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https://www.claymath.org/millennium-problems/

If there is a mass gap, 
there cannot be free 
massless gluons which 
would have no lower 
bound on their energy. 
Hence, a mass gap 
implies confinement. 

Color  
confinement  
is still an 
unsolved 
problem

THE COLOR CONFINEMENT

Color confinement is supported by a wide range 
of experimental observations:  in high-energy 
particle collisions, quarks and gluons are never 
observed as free particles but always emerge as 
part of bound states (hadrons).

Understanding color 
confinement is crucial for 
explaining why quarks and 
gluons are never observed as 
free particles but are always 
confined within hadrons.

While confinement is well 
supported by lattice QCD and 
experimental evidence, 
providing an analytic proof 
from first principles remains 
an open challenge in 
theoretical physics. 
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THE COLOR CONFINEMENT (cont’d)

measured in units of the lattice spacing, obtained from the
large distance behavior of the heavy quark potential calcu-
lated from smeared Wilson loops at zero temperature [29].
This is also used to define the temperature scale and a

!!!!

!
p

is
used for setting the scale for the free energies and the
physical distances. For the conversion to physical units,
!!!!

!
p ! 420 MeV is used. For instance, we get Tc !
202"4# MeV calculated from Tc=

!!!!

!
p ! 0:48"1# [29]. In

parts of our analysis of the quark-antiquark free energies
we are also interested in the flavor and finite quark mass
dependence. For this reason we also compare our 2-flavor
QCD results to the available recent findings in quenched
(Nf ! 0) [12,20] and 3-flavor QCD (m"=m# ’ 0:4 [32])
[33]. Here we use Tc ! 270 MeV for quenched and Tc !
193 MeV [33] for the 3-flavor case.

Our results for the color singlet quark-antiquark free
energies, F1, and color averaged free energies, Fav, are
summarized in Fig. 1 as a function of distance at several
temperatures close to the transition. At distances much
smaller than the inverse temperature (rT $ 1) the domi-
nant scale is set by distance and the QCD running coupling
will be controlled by the distance. In this limit the thermal
modification of the strong interaction will become negli-
gible and the finite temperature free energy will be given
by the zero temperature heavy quark potential (solid line).
With increasing quark-antiquark separation, however, ther-
mal effects will dominate the behavior of the finite tem-
perature free energies (rT % 1). Qualitative and
quantitative differences between quark-antiquark free en-
ergy and internal energy will appear and clarify the im-
portant role of the entropy contribution still present in free
energies. The quark-antiquark internal energy will provide
a different look on the interquark interaction and thermal
modifications of the finite temperature quark-antiquark
potential. Further details of these modifications on the
quark-antiquark free and internal energies will be
discussed.

This paper is organized as follows: we start in Sec. II
with a discussion of the zero temperature heavy quark
potential and the coupling. Both will be calculated from
2-flavor lattice QCD simulations. We analyze in Sec. III
the thermal modifications on the quark-antiquark free en-
ergies and discuss quarkonium binding. Section IV con-
tains our summary and conclusions. A detailed discussion
of the quark-antiquark internal energy and entropy will be
given separately [34].

II. THE ZERO TEMPERATURE HEAVY QUARK
POTENTIAL AND COUPLING

A. Heavy quark potential at T ! 0

For the determination of the heavy quark potential at
zero temperature, V"r#, we have used the measurements of
large smeared Wilson loops given in [29] for the same
simulation parameters (Nf ! 2 and ma ! 0:1) and action.
To eliminate the divergent self-energy contributions we

matched these data for all $ values (different $ values
correspond to different values of the lattice spacing a) at
large distances to the bosonic string potential,

V"r# ! & "
12

1

r
' !r ( & 4

3

%str

r
' !r; (1)

where we already have separated the Casimir factor so that
%str ( "=16. In this normalization any divergent contribu-
tions to the lattice potential are eliminated uniquely. In
Fig. 2 we show our results together with the heavy quark
potential from the string picture (dashed line). One can see
that the data are well described by Eq. (1) at large dis-
tances, i.e. r

!!!!

!
p

* 0:8, corresponding to r * 0:4 fm. At
these distances we see no major difference between the 2-
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FIG. 2. (a) The heavy quark potential at T ! 0 from [29]
obtained from 2-flavor QCD lattice simulations with quark
masses ma ! 0:1 for different values of the lattice coupling $.
(b) shows an enlargement of the short distance regime. The data
are matched to the bosonic string potential (dashed line) at large
distances. Also included is the fit to the Cornell form (solid line)
given in Eq. (4). Note here that the heavy quark potential from
quenched lattice QCD and the string model potential coincide
already at r

!!!!

!
p

* 0:8 [35,36] (r * 0:4 fm).

STATIC QUARK-ANTIQUARK INTERACTIONS IN ZERO . . . PHYSICAL REVIEW D 71, 114510 (2005)

114510-3

O. Kaczmarek and F. Zantow, [arXiv:hep-lat/0503017].

Heavy-quark potential – free energy of a static quark-
antiquark configuration separated by a distance d.

 :  string tensionσat  T = 0
⟨W(d, t)⟩ = exp(−t V(d, t)) , lim

d→∞
V(d, t) = −

c
d

+ σd

Achieving a detailed 
understanding of 
color confinement 
remains a central 
goal for 
nonperturbative 
studies of QCD and is 
strictly related to the 
phase diagram of 
QCD.

Lattice numerical simulations have long 
revealed the emergence of tube-like 
structures when analyzing the 
chromoelectric fields between static 
quarks.

The observation of these tube-like structures in 
lattice simulations is related to the linear 
potential between static color charges and  
provides direct numerical evidence for color 
confinement.
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How to measure the chromoelectromagnetic  field tensor generated by 
a static quark-antiquark pair separated by a distance d on the lattice?

q q̄

d
To explore on the lattice the field configurations produced by a 
static quark-antiquark pair —> connected correlation function (*)

Di Giacomo, Maggiore, Oleínik , NPB347(1990)441

Kuzmenko, Simonov, PLB494(2000)81

Di Giacomo, Dosch, Shevchenko, Simonov, Phys.Rept.372(2002)319

(*)
Skala, Faber, Zach, NPB494(1997)293
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THE SPATIAL DISTRIBUTION OF THE COLOR FIELDS

lattice  measurements of the connected correlation function

ρconn
W,μν =

⟨tr(WLUPL†)⟩
⟨tr(W)⟩

−
1
N

⟨tr(UP)tr(W)⟩
⟨tr(W)⟩

d

xt

xl

Ex(xt)

W

UP

L (Schwinger line)

t

x

d

xl

xt

q q̄

lattice  definition of the gauge-invariant field strength tensor

ρconn
W,μν ≡ a2g⟨Fμν⟩qq̄ ≡ a2g Fμν

rotating the plaquette relative to the plane of the Wilson loop allows us to 
extract the components of the field tensor:

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane  

• plaquette  in the plane 

UP ( ̂μ = 4, ̂ν = 1) ⟶ Ex

UP ( ̂μ = 4, ̂ν = 2) ⟶ Ey

UP ( ̂μ = 4, ̂ν = 3) ⟶ Ez

UP ( ̂μ = 2, ̂ν = 3) ⟶ Bx

UP ( ̂μ = 3, ̂ν = 1) ⟶ By

UP ( ̂μ = 4, ̂ν = 2) ⟶ Bz

SYMMETRY: The fields take on the same 

values at spatial points connected by 

rotations around the axis on which the 

sources are located
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52 DUAL SUPERCONDUCTIVITY IN THE SU(2) PURE GAUGE. . . 5155
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results show that p~ is sizable when U„and TV are in
parallel planes. This corresponds to measuring the com-
ponent R~ of the chromoelectric field directed along the
line joining the qq pair (E in Fig. 2). Moreover, we see
that Ei(xi, x&) decreases rapidly in the transverse direc-
tion xz. In Fig. 3 we display the transverse distribution of
the longitudinal chromoelectric field along the Aux tube.
The static color sources are at xi = +5 and xi = —4 (in
lattice units). Figure 3 shows that the effects of the color
sources on the chromoelectric fields extends over about
three lattice spacings. Remarkably, far from the sources
the longitudinal chromoelectric field is almost constant
along the q-q line. Thus, the color field structure of the
q-q tube, which emerges from our results, is quite simple:
the Aux tube is almost completely formed by the longi-
tudinal chromoelectric field, which is constant along the
flux tube (if xi is not too close to the static color sources)
and decreases rapidly in the transverse direction.

