantized charge in a GW approach

• If we sacrifice U(1) vector symmetry, then maybe we can add Majorana mass terms
• A natural way to treat this is to treat the Dirac fermions as a Majorana fermion by
writing ψ,ψ† as a doubled Majorana field

χ =

(
ψ + ψ†

i(ψ − ψ†)

)
• This is the BdG formalism

48



Ginsparg-Wilson Hamiltonian in a BdG formalism

• In the BdG formalism with

χ =

(
ψ + ψ†

i(ψ − ψ†)

)
the overlap Hamiltonian and chiral charges:

H = χThBdGχ

Q = χTqCHNBdGχ

• We find

hBdG = I⊗ γ0(1 + V)

qCHNBdG = τy ⊗ γ5(1− V)

• Symmetry between the Hamiltonian h and the chiral charge q:

h ↔ q

γ0 ↔ γ5

V ↔ −V
k = 0 massless ↔ gapped
k = π gapped ↔ massless
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Quantization = Gapping charge operator

• To make the charge quantized, we need to add “mass” term to the charge which
would gap the massless mode at k = π.

hBdG = τ0σy(1− V)

qCHNBdG = τyσx(1 + V)

q0BdG = qCHNBdG + M(1− V)

• In the traditional (CHN) GW formulation, there is no such mass term.
• But a BdG-Ginsparg-Wilson formulation naturally allows for Majorana mass terms.
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Quantization = Gapping charge operator

hBdG = τ0σy(1− V)

qCHNBdG = τyσx(1 + V)

q0BdG = qCHNBdG + M(1− V)

• Need to choose M such that

1. M(1 − V) is antisymmetric. =⇒ MVM−1 = VT =⇒ {M, I ⊗ σz} = 0.

2. M gaps the CHN chiral charge at k = π =⇒ {M, τy ⊗ σy} = 0.

3. q0BdG is conserved =⇒ [M, τ0 ⊗ σy ] = 0.

4. Continuum limit =⇒ (q0BdG)
2 = 1 + O(p2) near p → 0. =⇒ {M, τy ⊗ σy} = 0.

• Only one allowed choice!

M = τxσy .
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Quantization with a BdG-GW formalism

• We finally obtain

hBdG = τ0γ
0(1− V)

qCHNBdG = τyγ
5(1 + V)

q0BdG = qCHNBdG + τxγ
0(1− V)

• The quantized charge has the structure

q0BdG = τyγ5
[
(1 + V) + M′(1− V)

]
which is nothing but a massive Majorana overlap operator! (Clancy, Kaplan, Singh ’24)
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Quantized charge

• Actually, if you unpack the two components of a GW fermion in 1+1d, you get
exactly 1+1d staggered fermions

• It has to be an ultralocal Hamiltonian with a Dirac fermion at each site, with no
doublers.

Staggered = CHN Overlap

• The standard (unquantized) chiral charge is exactly the CHN chiral charge we have
been discussing all this time, and..

• the quantized charge we found is exactly the one discussed by
Chatterjee-Shao-Pace ’25
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The BdG-Ginsparg-Wilson formalism provides a powerful unifying framework for to
understand the quantization issue.
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What about locality?
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GW + Ultralocality

• The usual GW/overlap are not ultralocal, except in 1+1d.

V =
Dw√
Dw†Dw

• What if we try to enforce ultralocality in higher dimensions?
• Impossible with N = 1 flavors, but becomes possible with N > 1

• What is the mininum number of flavors for which GW becomes ultralocal? N = 2
d
2 ,

whihch is exactly the number of flavors in staggered fermions
• Indeed,

Ultralocality + GW = Staggered!

• This also puts recently discussed charges of Gioao, Thorngren ’25 in a GW
framework

HS ’25, in preparation
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It’s been over 40 years since the original work of GW.

The GW relation keeps on giving.
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The many avatars of Ginsparg-Wilson structures

• Euclidean Generalized GW relations = lattice bulk-boundary correspondence
(Clancy, Kaplan, Singh 24)

◦ The bulk-boundary correspondence is used almost all recent attempts for nonabelian
chiral lattice gauge theories (symmetric mass generation, single-wall)

◦ Global anomalies, Majorana fermions, arbitrary dimensions

• Constructing improved overlap Hamiltonians (HS ’25)
◦ Tension between locality, realtime, unitarity and compactness.
◦ Physical picture of how the compactness can be improved at the cost of locality.
◦ Quantum algorithms (for certain hardware) might benefit from this improved chirality

• Quantized chiral charge from a BdG-Ginsparg-Wilson approach (HS ’25)

◦ A straightforward Hamiltonian formulation of the GW leads to an unquantized charge.
◦ A “BdG-Ginsparg-Wilson” formulation provides new perspective on the recently
discussed quantized charge, allows further generalizations.

• Ultralocality + Ginsparg Wilson (HS ’25)
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Generalized GW relations offer a unified approach to capturing fermionic anomalies,
both in Euclidean and Hamiltonian formulations.

Understanding anomalies on the lattice leads to practical advantages for numerical
algorithms.

But questions remain.

Can a Hamiltonian formulation provide new insights for chiral gauge theories and lead
to better quantum algorithms?

Are all “good” chiral fermions just GW in disguise?

Is a complete picture of fermionic anomalies on the lattice needed to solve the
problem of nonabelian chiral gauge theories?
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Thank you.
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