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Overview

• Motivations and statement of the problem

• Lattice and Topological Data Analysis (TDA) methodology 

• TDA analysis of monopoles in Compact U(1) Lattice Gauge Theory

• TDA analysis of Abelian monopoles in SU(3) Lattice Yang-Mills  

• Summary and outlook



Intermediate regime of QCD above Tc?

Confined DeconfinedStringy fluid

~3TcTc T

• A stringy fluid regime has been conjectured in which chiral symmetry is 
restored but the system still confines

• Both soft boundaries of this regime can be phase transition points at large N

• Is there a good order parameter to identify the boundaries of this regime?  

[E.g., L. Ya. Glozman, Prog. Part. Nucl. Phys. 131 (2023) 104049, arXiv:2209.10235]



Confining Potential

Confining potential  V(R) = σ R between static quark and antiquark in YM theories

Confining potential derived from the area law of 
the Wilson loop

Area law consequence of dynamics of topologically non-trivial 
configurations?

R

T



From the continuum to the lattice 
(and back)

1. Start from the Euclidean Path Integral formulation of the theory

2. Approximate the integral on a grid of spacing a and of size V = Nt x Ns
3 

       

      (Zero temperature: Nt ≃ Ns ; finite temperature Nt ≪ Ns) 

 
3. Compute the integral with Monte Carlo methods

4. Extrapolate to V → ∞  (Ns → ∞ at finite temperature) and a → 0



Fields on the lattice

Figure from Particle Data Group



Topological Data Analysis 
for Lattice Field Theory
• Topological excitations determine non-perturbative features of non-

Abelian quantum field theories

• The lattice is a crucial tool to understand non-perturbative features of 
non-Abelian quantum field theories

• Can we characterise topological properties of Yang-Mills theories 
after discretization using a general methodology that is rigorous also 
on a discrete spacetime? 



Topology of a discrete set of points



Homology

• Input: a cubic complex X determined 
from configurations 

• Output:    

➢ List of vertices
➢ List of which of those elements 

span k-dimensional cubes

H0    connected components 
H1    holes (loops)   
H2    voids
H3    higher voids 



Programme

• Build a cubical complex using topological objects present in a given 
configuration of a discrete quantum field theory

• Determine the homology of that cubical complex

• Build observables based on ensemble averages of homological 
content of importance-sampled configurations

• Investigate the behaviour of those observables as a function of the 
parameters of the relevant theories



Monopoles in Lattice Compact U(1)

• Action 

• Invariance under gauge transformations 

• Cosine only sensitive to angles in [-𝜋, 𝜋], but plaquette varies in [-4𝜋, 4𝜋]

• Potential excess flux 2𝜋𝑛 , with 𝑛 = -2,-1, 1, 0 interpreted as a Dirac string

• Monopoles sitting at cubes where an imbalanced number of fluxes is 
present 

• Confinement phase at strong coupling due to condensation of monopoles

 

[T. DeGrand, D. Toussaint, Phys. Rev. D22, 2478 (1980)]



Monopole currents

 

In D=4 monopoles live on dual links and form closed loops that can wrap around a toroidal lattice

In the confined phase, a small number of multiply looping connected components are present, 
while in the deconfined phase many connected components forming small loops arise



Counting loops in graphs

Relevant quantities: H0=b0 and H1=b1 

We  extract a graph from a (connected) monopole current loop by removing 
orientation and then we build a spanning tree of that graph by removing edges so 
that all cycles disappear

The number of removed edges is the number of loops



Expected properties of currents

At strong coupling very few 
complex loops

At weak coupling few simple loops



Measurements

• For each configuration, extract the current loop graph on the dual 
lattice and compute its Betti numbers 𝑏0 and 𝑏1

• Compute the averages 𝜌0 =
𝑏0

𝑉
 and 𝜌1 =

𝑏1

𝑉

• Compute the associated susceptibilities  χ 0 and χ 1

• Reweight those observables and locate their peaks

• Define βc(Ns) as the position of those peaks

• Extrapolate using the ansatz    𝛽𝑐 𝑁𝑠 = 𝛽𝑐 +
𝑎

𝑁𝑠
3



Zeroth and first Betti numbers

Singularity developing at the the phase transition as the volume increases

Confining Deconfined DeconfinedConfining

[X. Crean, J. Giansiracusa and B. Lucini, SciPost Phys. 17 (2024) 4, 100, arXiv:2403.07739]



Susceptibilities of Betti numbers

The peak is becoming sharper as the lattice size increases



Finite size scaling analysis

Literature value: 
[E.g., B. Lucini et al. , Eur. Phys. J. C 76 (2016) 6, 306 [arXiv:1509.08391]]

