BSM: Bounds based on muonic hydrogen, muonic deuterium and muonic helium

R M Potvliege

with A Nicolson, M P A Jones and M Spannowsky

Physics Department, Durham University, UK

$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-m_{X_0} r}$$

Using light atoms spectroscopic data in searching for such an interaction: E.g.,

```
Jaekel and Roy [PRD 82, 125020 (2010)]

Karshenboim [PRL 104, 220406 (2010)]

Brax and Burrage [PRD 83, 035020 (2011)]

Delaunay et al [PRD 96, 115002 (2017)]

Jones et al [PRRes 2, 013244 (2020)]

Frugiuele and Peset [JHEP 05, 002 (2022)]

Delaunay et al [PRL 130, 121801 (2023)]

Potvliege et al [PRA 108, 052825 (2023)]

Potvliege [NJP 27, 045002 (2025)]
```


$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-\frac{r}{m_{X_0}} r}$$

$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-m_{X_0} r}$$

$$1 \text{ eV} \le m_{X_0} \le 1 \text{ MeV}$$

$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-m_{X_0} r}$$

$$g_l = g_e \text{ or } g_\mu$$

$$g_\mu/g_e = 1? \qquad g_\mu/g_e = m_\mu/m_e?$$

$$V_{\rm NP}(r) = (-1)^{s+1} \underbrace{\frac{g_l g_N}{4\pi}}_{1} \frac{1}{r} e^{-\frac{m_{X_0}}{m_{X_0}}r}$$
 $g_N = g_p, g_d, g_h \text{ or } g_\alpha$
 $g_n = g_d - g_p = g_\alpha - g_h$

In general, for a massive force mediator of integer spin s,

$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-m_{X_0} r}$$

Our aim: Set upper bounds on $g_e g_p$ and $g_e g_n$.

NP shifts

In general, for a massive force mediator of integer spin s,

$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-m_{X_0} r}$$

Energy shift: $\delta E_{nl}^{NP} = \langle n, l | V_{NP} | n, l \rangle$

NP shifts

In general, for a massive force mediator of integer spin s,

$$V_{\rm NP}(r) = (-1)^{s+1} \frac{g_l g_N}{4\pi} \frac{1}{r} e^{-m_{X_0} r}$$

Energy shift:
$$\delta E_{nl}^{NP} = \langle n, l | V_{NP} | n, l \rangle$$

Shift of the transition frequency: $\nu_{ba}^{\rm NP} = (\delta E_{n_b l_b}^{\rm NP} - \delta E_{n_a l_a}^{\rm NP})/h$

How compatible is experiment with theory, assuming a NP interaction?

$$\nu_{b_i a_i}^{\text{SM}}(\mathcal{R}, r_p, r_d) \doteq \nu_{b_i a_i}^{\text{exp}} - \nu_{b_i a_i}^{\text{NP}}, \quad i = 1, 2, 3, \dots$$

 \mathcal{R} : the Rydberg constant

 r_p : proton charge radius

 r_d : deuteron charge radius

Two possible approaches:

1. Use all the available data

- Single species only (e.g., eH)
- Combine eH, eD, $r_p(\mu H)$ and $r_d(\mu D)$
- Combine eH, eD, $r_p(\mu H)$, $r_d(\mu D)$, g-factors, molecular systems, ...

[Delaunay et al (2023)]

2. Use selected transitions only

- E.g., the isotope shift of the 1s – 2s interval + $r_p(\mu H)$ and $r_d(\mu D)$ or Lamb shift only, ...

1. Use all the available data

Pros: Use a number of independent measurements; broad range of transitions

Cons: Discrepancies in the data tend to make the bounds more stringent for no good reasons; need to magnify the experimental errors; large number of degrees of freedom may hide trends

1. Use all the available data

Pros: Use a number of independent measurements; broad range of transitions

Cons: Discrepancies in the data tend to make the bounds more stringent

for no good reasons; need to magnify the experimental errors; large

number of degrees of freedom may hide trends

2. Use selected transitions only

Pros: Reduces discrepancies, focuses on the most precise data

Cons: Relies on the accuracy of a small number of measurements

Sensitivity of the muonic species on NP

Values of $g_{\mu}g_{p}$ or $g_{\mu}g_{d}$ for which the NP shift of the $2s_{1/2}$ - $2p_{3/2}$ interval in μ H or μ D is less than 5% of the respective experimental error

Dirac wave functions for the Uehling potential and the nucleus charge distribution

Sensitivity of the muonic species on NP

Values of $g_{\mu}g_{p}$ or $g_{\mu}g_{d}$ for which the NP shift of the $2s_{1/2}$ - $2p_{3/2}$ interval in μ H or μ D is less than 5% of the respective experimental error

Dirac wave functions for the Uehling potential and the nucleus charge distribution

Bounds on $g_e g_p$ based on the spectroscopy of eH only (World data)

[PRA **108**, 052825 (2023)]

Bounds on $g_e g_p$ based on eH only or on eH + μ H ($g_\mu = g_e$)

Goal: 95% - bounds on $g_e g_p$ and $g_e g_n$ based on H and D spectroscopy which do not depend on particular choices of g_d/g_p or g_μ/g_e .