-1 0 1 2 3 4 5 6 7 S 9 10 il
Xt

FIG. 2. The field strength tensor F„„(x~,xi) evaluated at
xi = 0 on a 24 lattice at P = 2.7, using Wilson loops of size
10 x 10 in Eq. (2.1).

tensor F„(xi,xi), where the coordinates xi, xi measure,
respectively, the distance from the middle point between
quark and antiquark [which corresponds to the center
of the spatial side of the Wilson loop W in Eq. (2.1)]
and the distance out of the plane defined by the Wilson
loop. The entries in Fig. 2 refer to measurements of the
Geld strength tensor taken in the middle of the Aux tube
(xi = 0) with eight cooling steps at P = 2.7 on the 244
lattice, using a square Wilson loop R' of size 10x 10. Our

B.Maximally Abelian projection

(tr (W"U")) 1 (tr (U") tr (W"))
(tr (WA)) 2 (tr (W~)) (2.8)

The correlator p+~ is obtained from Eq. (2.1) with the
substitution U&(x) -+ U (x). For instance the Abelian
projected plaquette in the (p, v) plane is

In the 't Hooft formulation [8] the dual superconductor
model is elaborated through the Abelian projection. The
idea is that the Abelian projected gauge Gelds retain the
long-distance physics -'~f the gauge system. In particular,
the physical quantities related to the confinement should
be independent of the gauge fixing and agree with those
obtained in the full gauge system. This suggested that
we [17] investigate the Abelian projected correlator

0.05

SU(2) 24 (=2.7

V„".(x) = U„"(x)U„"(x+P)V„"t(x+~)U„"t(x)
= diag1exp i8„„(x),exp i0„(x) ) . (2.9)—
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0.03 — o

0.02—

~ x =-3I

& x=-2I

rx —1I

x x-0
I
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FIG. 3. The x~ dependence of the transverse profile of the
longitudinal chromoelectric field E~(xi, xi) = R~(xi, xi).

F„.(*) = 2 ~w(x)
A V~ A (2.10)

behaves like the gauge-invariant one defined by Eq. (2.3).
In Fig. 4 we report our results for the field strength ten-

Obviously the Abelian projected quantities are commu-
tating, so we do not need the Schwinger lines in Eq. (2.8).
It is worthwhile to stress that p~ is a gauge-dependent
correlator. We performed measurements for six different
values of P in the range 2.45 ( P ( 2.70 using the 16 and
20 lattices. In this case we find a good signal without
cooling. Measurements are taken on a sample of 500—700
configurations, each separated by 50 upgrades, after dis-
carding 3000 sweeps to allow thermalization. The maxi-
mally Abelian gauge is fixed iteratively via the overrelax-
ation algorithm of Ref. [11] with the overrelaxation pa-
rameter u = 1.7 (for further details see the Appendix).
Remarkably enough, it turns out that the Abelian field
strength tensor

P. Cea and L.C.,  
Phys. Rev.  D52 
(1995) 5152

The flux tube is almost completely formed 
by the longitudinal chromoelectric field.

Our earliest investigations

q q̄

d = 10 a

ρconn
W,μν ≡ a2g⟨Fμν⟩qq̄ ≡ a2g Fμν
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Systematic study of flux tubes in the case of:

SU(3) pure gauge theory at T = 0

SU(3) pure gauge theory at T ≠ 0

QCD with (2+1) HISQ flavors at T = 0, mπ = 160 MeV

QCD with (2+1) HISQ flavors with  mπ = 140 MeV
Preliminary results at   T ≠ 0
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d = 1.14 fm

Full profile of the 
chromoelectric 
longitudinal field

[M. Baker, P. Cea, V. Chelnolov, L.C., F. Cuteri, A. Papa, arXiv:1810.07133,  arXiv:1912.04739]
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484 lattice β = 6.240 d = 1.14 fm
[M. Baker, P. Cea, V. Chelnolov, L.C., F. Cuteri, A. Papa, arXiv:1810.07133,  arXiv:1912.04739]

SU(3)   T = 0 The chromoelectromagnetic field tensor

The chromomagnetic field around the sources is compatible with zero within statistical errors.
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β = 6.370 d = 0.85 fm

[M. Baker, P. Cea, V. Chelnolov, L.C., F. Cuteri, A. Papa, arXiv:1810.07133,  arXiv:1912.04739]

SU(3)
The dominant component of 
the chromoelectric field is 
longitudinal.

The components of  the 
chromoelectric field  
transverse to the line 
connecting the sources 
can be matched to an 
effective Coulomb-like 
field.
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Transverse chromoelectric components: effective Coulomb-like field

The irrotational condition on a discrete lattice (on a plaquette):

<latexit sha1_base64="/gs1YyFjQq8n2mrZ+yPPimZFoaI="></latexit>

EC
x (x, y) + EC

y (x + 1, y) � EC
x (x, y + 1) � EC

y (x, y) = 0

Solve this equation for EC
x

<latexit sha1_base64="ip7G5EuZjwVd9SG96WqOD8pQMGY="></latexit>

EC
x (x, y) =

ymaxX

y0=y

(Ey(x, y
0) � Ey(x + 1, y0)) + EC

x (x, ymax + 1)

<latexit sha1_base64="cWIOthkbum0QHq7+sriTD5J9NxU="></latexit>

EC
x (x, ymax + 1) = 0We further assume:

The components of  the chromoelectric field  transverse to the line connecting the sources can be matched to an effective Coulomb-like field 

 satisfying the following conditions:⃗E C( ⃗r)

The transverse component  of the chromoelectric field is identified with the transverse component  of 

the perturbative field:

Ey EC
y

The perturbative field    is irrotational:EC

EC
y ≡ Ey

⃗∇ × ⃗E C = 0

The lattice procedure to 
evaluate the perturbative 
Coulomb-like contribution 
to the longitudinal 
chromoelectric field

d

xt

xl

Ex(xt) x ≡ xl
y ≡ xt

COMPUTE THE COULOMB-LIKE CONTRIBUTION IN A 
MODEL-INDEPENDENT WAY
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The longitudinal    can be 
separated into the perturbative, 

short-distance part  and a  non 

perturbative term , encoding 
the confining information, which 
is shaped as a smooth flux tube.

Ex

EC
x

ENP
x

ENP
x = Ex − EC

x

SU(3) β = 6.370 d = 16a = 0.85 fm

The confining field of the QCD flux tube

Lattice scale:   
<latexit sha1_base64="vSc7JmKsMMrvgXm+l7yd6YQzrJc="></latexit>

a(�) = r0⇥exp
⇥
c0 + c1(��6) + c2(��6)2 + c3(��6)3

⇤

r0 = 0.5 fm

c0 = �1.6804 , c1 = �1.7331

c2 = 0.7849 , c3 = �0.4428

[S. Necco, R. Sommer, arXiv:hep-lat/0108008]

(*)

(*)

q q̄

d = 0.85 fm
EXTRACT THE NONPERTURBATIVE CHROMOELECTRIC FIELD
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SU(3)  T ≠ 0
Measuring the chromoelectric fields within a flux tube generated by a static quark-
antiquark pair in finite-temperature SU(3) gauge theory.

150 Page 4 of 9 Eur. Phys. J. C (2024) 84 :150

Table 1 Summary of the numerical simulations

Lattice β a(β) [fm] d/a d [fm] T/Tc Statistics

483 × 12 6.100 0.0789097 12 0.946917 0.8 2400

483 × 12 6.381 0.052633 12 0.631597 1.2 340

483 × 12 6.381 0.052633 16 0.842129 1.2 1500

483 × 12 6.554 0.0420845 15 0.631267 1.5 1100

323 × 8 6.248 0.0631757 10 0.631757 1.5 2580

483 × 12 6.778 0.0315769 20 0.631537 2.0 1020

4 Lattice setup and smearing procedure

We measured the color fields, as defined in Eq. (1), generated
by a quark-antiquark pair separated by a distance d. We set
the physical scale for the lattice spacing according to Ref.
[13]:

a(β) = r0×exp
[
c0 + c1(β−6)+ c2(β−6)2 + c3(β−6)3

]
,

r0 = 0.5 fm,

c0 = −1.6804 , c1 = −1.7331 ,

c2 = 0.7849 , c3 = −0.4428 , (11)

for all β values in the range 5.7 ≤ β ≤ 6.92. In this scheme,
the value of the square root of the string tension is

√
σ ≈

0.465 GeV (see Eq. (3.5) in Ref. [13]).
The correspondence between β and the distance d, shown

in Table 1, was obtained from this parameterization. We
performed measurements in the temperature range 0.8 ≤
T/Tc ≤ 2.0. The distance in lattice units between quark and
antiquark corresponds to the spatial size of the Wilson loop
in the connected correlator of Eq. (1).