Critical coupling   



Lattice action for SU(N) Yang-Mills

• Plaquette variable

• Action

• Invariance under gauge transformations 



Abelian monopoles in SU(3) Yang-Mills

• Classically, the existence of monopoles in gauge theories requires the 
presence of a self-interacting bosonic field transforming in the adjoint 
representation (e.g., the ‘t Hooft-Polyakov monopole in the Georgi-
Glashow model) 

• However, monopoles can arise if an effective dynamics develops in 
which an adjoint operator plays the role of a Higgs field

• Abelian monopoles are located at points in which two eigenvalues of 
this adjoint operator are degenerate



Maximal Abelian Gauge (MAG) 

• Gauge fixing corresponding to the diagonalization of the adjoint 
operator 

• Equivalent gauge fixing condition 

[C. Bonati, M. D’Elia, Nucl. Phys. B877, 233 (2013) [arXiv:1308.0302]]



Abelian fields

• Gauge fixed configuration 

• Diagonal elements 

• Define       

• Set      and             , and use the DeGrand and Toussaint 
prescription for identifying the monopoles associated to each Abelian 
field  

[C. Bonati, M. D’Elia, Nucl. Phys. B877, 233 (2013) [arXiv:1308.0302]]



Numerical setup

• Asymmetric lattices of size  𝑁𝑡 × 𝑁𝑠
3 = 𝑁𝑡 ×  𝑉, 𝑁𝑡 = 4,6,8 and at 

various sizes 𝑉 respecting the condition  𝑁𝑡 ≪ 𝑁𝑠

• Choose a set of 𝛽 near the expected critical point  𝛽𝑐(𝑁𝑡)

• Generate 400-600 thermalized configurations separated by 2000 
composite sweeps  (1 composite sweep = 1 heat bath + 4 over 
relaxation sweeps) 

• Perform projection to the MAG and measure 𝜌0, 𝜌1 , χ 0 and χ 1 as in 
the U(1) case 

(*) E.g., B. Lucini, M. Teper and U. Wenger, JHEP 01 (2004) 061, arXiv: hep-lat/0307017



Betti numbers – SU(3) Yang-Mills 

Singularity developing at the the phase transition as the volume increases



Susceptibilities of Betti numbers

The peak is becoming sharper as the lattice size increases



Scaling of position of peaks

[Horizontal band from  B. Lucini, M. Teper and U. Wenger, JHEP 01 (2004) 061, arXiv: hep-lat/0307017]

Results compatible with standard calculations, hints of better precision



Determining 𝛽𝑐 from fits  

• Methodology: extract central value and error by weighting all 

(reasonable) fits in a polynomial in 
1

𝑉

• For each fit, take the central value μi and the error σi as the 
parameters of a normal distribution 𝒩 𝛽; μi, σi

• Define the weights 𝑤𝑖 = exp( −
1

2
(𝝌2 + 2 npar −  ndata))

• Construct 𝑃 𝛽 = Σi𝑤𝑖
𝒩 𝛽;μi,σi

𝑁
 

• Extract the best value, the lower bound and the upper bound 
respectively from the 50%, 16% and 84% confidence level

[S. Borsanyi et al., Nature 593, 51 (2021), arXiv:2002.12347]



Results for 𝛽𝑐 at 𝑁𝑡 = 6

𝜒0
𝜒1



Summary of results



Complexity and simplicity in topology

• Complexity is the number of loops per 
connected component: the higher this 
number, the more complex the graph is

• We define the simplicity as the inverse of the 
complexity

• Simplicity can be used as a phase indicator: at 
low temperature, simplicity approaches zero 
in the high volume limit, while at high 
temperature it approaches one



𝛽𝑐 from simplicity

Nt = 4 Nt = 6 Nt = 8



𝛽𝑐 from complexity

Nt = 4 Nt = 6 Nt = 8



Conclusions

• Topological data analysis provides a robust way to understand the 
non-trivial topological content of lattice configurations

• Based on this information, phase indicators can be constructed that 
provide a precise quantitative characterization of the deconfinement 
phase transition in gauge theories

• Explicit observables constructed and tested for both Abelian and non-
Abelian Lattice Gauge Theories

• In progress: persistent homology analysis of U(1) and SU(3)

• Also in progress: extension of the approach to full QCD



Towards QCD

First preliminary calculation on 2 + 1 flavours of O(𝑎)-improved Wilson fermions on anisotropic 
lattices (FASTSUM Gen 2L ensembles, G. Aarts et al., arXiv:2209.14681)

Visible peak in the susceptibility, possibly small finite size effects

(G. Aarts, C. Allton, R. Bignell, X. Crean, G. Giansiracusa, B.L., in progress) 

(For the FASTSUM vortex transition, see J. Mickley, C. Allton, R. Bignell, D. Leinweber , arXiv: 2504.08131)
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