Goal: 95% - bounds on $g_e g_p$ and $g_e g_n$ based on H and D spectroscopy which do not depend on particular choices of g_d/g_p or g_μ/g_e .

Method:

• Vary $g_e g_p$, g_d/g_p and g_μ/g_e and find the maximum values of $g_e g_p$ and $g_e g_n$ (with $g_n = g_d - g_p$) for which the theory fits the data.

Goal: 95% - bounds on $g_e g_p$ and $g_e g_n$ based on H and D spectroscopy which do not depend on particular choices of g_d/g_p or g_μ/g_e .

Method:

- Vary $g_e g_p$, g_d/g_p and g_μ/g_e and find the maximum values of $g_e g_p$ and $g_e g_n$ (with $g_n = g_d g_p$) for which the theory fits the data.
- The fit includes values of $r_p(\mu H)$ and $r_d(\mu D)$ rederived taking the NP interaction into account.

Goal: 95% - bounds on $g_e g_p$ and $g_e g_n$ based on H and D spectroscopy which do not depend on particular choices of g_d/g_p or g_μ/g_e .

Method:

- Vary $g_e g_p$, g_d/g_p and g_μ/g_e and find the maximum values of $g_e g_p$ and $g_e g_n$ (with $g_n = g_d g_p$) for which the theory fits the data.
- The fit includes values of $r_p(\mu H)$ and $r_d(\mu D)$ rederived taking the NP interaction into account.
- Additional constraint: The measured isotope shift of the 1s-2s interval is consistent with the values of r_p and r_d obtained from the fit.

Alternative method, entirely based on the isotope shift of the 1s - 2s, $2^3S - 2^1S$ or $2^3S - 2^3P$ intervals:

Find the largest value of $g_e g_n$ for which

$$r_d^2(eD) - r_p^2(eH) = r_d^2(\mu D) - r_p^2(\mu H)$$

or

$$r_h^2(e^3He) - r_\alpha^2(e^4He) = r_h^2(\mu^3He) - r_\alpha^2(\mu^4He)$$

within experimental and theoretical errors.

Results based on a global fit

Results based on a global fit

Excluded by eH spectroscopy alone

Significant NP contribution to the muonic data

Solid curves: bounds based on eH, eD, μ H and μ D for g_ μ = g_e

Dotted curves: bounds based on eH, eD, μ H and μ D for -g_e \leq g_ μ \leq 100 g_e

Green curves: bounds based on eH, eD, μ H and μ D for g_ μ = 207 g_e

Excluded by neutron scattering data + anomalous magnetic moment of the electron

Solid curves: bounds based on eH, eD, μ H and μ D for $g\mu = ge$

Dotted curves: bounds based on eH, eD, μ H and μ D for -ge \leq g μ \leq 100 ge

Long dashed curves: bounds based on the 1s-2s interval, μH and μD for $g\mu = ge$

Comparison with KP results

[Wilzewski et al, PRL 134, 233002 (2025)]

Results based on a global fit

Results based on isotope shifts

Sensitivity of the data to a non-zero gegn

 $\sigma_{g_eg_n}$: a measure of how large should g_eg_n be for the NP interaction to affect the data significantly

Global fit approach (World data)

Isotope shift approach (1s – 2s interval)

[Also Delaunay et al (2017)]

Sensitivity of the data to a non-zero gegn

 $\sigma_{g_eg_n}$: a measure of how large should g_eg_n be for the NP interaction to affect the data significantly

Isotope shift approach $(2 \, {}^{3}S - 2 \, {}^{1}S \text{ or } 2 \, {}^{3}S - 2 \, {}^{3}P \text{ interval of He})$

Dash-dotted curves: bounds based on the isotope shift of the $2 \, ^{3}\text{S} - 2 \, ^{1}\text{S}$ interval of He

Reach of the isotope shift approach

Bounds based on the isotope shifts of two different transitions

Phys. Rev. A 108, 032825 (2023), also Delaunay et al (2017)

Conclusions

To conclude...

The μ H, μ D and μ He⁺ data are unlikely to be significantly affected by a fifth force of the type considered here, assuming a carrier mass below 100 keV.

These muonic atom data much help strengthen the bounds on $g_e g_p$ and $g_e g_n$, particularly those based on isotope shift spectroscopy. The theoretical error on $r_d^2(\mu D) - r_p^2(\mu H)$ is currently the main limitation on the sensitivity of the latter approach.

Other calculations

From C Delaunay et al, Phys. Rev. D 96, 115002 (2017)