The connected correlator defined in Eq. (1) exhibits large
fluctuations at the scale of the lattice spacing, which are
responsible for a bad signal-to-noise ratio. To extract the
physical information carried by fluctuations at the physical
scale (and, therefore, at large distances in lattice units) we
smoothed out configurations by a smearing procedure. Our
setup consisted of (just) one step of HYP smearing [14] on
the temporal links, with smearing parameters (α1,α2,α3) =
(1.0, 0.5, 0.5), and NHYP3d steps of HYP3d smearing [14]
on the spatial links, with smearing parameters (α1,α3) =
(0.75, 0.3). NHYP3d is chosen separately for each observable
in a way that maximizes the signal value, as described in [3].
The need to choose the smearing number separately for each
observable and each location is based on the role of smearing
as an effective renormalization – different observables have
different renormalization and the impact of renormalization
increases with the length of the Schwinger line, and is evident
from the comparison of the behavior of different observables

Fig. 4 Dependence of the nonperturbative chromoelectric field E (NP)
x

(top) and chromomagnetic current density Jz (bottom) at different loca-
tions on the smearing number

under smearing, shown in Fig. 4. In Table 1 we summarize
our numerical simulations.

5 Numerical results

5.1 Scaling check

To make sure that we are close enough to the continuum
limit, we performed a scaling check, comparing the fields and

123

M. Baker, V. Chelnokov, L. Cosmai, F. Cuteri and A. Papa,  [arXiv:2310.04298 [hep-lat]].

Eur. Phys. J. C (2024) 84 :150 Page 5 of 9 150

currents at the midplane for two parameter sets having differ-
ent lattice step size a (0.063 fm and 0.042 fm) and different
distance between quark and antiquark in lattice units (10a
and 15a), but the same temperature T = 1.5Tc and physical
quark-antiquark separation d ≈ 0.631 fm. The results are
shown in Fig. 5. To be able to compare results exactly at the
midplane and avoid the discrepancy due to slightly differ-
ent location of the points at which the fields are measured, a
spline interpolation of the field values at the discrete lattice
points was employed.

The discrepancy between the full field values does not
exceed 2 ·10−3 GeV2, and in most of the cases lies within the
error bounds. For the nonperturbative field the discrepancy
reaches 3.5 · 10−3 GeV2 – up to 4.5σ , and is much more
visible in Fig. 5, due to the low value of the nonperturbative
field itself. The discrepancy in the current density reaches
1.6 · 10−2 GeV2/fm – about 5σ .

This shows that the raw data extracted from the lattice have
a negligible contribution from finite lattice step (compared
to the stochastic errors), though the analysis and extraction
of derived quantities may introduce discrepancies equal to
several standard stochastic errors.

5.2 3d plots and asymmetry

Figures 6, 7 and 8 show the dependence of the full longitudi-
nal chromoelectric field, the nonperturbative chromoelectric
field, and the chromomagnetic current density on the posi-
tion (xl , xt ) for three different values of temperature (T = 0,
T = 1.2Tc and T = 2Tc) and for the same quark-antiquark
distance d ≈ 0.63 fm.

One can see that the full field continues to form a tube-like
structure well after reaching the deconfinement temperature.
The remnants of the flux tube are visible also in the nonper-
turbative field and current density plots, despite the values
becoming much smaller at higher temperatures.

There is a lack of symmetry between the quark and anti-
quark on the 3d plots at high temperatures – closer to the
antiquark the full field values are much smaller, and the non-
perturbative field and current density values are much larger
than those close to the quark. The behavior of the full field
suggests that the smearing required to perform the effective
renormalization away from the quark at high temperatures is
so large that the field is (partially) destroyed by smearing.

The growth of the nonperturbative field and current den-
sity suggests that our method of fixing the smearing amount
(maximizing the signal value) might be inappropriate for very
small signals – at large distances we cannot distinguish the
actual field value from the subtraction errors and end up over-
amplifying the latter.

These effects are much smaller near the midplane, so in
what follows we will concentrate on the field at xl = d/2.

Fig. 5 Scaling analysis of (from top to bottom), full longitudinal chro-
moelectric field, nonperturbative chromoelectric field, and chromomag-
netic current density. Comparison is done at T = 1.5Tc for the fields and
current at the midplane with " = 483 × 12, β = 6.554, a ≈ 0.042 fm,
and " = 323 × 8, β = 6.248, a ≈ 0.063 fm

5.3 Nonperturbative chromoelectric field

Figure 9 shows a midplane section of Fig. 7, providing a better
view of the flux-tube remnant evaporation at T > Tc.

Figure 10 shows the values of the nonperturbative field
at the same temperature T = 1.2Tc, but for two distances

123

SCALING ANALYSYS 

d = 0.63 fm

W

UP

L (Schwinger line)

t

x

d

xl

xt

q q̄

Measurement of the chromoelectric field using the maximal Wilson loop (i.e. the loop 
with the largest possible extension in the temporal direction). 

O. Jahn, O. Philipsen, Phys. Rev. D 70, 074504 (2004). arxiv:hep-lat/0407042

e.g.:  lattice  and distance  between the sources —> Wilson loop  483 × 12 d = 15a 15(space) × 12(time)

T =
1

a(β) Nt
Tc = 260 MeV
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The nonperturbative chromoelectric field
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Fig. 6 3d plot of the full chromoelectric field for T = 0, 1.2Tc, 2Tc
and d = 0.631 fm

d = 0.632 fm and d = 0.842 fm. One can see that when
the quark-antiquark separation is increased by 1/3, the field
values fall by more than 50 %, and thus the flux-tube remnant
does not create a linear potential at large distances.

Fig. 7 3d plot of the nonperturbative chromoelectric field for T = 0,
1.2Tc, 2Tc and d = 0.631 fm

5.4 Magnetic current density

The same analysis can be done for the magnetic current
density that should generate the flux tube. Figure 11 shows
that the current density drops significantly when temperature
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that the current density drops significantly when temperature

123

T = 2.0 Tc

The chromoelectric field continues to form a tube-like structure well after reaching the 
deconfinement temperature, despite the values becoming much smaller at higher temperatures. 

SU(3)  T ≠ 0
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becomes larger than Tc, and Fig. 12 shows that the current
density at the midplane drops when the distance between
quark and antiquark increases.

5.5 Field integrals: string tension and confining force

We also extracted the values of the integrals of the nonpertur-
bative field, obtaining from them the effective string tension

Fig. 9 The nonperturbative chromoelectric field at the midplane xl =
d/2, for T = 0, 1.2Tc, 2Tc and d = 0.632 fm

Fig. 10 The nonperturbative chromoelectric field at the midplane xl =
d/2, for 1.2Tc and d = 0.632, 0.842 fm

Fig. 11 Magnetic current density at the midplane xl = d/2, for T = 0,
1.2Tc, 2Tc and d = 0.632 fm

σeff and the effective confining force Feff , according to the
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T = 0 T = 1.2 Tc

T = 2.0 Tc
d = 0.842 fm

The non perturbative chromoelectric field at 
the midplane: providing a better view of the 
flux-tube remnant evaporation at T > Tc

d = 0.632 fm

T = 1.2 Tc

When the quark-antiquark separation is increased 
by 1/3, the field values fall by more than 50%, and 
thus the flux-tube remnant does not create a 
linear potential at large distances. 

d = 0.632 fm , d = 0.842 fm

q q̄
SU(3)  T ≠ 0
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The effective string tension

σeff = ∫ d2xt
(ENP

x (xt))2

2

}
}

T < Tc

T > Tc

numerical evaluation of the integral 
using the data for the nonperturbative 
chromoelectric field at the midplane

SU(3)  T ≠ 0
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Fig. 12 Magnetic current density at the midplane xl = d/2, for T =
1.2Tc and d = 0.632, 0.842 fm

following formulas:

σeff =
∫

dx2
t
E (NP)
x (xt )2

2
,

Feff = 2
∫ d

0
dxl

∫ ∞

0
dxt E (NP)

x (xl , xt )Jz(xl , xt ) . (12)

The evaluation of Eq. (12) was done by doing a spline
interpolation of the lattice data, and replacing the integration
over the whole transverse plane by the integration over the cir-
cle xt < xt,max. Note that Eqs. (12) can also be used above the
deconfinement transition to characterize the chromoelectric

field structure – thus we use “effective” in the notation. The
decrease of the values of the integrals above the phase transi-
tion is a sign of the flux tube dissolution. Below the deconfine-
ment transition these integrals just give us the string tension
σ and the confining force F .

The integration results are collected in Table 2. The
stochastic error estimates were obtained using the usual jack-
knife procedure. The systematic error estimates on

√
Feff

were obtained from comparing the integral in the range given
in column xl (the region in which we have direct data), with
the integral of the extrapolated field values in the full range,
and by considering the asymmetry of the obtained field,
through the comparison of integrals over two halves of the
region, (0 – d/2) and (d/2 – d).

One can see that below Tc both
√

σeff and
√
Feff values are

stable under variation of T and d both with temperature and
with d, and roughly compatible with each other (if we take
into account systematic errors on

√
Feff ). Here they describe

the actual string tension σ and confining force F . Once we
enter the deconfinement phase, both

√
σeff and

√
Feff become

drastically smaller, but do not go to zero.
Furthermore,

√
σeff and

√
Feff are also reduced when the

temperature, and, more importantly, the distance d, grow.
In this case σeff cannot be treated as a string tension, since
the assumption that the chromoelectric field profile does not
depend on xl and d is no longer valid. Thus, in the deconfined
phase σeff and Feff just serve as measures of the residual field
strength.

Table 2 Summary of effective string tension and confining force results for the lattice setups considered in this work. The first three lines (shaded
gray) give, for the sake of comparison, the corresponding determinations at zero temperature, taken from Ref. [3]
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  decreases  with increasing 

temperature  or with increasing 
separation distance   between 
the sources.

σeff

T
d

  remains almost constant as 

the separation distance  
between the sources increases. 

σeff

d
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LATTICE SETUP
Simulation of lattice QCD with 2+1 flavors of HISQ (Highly Improved Staggered Quarks) quarks, with the tree-level 
improved Symanzik gauge action (HISQ/tree).

Couplings are adjusted so as to move on a line of constant physics (LCP), as determined in Bazavov et al (arXiv:111.1710)  with 
the strange quark mass  fixed at its physical value and a light-to-strange mass ratio , corresponding to a pion 
mass of 160 MeV in the continuum limit.

ms ml/ms = 1/20

We fix the lattice spacing through the  observable  as defined in Bazavov et al (arXiv:111.1710) r1

a
r1

(β)ml=0.05ms
=

c0f(β) + c2(10/β)f3(β)
1 + d2(10/β)f2(β)

c0 = 44.06, c2 = 272102, d2 = 4281, r1 = 0.3106(20) fm

MILC code for producing gauge configurations (1 saved after 25 RHMC trajectories) and for the measurements of the 
chromoelectromagnetic field tensor.  Simulations on LEONARDO@Cineca.

Smoothing of gauge configuration:  1HYP on temporal links + n HYP3d on space links.

QCD (2+1) HISQ flavors at T = 0
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SUMMARY OF THE NUMERICAL SIMULATIONS
lattice
size beta a(beta) [fm] d [lattice

spacings] d [fm] #of
measurements

48^4 6.885 0.0949777 6 0.569866 500
32^4 7.158 0.0738309 8 0.590647 10064
24^4 6.445 0.144692 5 0.723462 3330
32^4 7.158 0.0738309 10 0.738309 10181
48^4 6.885 0.0949777 8 0.75982 779
32^4 6.885 0.0949777 8 0.759821 4409
32^4 6.5824 0.126658 6 0.759947 2667
32^4 6.3942 0.15203 5 0.760151 3000
32^4 6.885 0.0949777 9 0.854799 4347
32^4 6.25765 0.173715 5 0.868573 3545
32^4 6.5824 0.126658 7 0.886605 2667
32^4 6.3942 0.15203 6 0.912182 3000
48^4 6.885 0.0949777 10 0.949777 779
32^4 7.158 0.0738309 13 0.959801 10183
24^4 6.445 0.144692 7 1.01285 3330
32^4 6.5824 0.126658 8 1.01326 2666
32^4 7.158 0.0738309 14 1.03363 2107
32^4 6.25765 0.173715 6 1.04229 3549
32^4 6.885 0.0949777 11 1.04475 4408
32^4 6.3942 0.15203 7 1.06421 3000
32^4 6.33727 0.160714 7 1.125 3133
32^4 6.885 0.0949777 12 1.13973 4409
48^4 6.885 0.0949777 12 1.13973 769
32^4 6.5824 0.126658 9 1.13992 2667
32^4 6.314762 0.164286 7 1.15 3651
24^4 6.445 0.144692 8 1.157536 3330
32^4 6.28581 0.168999 7 1.18299 3148
32^4 6.25765 0.173715 7 1.216 3546
32^4 6.3942 0.15203 8 1.21624 3000
32^4 6.885 0.0949777 13 1.23471 4409
32^4 6.5824 0.126658 10 1.26658 2667
32^4 6.3942 0.15203 9 1.36827 3000

distance between the static sources:

0.570 ≤ d ≤ 1.368 fm

W

UP

L (Schwinger line)

t

x

d

xl

xt

q q̄

ρconn
W,μν

Nontrivial renormalization [N.Battelli, C.Bonati, arXiv:1903.10463] which depends on .  
By comparing our results we argued that smearing behaves as an effective 
renormalization.

xt

The smearing procedure can also be validated a posteriori by the observation of 
continuum scaling.

q q̄
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CONTINUUM SCALING

0.855 fm ≤ d ≤ 0.959 fm
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QCD (2+1) flavors: longitudinal chromoelectric field

at midplane

β = 7.158 d = 10a = 0.74 fm
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Fig. 6 Behaviour of σeff (left panel) and w (right panel) with the distance d between the sources, for the full longitudinal electric field (red circles)
and its nonperturbative part (blue circles)

were able to check the validity of Eq. (12) and to track the
transverse distribution of the magnetic current.

To make further progress, we need some theoretical input
on the structure of the magnetic currents. Recently, a first
principle attempt to characterize the structure of the QCD
vacuum at large distances has been advanced in Ref. [7].
According to Ref. [7], the QCD vacuum resembles a disor-
dered magnetic condensate with average strength

√
gH0 ∼

1.0 GeV such that color confinement is assured by the pres-
ence of a mass gap together with the lack of color long-
range order. Interestingly enough, in Ref. [7] there is a phys-
ical picture for the formation of the flux tube between static
color sources. As a matter of fact, the presence of a static
quark–antiquark pair leads to the polarization of the mag-
netic domains characterizing the QCD vacuum, such that
there are magnetic currents circulating around the line join-
ing the static color charges that, in turn, give rise to a Lorentz
force that is able to squeeze the electric fields generated by
the quark–antiquark pair. More importantly, it turned out that,
within the approximations adopted in Ref. [7] and sufficiently
far from the color sources, the induced magnetic currents
belong to the maximal Abelian subgroup of the SU(3) gauge
group. As a consequence, the equations relating the mag-
netic currents to the flux-tube electric fields are the familiar
Maxwell equations generalised to the case of the presence of
magnetic charges [20]:

− $∇ × $Ea($x) = $J a
M ($x). (15)

Far from the color sources one has:

$J a
M($x) ' δa3 $J 3

M($x) + δa8 $J 8
M($x), (16)

where $J 3,8
M ($x) are azimuthal magnetic currents with strengths

[7]:

J 3
M($x) ' − vφ

√
2 (gH0)

3
2

tanh
(√

gH0
2 xt

)

cosh2
(√

gH0
2 xt

) , (17)

and

J 8
M($x) ' − vφ

√
3

2
(gH0)

3
2

tanh
(

α

√
gH0

4 xt

)

cosh2
(

α

√
gH0

4 xt

) . (18)

In Eq. (17) and Eq. (18) vφ is the azimuthal velocity of the
polarised magnetic domains.
Note that the magnetic currents basically depend only on two
parameters, i.e., vφ and

√
gH0. However, we have added one

more parameter α that away from the static color sources
should be α ' 1 [7]. As we shall see later on, this new
parameter will allow us to track the lattice data for the curl
of the electric field even near the color sources. According
to Ref. [7] the total magnetic current is:

Jmag(xt ) ' − J 3
M(xt ) − J 8

M(xt ). (19)

Having an explicit expression for the current allows us to find
the confining electric field:

ENP(xt ) ' Eth(xt ), (20)

with

Eth(xt ) ' E3
th(xt ) + E8

th(xt ), (21)

where

E3
th(xt ) ' vφ gH0

1

cosh2
(√

gH0
2 xt

) (22)
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EFFECTIVE STRING TENSION
To characterize quantitatively the shape and some properties of the flux tube formed by the longitudinal electric field, we calculated numerically 
(at the midplane between the sources):

σeff = ∫ d2xt
(ENP

x (xt))2

2
“effective” string tension

 at the midplaneENP
x  at the midplaneEx

The full field on the midplane contains also the perturbative 
contribution, which becomes less and less relevant when the 
distance between the sources increases. σeff ≈ 0.45 GeV

23

7

Table 2 Numerical results for
→!eff and

→
w2, as defined in Eqs. (9) and (10).

lattice ∀ = 10/g
2

a(∀ ) [fm] d [lattice units] d [fm]
→!eff

→
w2

484 6.885 0.0949777 6 0.569866 0.429194 (274) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.528448 (75) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.516102 (99) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.491825 (329) 0.496320 (57512)
484 6.885 0.0949777 8 0.759820 0.496651 (241) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.490815 (265) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.493505 (151) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.483090 (88) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.455193 (822) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.462862 (151) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.479558 (580) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.457725 (412) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.478554 (2312) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.475391 (5830) 0.614954 (268025)
324 6.25765 0.173715 6 1.042290 0.434895 (1046) 0.436552 (100896)
324 6.885 0.0949777 11 1.044750 0.377955 (7626) 0.622952 (342927)
324 6.3942 0.15203 7 1.064210 0.396417 (2382) 0.501584 (178880)
324 6.25765 0.173715 7 1.216000 0.464067 (5560) 0.368708 (255017)

Figure 7 Magnetic current at ∀ = 6.3942 and d = 0.91 fm on a lattice
...

and

J
8
M(ωx) ↑ ↓ v#

→
3

2
(gH0)

3
2

tanh
(

∃
√

gH0
4 xt

)

cosh2
(

∃
√

gH0
4 xt

) . (18)

In Eq. (17) and Eq. (18) v# is the azimuthal velocity of the
polarised chromomagnetic domains.
Note that the chromomagnetic currents basically depend only
on two parameters, i.e. v# and

→
gH0. However, we have

added one more parameter ∃ that away from the static color
sources should be ∃ ↑ 1 [7]. As we shall see later on, this
new parameter will allow us to track the lattice data for the
rotational of the chromoelectric field even near the color
sources. According to Ref. [7] the total chromomagnetic
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Figure 8 Space distribution of the full chromoelectric field Ex (left)
and of its nonperturbative part E

NP

x
(right) for ∀ = 7.158 and d = 10a =

0.74fm in correspondence of the midplane.

currents is:

Jmag(xt) ↑ ↓J
3
M(xt) ↓ J

8
M(xt) . (19)

Having an explicit expression for the current allows us to
find the confining chromoelectric field:

E
NP(xt) ↑ Eth(xt) (20)

with

Eth(xt) ↑ E
3
th(xt) + E

8
th(xt) , (21)

where

E
3
th(xt) ↑ v# gH0

1

cosh2
(√

gH0
2 xt

) (22)

7

Table 2 Numerical results for
→!eff and

→
w2, as defined in Eqs. (9) and (10).

lattice ∀ = 10/g
2

a(∀ ) [fm] d [lattice units] d [fm]
→!eff

→
w2

484 6.885 0.0949777 6 0.569866 0.429194 (274) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.528448 (75) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.516102 (99) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.491825 (329) 0.496320 (57512)
484 6.885 0.0949777 8 0.759820 0.496651 (241) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.490815 (265) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.493505 (151) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.483090 (88) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.455193 (822) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.462862 (151) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.479558 (580) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.457725 (412) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.478554 (2312) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.475391 (5830) 0.614954 (268025)
324 6.25765 0.173715 6 1.042290 0.434895 (1046) 0.436552 (100896)
324 6.885 0.0949777 11 1.044750 0.377955 (7626) 0.622952 (342927)
324 6.3942 0.15203 7 1.064210 0.396417 (2382) 0.501584 (178880)
324 6.25765 0.173715 7 1.216000 0.464067 (5560) 0.368708 (255017)

Table 3 Numerical results for
→!eff and

→
w2, as defined in Eqs. (9 and (10 with the replacement of the nonperturbative field with the full one.

lattice ∀ = 10/g
2

a(∀ ) [fm] d [lattice units] d [fm]
→!eff

→
w2

484 6.885 0.0949777 6 0.569866 0.631414 (229) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.781308 (43) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.693967 (59) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.674144 (165) 0.474240(41283)
484 6.885 0.0949777 8 0.759820 0.664316 (146) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.665628 (129) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.679893 (68) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.667025 (41) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.588196 (364) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.609614 (66) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.584165 (219) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.600249 (160) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.551526 (1235) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.517467 (2268) 0.502093(154215)
324 6.25765 0.173715 6 1.042290 0.488990 (350) 0.423873(50377)
324 6.885 0.0949777 11 1.044750 0.458335 (3327) 0.584496(197020)
324 6.3942 0.15203 7 1.064210 0.485249 (756) 0.474587(78494)
324 6.33727 0.160714 7 1.125000 0.406767 (3461) 0.565908(327225)
324 6.314762 0.164286 7 1.150000 0.549577 (4495) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.550451 (7072) 0.596161(268178)

and

J
8
M(ωx) ↑ ↓ v#

→
3

2
(gH0)

3
2

tanh
(

∃
√

gH0
4 xt

)

cosh2
(

∃
√

gH0
4 xt

) . (18)

In Eq. (17) and Eq. (18) v# is the azimuthal velocity of the
polarised chromomagnetic domains.
Note that the chromomagnetic currents basically depend only
on two parameters, i.e. v# and

→
gH0. However, we have

added one more parameter ∃ that away from the static color

sources should be ∃ ↑ 1 [7]. As we shall see later on, this
new parameter will allow us to track the lattice data for the
rotational of the chromoelectric field even near the color
sources. According to Ref. [7] the total chromomagnetic
currents is:

Jmag(xt) ↑ ↓J
3
M(xt) ↓ J

8
M(xt) . (19)

Having an explicit expression for the current allows us to
find the confining chromoelectric field:

E
NP(xt) ↑ Eth(xt) (20)
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WIDTH OF THE FLUX TUBE
To characterize quantitatively the shape and some properties of the flux tube formed by the longitudinal electric field, we calculated numerically 
(at the midplane between the sources):

w =
∫ d2xt x2

t ENP
x (xt)

∫ d2xt ENP
x (xt)

width of the flux tube

6

Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-
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Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-

6

Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-
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Table 2 Numerical results for
pseff and w, as defined in Eqs. (9) and (10).

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.332452 (212) 0.646585 (78748)
324 7.158 0.0738309 8 0.590647 0.409334 (58) 0.474086 (25839)
244 6.445 0.144692 5 0.723462 0.399771 (77) 0.460645 (48577)
324 7.158 0.0738309 10 0.738309 0.380966 (255) 0.496320 (57512)
484 6.885 0.0949777 8 0.75982 0.384704 (187) 0.463356 (67456)
324 6.885 0.0949777 8 0.759821 0.380184 (205) 0.464393 (63411)
324 6.5824 0.126658 6 0.759947 0.382267 (117) 0.299796 (117924)
324 6.3942 0.15203 5 0.760151 0.374200 (68) 0.511873 (47241)
324 6.885 0.0949777 9 0.854799 0.352591 (637) 0.712877 (185931)
324 6.25765 0.173715 5 0.868575 0.358531 (117) 0.373149 (74361)
324 6.5824 0.126658 7 0.886605 0.371464 (449) 0.739608 (310653)
324 6.3942 0.15203 6 0.912182 0.354552 (319) 0.564672 (143845)
484 6.885 0.0949777 10 0.949777 0.370686 (1791) 0.526818 (239288)
324 7.158 0.0738309 13 0.959801 0.368236 (4516) 0.614954 (268025)
324 6.25765 0.173715 6 1.04229 0.336868 (810) 0.436552 (100896)
324 6.885 0.0949777 11 1.04475 0.292763 (5907) 0.622952 (342927)
324 6.3942 0.15203 7 1.06421 0.307063 (1845) 0.501584 (178880)

Table 3 Numerical results for
pseff and w, as defined in Eqs. (9) and (10) with the replacement of the nonperturbative field with the full one.

lattice b = 10/g
2

a(b ) [fm] d [lattice units] d [fm]
pseff w

484 6.885 0.0949777 6 0.569866 0.489183 (177) 0.621870(69886)
324 7.158 0.0738309 8 0.590647 0.605219 (33) 0.447115(17753)
244 6.445 0.144692 5 0.723462 0.537672 (46) 0.435692(34762)
324 7.158 0.0738309 10 0.738309 0.522341 (128) 0.474240(41283)
484 6.885 0.0949777 8 0.75982 0.514655 (113) 0.451601(54312)
324 6.885 0.0949777 8 0.759821 0.515571 (100) 0.435405(43580)
324 6.5824 0.126658 6 0.759947 0.526670 (53) 0.363556(82688)
324 6.3942 0.15203 5 0.760151 0.516572 (32) 0.459008(25524)
324 6.885 0.0949777 9 0.854799 0.455681 (282) 0.547670(110240)
324 6.25765 0.173715 5 0.868575 0.472161 (51) 0.337704(39088)
324 6.5824 0.126658 7 0.886605 0.452573 (170) 0.321108(300997)
324 6.3942 0.15203 6 0.912182 0.464997 (124) 0.158464(53710)
484 6.885 0.0949777 10 0.949777 0.427284 (957) 0.494548(198891)
324 7.158 0.0738309 13 0.959801 0.400833 (1757) 0.502093(154215)
324 6.25765 0.173715 6 1.04229 0.378825 (271) 0.423873(50377)
324 6.885 0.0949777 11 1.04475 0.355045 (2577) 0.584496(197020)
324 6.3942 0.15203 7 1.06421 0.375906 (586) 0.474587(78494)
324 6.33727 0.160714 7 1.125 0.315084 (2681) 0.565908(327225)
324 6.314762 0.164286 7 1.15 0.425761 (3482) 0.435095(169046)
244 6.445 0.144692 8 1.157536 0.426480 (5478) 0.596161(268178)

with the longitudinal electric field taken at the midplane be-
tween the sources. The first of them represents a quantity
which has the dimension of an energy per unit length, simi-
larly to the string tension. For the latter, the integrand would
be given by the sum of the squared color components of the
field, in (9) we have instead the squared of Maxwell-like field,
which is arguably a linear combination of the Abelian color
components 3 and 8 of the electric field (see next Section).
The expression in Eq. (10) gives an estimate of the width of
the flux tube.

The integrals in Eqs. (9), (10) are computed numerically
by means of the trapezoidal rule. They were considered both

for the nonperturbative part of the longitudinal electric field
and for the full field. The numerical results are displayed,
respectively, in Tables 2 and 3.

In Fig. 6, left panel, we compare the behavior of seff
with the distance d between the sources for the full longitudi-
nal electric field and its nonperturbative part: while for the
full field seff tends to decrease, for the nonperturbative part
it is fairly stable. This different behavior is not surprising:
the full field on the midplane contains also the perturbative
contribution, which becomes less and less relevant when the
distance between the sources increases. While not visible on
the figure, the uncertainties in the estimation of the string ten-

 at the midplaneENP
x  at the midplaneEx

the width of the flux tube remains stable on a wide 
range of distances and is generally compatible for 
the full and the nonperturbative field.

w ≈ 0.5 fm
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POSSIBLE EVIDENCE FOR STRING BREAKING 
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d=16a=1.332 fmSU(3) pure gauge

β = 6.136

d = 9a = 1.368 fm

d = 16a = 1.332 fm

We tried to push our numerical simulations to distances as large as 
, searching for hints of string breaking.∼ 1.37 fm

We find evidences for the full longitudinal electric field  on the midplane 
between two sources

Ex

1.064 fm ≲ d* ≲ 1.140 fm

there are not evidences for a sizeable nonperturbative longitudinal electric 

field .ENP
x

BUT

For d > 1.140 fm
No improvement in the signal can be observed if the distance in 
lattice units between the two sources is reduced, keeping  fixed.d

In SU(3) pure gauge, where the string remains unbroken by 
definition, the signal for the longitudinal field is clear even at 
large distances both in physical and lattice units.

Our preliminary estimate for the string breaking distance is:

1.140 fm ≲ d < 1.368 fm

0.570 fm ≤ d ≤ 1.064 fm
We are able to isolate the nonperturbative part of the longitudinal electric field

(   under scrutiny)d ≈ 1.125 fm

25
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LATTICE SETUP
Simulation of lattice QCD with 2+1 flavors of HISQ (Highly Improved Staggered Quarks) quarks, with the tree-level 
improved Symanzik gauge action (HISQ/tree).

Couplings are adjusted so as to move on a line of constant physics (LCP), as determined in Bazavov et al (arXiv:1701.04325)  
with the strange quark mass  fixed at its physical value and a light-to-strange mass ratio , corresponding to a 
pion mass of 140 MeV in the continuum limit.

ms ml/ms = 1/27

We fix the lattice spacing through the  observable  as defined in Bazavov et al (arXiv:111.1710) fK

MILC code for producing gauge configurations (1 saved after 25 RHMC trajectories) and for the measurements of the 
chromoelectromagnetic field tensor.  Simulations on LEONARDO@Cineca.

Smoothing of gauge configuration:  1HYP on temporal links + n HYP3d on space links.

QCD (2+1) HISQ flavors at    ( )T ≠ 0 mπ = 140 MeV

a(β) =
r1

r1fK

cK
0 f(β) + cK

2 (10/β)f3(β)
1 + dK

2 (10/β)f2(β)

r1 = 0.3106 fm

r1 fK =
0.3106 fm ⋅ 156.1/ 2 MeV

197.3 MeV fm

cK
0 = 7.66 , cK

2 = 32911 , dK
2 = 2388

f(β) = [b0(10/β)]−b1/(2b2
0)exp[−β/(20b0)]

https://arxiv.org/abs/1701.04325
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2

Table 1 Summary of the lattice configurations.

lattice ! = 10/g
2

a(! ) [fm] ml ms T [MeV] configurations

484 6.880 0.096292 0.00153 0.0413 42.7 1692
483 →16 6.880 0.096292 0.00153 0.0413 128.1 6316
483 →14 6.880 0.096292 0.00153 0.0413 146.4 3603
483 →12 6.880 0.096292 0.00153 0.0413 170.8 3712
483 →10 6.880 0.096292 0.00153 0.0413 204.9 8073
483 →8 6.880 0.096292 0.00153 0.0413 256.2 5041
483 →6 6.880 0.096292 0.00153 0.0413 341.5 4716
483 →4 6.880 0.096292 0.00153 0.0413 512.3 5424
483 →8 6.200 0.192133 0.00324 0.0876 128.4 5041
483 →6 6.371 0.160462 0.00264 0.0712 205.0 5063
483 →4 6.471 0.144669 0.00235 0.0634 341.0 7374
483 →12 6.590 0.128142 0.00206 0.0556 128.3 5365
483 →6 6.590 0.128142 0.00206 0.0556 256.7 5447
483 →8 6.653 0.120284 0.00193 0.0520 205.1 5511
483 →14 6.745 0.109799 0.00175 0.0472 128.4 5186
483 →8 7.186 0.0722645 0.00114 0.0307 341.3 7789

Table 2 Summary of the lattice configurations, sorted by temperature T .

lattice ! = 10/g
2

a(! ) [fm] ml ms T [MeV] configurations

484 6.880 0.096292 0.00153 0.0413 42.7 1692
483 →16 6.880 0.096292 0.00153 0.0413 128.1 6316
483 →8 6.200 0.192133 0.00324 0.0876 128.4 5041
483 →12 6.590 0.128142 0.00206 0.0556 128.3 5365
483 →14 6.745 0.109799 0.00175 0.0472 128.4 5186
483 →14 6.880 0.096292 0.00153 0.0413 146.4 3603
483 →12 6.880 0.096292 0.00153 0.0413 170.8 3712
483 →10 6.880 0.096292 0.00153 0.0413 204.9 8073
483 →6 6.371 0.160462 0.00264 0.0712 205.0 5063
483 →8 6.653 0.120284 0.00193 0.0520 205.1 5511
483 →8 6.880 0.096292 0.00153 0.0413 256.2 5041
483 →6 6.590 0.128142 0.00206 0.0556 256.7 5447
483 →6 6.880 0.096292 0.00153 0.0413 341.5 4716
483 →8 7.186 0.0722645 0.00114 0.0307 341.3 7789
483 →4 6.471 0.144669 0.00235 0.0634 341.0 7374
483 →4 6.880 0.096292 0.00153 0.0413 512.3 5424

4 Numerical results

4.1 Scaling check

We verified that our lattice setup is close enough to the con-
tinuum limit by checking that different choices of the lattice
parameters, corresponding to the same physical distance d

between the sources, lead to the same values of the relevant
observables when measured in physical units.

4.2 ! = 6.880, 484, T = 43 MeV, d = 10a = 0.963 fm

Figures of the fields and results for string tension and width.

4.3 ! = 6.880, 483 →16, T = 128 MeV, d = 8a = 0.770 fm

Figures of the fields and results for string tension and width.

4.4 ! = 6.880, 483 →16, T = 128 MeV, d = 10a = 0.770
fm

Figures of the fields and results for string tension and width.

4.5 Field integrals: string tension and width of the flux tube

To characterize quantitatively the shape and some properties
of the flux tube formed by the longitudinal electric field,

QCD (2+1) HISQ flavors lattice 
configurations ( )mπ = 140 MeV

43 MeV ≤ T ≤ 512 MeV
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MEASUREMENT OF THE TENSOR FIELD GENERATED  BY A QUARK-ANTIQUARK PAIR

Symmetries of the tensor field components:

Equark
x (xl, xt) = Eantiquark

x (xl, xt) Equark
y (xl, xt) = − Eantiquark

y (xl, xt) Equark
z (xl, xt) = − Eantiquark

z (xl, xt)

multiplying by the link value at each site and its dagger. This process iteratively constructs the product of the Wilson
loop and the Schwinger lines (both forward and backward):

G(i) = W (i+ 1)

T (i) = Ud(i)G(i)Ud(i)
† = Ud(i)W (i+ 1 d̂)Ud(i)

†

W (i) = T (i)

(11)

The 3d picture for the case of the Schwinger line attached to the quark time line is shown in Fig. .

i

quark antiquark
d2

d1

6

i

quark antiquark

7

Schwinger line attached to the quark timeline Schwinger line attached to the antiquark timeline

xl

xt

xt

xl
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T = 43 MeV484 β = 6.880

Transverse profile of  at distance  from the quark source vs HYP3d smearing stepsEx xl = 4a = 0.385 fm

Our setup consists of  
• one step of 4-dimensional hypercubic smearing on 

the temporal links (HYPt), with smearing parameters 
 

• N steps of hypercubic smearing  (HYP3d) restricted 
to the three spatial directions with 

.

(α1, α2, α3) = (1.0,1.0,0.5)

(α1, α3) = (0.75,0.3)
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Equark
x (xl, xt) = Eantiquark

x (xl, xt)

T = 171 MeV483 × 12

Equark
z (xl, xt) = − Eantiquark

z (xl, xt)

Equark
y (xl, xt) = − Eantiquark

y (xl, xt)

β = 6.880
Transverse profile of  at distance 

 from the quark source

Ex, Ey, Ez
xl = 4a = 0.385 fm 50 HYP3d smearing

Symmetries of the tensor field components:

Equark
x (xl, xt) = Eantiquark

x (xl, xt) Equark
y (xl, xt) = − Eantiquark

y (xl, xt)

Equark
z (xl, xt) = − Eantiquark

z (xl, xt)
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T = 205 MeV d = 0.963 fmEFULL
x (xl ≃ 0.4 fm, xt)

ENP
x (xl ≃ 0.4 fm, xt)

50 HYP3d smearings

50 HYP3d smearings

SCALING CHECK

β = 6.371 a(β) = 0.1605 fm d = 10a = 0.963 fm

β = 6.880 a(β) = 0.0963 fm d = 6a = 0.963 fm
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FULL FIELD MAGNETIC CURRENT

32

THE FLUX TUBE PROFILE T=43 MeV QCD (2 + 1) HISQ flavors mπ = 140 MeV

the presence of a magnetic current density that circulates around the axis of the flux tube that ensures 
the squeezing of the electric flux tube in the transverse direction according to the Maxwell equation

⃗∇ × ⃗E (x⃗) = J⃗mag(x⃗)
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THE FLUX TUBE PROFILE T=43 MeV QCD (2 + 1) HISQ flavors mπ = 140 MeV

NONPERTURBATIVE FIELD 3d
NONPERTURBATIVE FIELD AT MIDPOINT 
COMPARED TO THE FULL FIELD

Ex

ENP
x
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THE FLUX TUBE PROFILE VS TEMPERATURE QCD (2 + 1) HISQ flavors mπ = 140 MeV
xl = 0.433 fm
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Even at the highest 
temperature, clear 
evidence of a non 
perturbative 
longitudinal electric 
field is observed, which 
remains nearly uniform 
along the flux-tube 
structure.

Well beyond the 
pseudocritical 
temperature , we are 
still seeing evidence of 
color confinement.

Tc
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QUARK CORRELATOR ANTIQUARK CORRELATOR QUARK+ANTIQUARK

β = 6.880, 483 × 48, T = 43 MeV, d = 10a = 0.963 fm

d

xt

xl

Ex(xt)

ENP
x (xl, xt) = {ENP,quark

x (xl, xt) if xl < d/2,
ENP,antiquark

x (d − xl, xt) if xl ≥ d/2.

Symmetrization of the nonperturbative fieldq q̄

d
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β = 6.880, 483 × Lt, d = 10a = 0.963 fm

T = 43 MeV T = 128 MeV T = 146 MeV T = 171 MeV

T = 205 MeV T = 256 MeV T = 342 MeV T = 512 MeV
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EFFECTIVE STRING TENSION AND WIDTH

σeff = ∫ d2xt
(ENP

x (d/2, xt))2

2

= π∫ dxt xt (ENP
x (d/2, xt))2

w2 =
∫ d2xt x2

t ENP
x (d/2, xt)

∫ d2xt ENP
x (d/2, xt))

=
∫ dxt x3

t ENP
x (d/2, xt)

∫ dxt xt ENP
x (d/2, xt)

String tension

Width

ENERGY STORED PER UNIT LENGTH:  
ASSUMING CYLINDRICAL SYMMETRY AND CONSTANT FIELD ALONG THE FLUX TUBE, 
WE INTEGRATE OVER THE TRANSVERSE SECTION 

β = 6.880, 483 × 48, T = 43 MeV, d = 10a = 0.963 fm
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NUMERICAL RESULTS4

Table 3 Numerical results for
→!eff and w, as defined in Eqs. (5) and (6).

lattice ∀ = 10/g
2

a(∀ ) [fm] T [MeV] d [lattice units] d [fm]
→!eff [GeV] w[fm]

483 ↑48 6.880 0.0963 43 10 0.963 0.405278 (11663) 0.489221(40185)
483 ↑16 6.880 0.0963 128 10 0.963 0.442278 (10283) 0.633737(52862)
483 ↑14 6.880 0.0963 146 10 0.963 0.363226 (11641) 0.618508(78860)
483 ↑12 6.880 0.0963 171 6 0.578 0.323046 (1097) 0.531699(10469)
483 ↑12 6.880 0.0963 171 8 0.770 0.255999 (3135) 0.600661(31716)
483 ↑12 6.880 0.0963 171 10 0.963 0.178413 (5831) 0.562810(86458)
483 ↑12 6.880 0.0963 171 12 1.156 0.092669 (9268) 0.440789(122465)
483 ↑12 6.880 0.0963 171 14 1.348 0.080565 (15637) 0.812643(385497)
483 ↑10 6.880 0.0963 205 10 0.963 0.022142 (791) 0.368130(38442)
483 ↑8 6.880 0.0963 256 10 0.963 0.011389 (218) 0.290985(12630)
483 ↑6 6.880 0.0963 342 10 0.963 0.006277 (93) 0.254471(4238)
483 ↑4 6.880 0.0963 512 10 0.963 0.001388 (45) 0.160123(13039)

Table 4 Numerical results for
→!eff and w, as defined in Eqs. (5) and (6) with the replacement of the nonperturbative field with the full one.

lattice ∀ = 10/g
2

a(∀ ) [fm] T [MeV] d [lattice units] d [fm]
→!eff [GeV] w[fm]

483 ↑48 6.880 0.0963 43 10 0.963 0.516748 (4352) 0.436249(15391)
483 ↑16 6.880 0.0963 128 10 0.963 0.511230 (3668) 0.454321(36565)
483 ↑14 6.880 0.0963 146 10 0.963 0.454035 (4068) 0.455370(48881)
483 ↑12 6.880 0.0963 171 6 0.578 0.635955 (451) 0.417719(4245)
483 ↑12 6.880 0.0963 171 8 0.770 0.447487 (1132) 0.411765(14491)
483 ↑12 6.880 0.0963 171 10 0.963 0.287366 (2044) 0.445863(10095)
483 ↑12 6.880 0.0963 171 12 1.156 0.175969 (3430) 0.468165(26779)
483 ↑12 6.880 0.0963 171 14 1.348 0.123311 (5445) 0.436664(28310)
483 ↑10 6.880 0.0963 205 10 0.963 0.120377 (297) 0.418430(7088)
483 ↑8 6.880 0.0963 256 10 0.963 0.101293 (90) 0.418603(5570)
483 ↑6 6.880 0.0963 342 10 0.963 0.075614 (43) 0.380698(1704)
483 ↑4 6.880 0.0963 512 10 0.963 0.033109 (19) 0.321439(1648)

of the magnetic domains characterizing the QCD vacuum,
such that there are magnetic currents circulating around the
line joining the static color charges that, in turn, give rise
to a Lorentz force that is able to squeeze the electric fields
generated by the quark-antiquark pair. More importantly, it
turned out that, within the approximations adopted in Ref. [7]
and sufficiently far from the color sources, the induced mag-
netic currents belong to the maximal Abelian subgroup of the
SU(3) gauge group. As a consequence, the equations relating
the magnetic currents to the flux-tube electric fields are the
familiar Maxwell equations generalised to the case of the
presence of magnetic charges [8]:

↓ ω! ↑ωEa(ωx) = ωJ a

M
(ωx) . (11)

Far from the color sources one has:

ωJ a

M(ωx) ↔ # a3 ωJ 3
M(ωx) + # a8 ωJ 8

M(ωx) , (12)

where ωJ 3,8
M (ωx) are azimuthal magnetic currents with strengths [7]:

J
3
M(ωx) ↔ ↓ v∃

→
2(gH0)

3
2

tanh
(√

gH0
2 xt

)

cosh2
(√

gH0
2 xt

) , (13)

and

J
8
M(ωx) ↔ ↓ v∃

→
3

2
(gH0)

3
2

tanh
(

%
√

gH0
4 xt

)

cosh2
(

%
√

gH0
4 xt

) . (14)

In Eq. (13) and Eq. (14) v∃ is the azimuthal velocity of the
polarised magnetic domains.
Note that the magnetic currents basically depend only on two
parameters, i.e., v∃ and

→
gH0. However, we have added one

more parameter % that away from the static color sources
should be % ↔ 1 [7]. As we shall see later on, this new pa-
rameter will allow us to track the lattice data for the curl of
the electric field even near the color sources. According to

5

Table 5 Numerical results for
→!eff and w, as defined in Eqs. (5) and (6). Results obtained from the antiquark side.

lattice ∀ = 10/g
2

a(∀ ) [fm] T [MeV] d [lattice units] d [fm]
→!eff [GeV] w[fm]

483 ↑48 6.880 0.0963 43 10 0.963 0.373637 (11734) 0.494799(55311)
483 ↑16 6.880 0.0963 128 10 0.963 0.384049 (9859) 0.475882(28127)
483 ↑14 6.880 0.0963 146 10 0.963 0.373842 (11993) 0.649380(68701)
483 ↑12 6.880 0.0963 171 6 0.578 0.313870 (1092) 0.476235(11554)
483 ↑12 6.880 0.0963 171 8 0.770 0.252945 (3043) 0.570348(33758)
483 ↑12 6.880 0.0963 171 10 0.963 0.184021 (5691) 0.535994(87192)
483 ↑12 6.880 0.0963 171 12 1.156 0.072523 (8496) 0.282525(28041)
483 ↑12 6.880 0.0963 171 14 1.348 0.042945 (25633) 0.334310(110112)
483 ↑10 6.880 0.0963 205 10 0.963 0.022166 (760) 0.590726(124600)
483 ↑8 6.880 0.0963 256 10 0.963 0.013651 (230) 0.447764(65751)
483 ↑6 6.880 0.0963 342 10 0.963 0.006277 (93) 0.249753(4248)
483 ↑4 6.880 0.0963 512 10 0.963 0.001514 (46) 0.156610(12183)

Table 6 Numerical results for
→!eff and w, as defined in Eqs. (5) and (6). Results obtained from the antiquark side.

lattice ∀ = 10/g
2

a(∀ ) [fm] T [MeV] d [lattice units] d [fm]
→!eff [GeV] w[fm]

483 ↑48 6.880 0.0963 43 10 0.963 0.373637 (11734) 0.494799(55311)
483 ↑16 6.880 0.0963 128 10 0.963 0.384049 (9859) 0.475882(28127)
483 ↑14 6.880 0.0963 146 10 0.963 0.373842 (11993) 0.649380(68701)
483 ↑12 6.880 0.0963 171 10 0.963 0.184021 (5691) 0.535994(87192)
483 ↑10 6.880 0.0963 205 10 0.963 0.022166 (760) 0.590726(124600)
483 ↑8 6.880 0.0963 256 10 0.963 0.013651 (230) 0.447764(65751)
483 ↑6 6.880 0.0963 342 10 0.963 0.006277 (93) 0.249753(4248)
483 ↑4 6.880 0.0963 512 10 0.963 0.001514 (46) 0.156610(12183)

Table 7 Numerical results for
→!eff and w, as defined in Eqs. (5) and (6). Results obtained from the antiquark side.

lattice ∀ = 10/g
2

a(∀ ) [fm] T [MeV] d [lattice units] d [fm]
→!eff [GeV] w[fm]

483 ↑12 6.880 0.0963 171 6 0.578 0.313870 (1092) 0.476235(11554)
483 ↑12 6.880 0.0963 171 8 0.770 0.252945 (3043) 0.570348(33758)
483 ↑12 6.880 0.0963 171 10 0.963 0.184021 (5691) 0.535994(87192)
483 ↑12 6.880 0.0963 171 12 1.156 0.072523 (8496) 0.282525(28041)
483 ↑12 6.880 0.0963 171 14 1.348 0.042945 (25633) 0.334310(110112)

Ref. [7] the total magnetic current is:

Jmag(xt) ↓ ↔J
3
M(xt) ↔ J

8
M(xt) . (15)

Having an explicit expression for the current allows us to
find the confining electric field:

E
NP(xt) ↓ Eth(xt) , (16)

with

Eth(xt) ↓ E
3
th(xt) + E

8
th(xt) , (17)

where

E
3
th(xt) ↓ v# gH0

1

cosh2
(√

gH0
2 xt

) (18)

and

E
8
th(xt) ↓

→
3

2∃
v# gH0

1

cosh2
(

∃
√

gH0
4 xt

) . (19)

A few comments are in order. Firstly, the Abelian na-
ture of the confining electric fields supports our simplified
Maxwell approach. The total magnetic current, Eq. (15), de-
pends on three parameters that can be fixed by performing a
best fit to the lattice data. After that, one can contrast Eq. (17)
to the lattice data. In this way we reach a nontrivial con-
sistency check of our subtraction procedure to extract the
nonperturbative electric field and, at the same time, of our
Maxwell picture for confinement. Indeed, we have fitted our
lattice data for the curl of the electric field to Eq. (15). We
found that, indeed, the total magnetic current Eq. (15) tracks

(from quark correlation function)

(from antiquark correlation function)

43 MeV ≤ T ≤ 512 MeV
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The effective string tension vs T at fixed distance ~1 fm
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d = 0.963 fm

The effective string tension stays almost constant to the zero-temperature value 
albeit with some scatter in the data.  
In this low temperature regime the thermal fluctuations do not modify 
substantially the structure of the flux-tube nonperturbative electric field and the 
dynamics is governed by wild quantum fluctuations. 

Thermal behavior of σeff T ≲ 140 − 150 MeV

The quantum dynamics of the hadronic system is clearly dominated by smoother 
thermal fluctuations such that the values of the effective string tension extracted 
from the two different connected correlation functions (i.e. quark and antiquark) 
are in satisfying agreement.  

The effective string tension manifests a drastic reduction followed by a more 
smoother decrease for , suggestive for an exponential decrement 
with the temperature. 

T ≳ 200 MeV

T ≳ Tc = 156.5 MeV

σeff(d, T ) = σeff(0) exp[−
1
2

μst(T ) d]

μst(T ) ≃ {0 T ≲ T0

ast(T − T0) T0 ≲ T

T0 ≃ mπ ≃ 140 MeV σeff(0) ≃ 0.42 GeV , ast = 13.5(1)

 measures the ratio of 
the screening mass 
over the temperature 
for 

ast
μst

T ≫ T0
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The effective string tension vs distance at fixed T=171 MeV

 vs distance at fixed Tσeff
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The width of the flux tube vs T at fixed distance ~1 fm
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QUESTIONS  TO “ANALYTICAL”  COMMUNITY

Can you explain the relation between the chiral transition and 
the deconfinement transition? If such a relation exists, which 
one drives the other?

In your favourite model of QCD confinement, what are the 
relevant observables that the lattice people can measure?
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SUMMARY
We have studied the chromoelectromagnetic field tensor generated by a quark-antiquark static pair.

43

The longitudinal chromoelectric field forms a flux tube and it can be characterized by two quantities:   (related to the string 
tension), and the width .

σeff
w

SU(3) pure gauge     flux tube structure even for relatively large separations ( )  of the static quark-antiquark pair.T = 0 d > 1.3 fm

SU(3) pure gauge     the flux tube structure begins to dissipate above the deconfinement temperature, but a flux tube structure 
remains even for .

T ≠ 0
T > 2Tc

QCD with (2+1) HISQ flavors at  ,  :   numerical arguments in favour of a string breaking distance —>  mπ = 160 MeV T = 0
1.064 fm ≲ d* ≲ 1.140 fm

QCD with (2+1) HISQ flavors at  ,    (up to ):  
- flux tubes still at ; 
- Effective string tension drops fast with increasing  and/or distance between quark and antiquark sources.

mπ = 140 MeV T ≳ 0 T = 512 MeV ≃ 3.3 Tc
T ≃ 3.3 Tc

T

TODO:
Study of string breaking with QCD (2+1) HISQ flavors on the line of constant physics with . mπ = 140 MeV
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THANK YOU 
FOR YOUR 

ATTENTION !


