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Type of new physics interaction considered here

In general, for a massive force mediator of integer spin s,
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Type of new physics interaction considered here

Using light atoms spectroscopic data in searching for such an interaction: E.g.,

Jaekel and Roy [PRD 82, 125020 (2010)]
Karshenboim [PRL 104, 220406 (2010)]

Brax and Burrage [PRD 83, 035020 (2011)]
Delaunay et al [PRD 96, 115002 (2017)] —
Jones et al [PRRes 2, 013244 (2020)]

Frugiuele and Peset [JHEP 05, 002 (2022)] <«—
Delaunay et al [PRL 130, 121801 (2023)] <+—
Potvliege et al [PRA 108, 052825 (2023)]
Potvliege [NJP 27, 045002 (2025)]
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Type of new physics interaction considered here

In general, for a massive force mediator of integer spin s,
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Type of new physics interaction considered here

In general, for a massive force mediator of integer spin s,
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Type of new physics interaction considered here

In general, for a massive force mediator of integer spin s,
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g,u/ge =17 g,u,/ge — m,u,/me?
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Type of new physics interaction considered here

In general, for a massive force mediator of integer spin s,
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Type of new physics interaction considered here

In general, for a massive force mediator of integer spin s,
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Our aim: Set upper bounds on g.g, and geg,.
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NP shifts

In general, for a massive force mediator of integer spin s,
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Energy shift: §EN" = (n,l| Vxp|n,l)
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NP shifts

In general, for a massive force mediator of integer spin s,

ggn 1 _
V — (—1 s+1 = mx,r
NP (T) ( ) A1 7 €

Energy shift: §ENS = (n,l| Vxp|n,l)

Shift of the transition frequency: vy," = (E), —6E)", )/h
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Chi-squared fitting to the standard model

How compatible 1s experiment with theory, assuming a NP interaction?
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the Rydberg constant
proton charge radius

deuteron charge radius

_~_ ,,eXp NP .
=Vpa, ~ Vpiayr ¢=1,2,3,...
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Chi-squared fitting to the standard model

Two possible approaches:

1. Use all the available data

- Single species only (e.g., eH)
- Combine ¢H, eD, r,(uH) and 74 (uD)
- Combine ¢H, eD, r,(uH), 74 (uD), g-factors, molecular systems, ...

[Delaunay et al (2023)]
2. Use selected transitions only

- E.g., the isotope shift of the 1s — 2s interval + r,(uH) and 7,4 (uD)
or Lamb shift only, ...
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Chi-squared fitting to the standard model

1. Use all the available data

Pros: Use a number of independent measurements; broad range of transitions
Cons: Discrepancies in the data tend to make the bounds more stringent
for no good reasons; need to magnify the experimental errors; large

number of degrees of freedom may hide trends

]
W Durham 13

University



Chi-squared fitting to the standard model

1. Use all the available data

Pros: Use a number of independent measurements; broad range of transitions
Cons: Discrepancies in the data tend to make the bounds more stringent
for no good reasons; need to magnify the experimental errors; large
number of degrees of freedom may hide trends

2. Use selected transitions only

Pros: Reduces discrepancies, focuses on the most precise data
Cons: Relies on the accuracy of a small number of measurements
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Sensitivity of the muonic species on NP

Values of g,.gp or g,.ga for which the NP shift of the 2s; 5 - 2p3 /o interval
in uH or uD is less than 5% of the respective experimental error

Dirac wave functions for the Uehling potential and the nucleus charge distribution
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[PRA 108, 052825 (2023)]

See also Jaeckel and Roy (2010), Frugiuele and
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Sensitivity of the muonic species on NP

Values of g,.gp or g,.ga for which the NP shift of the 2s; 5 - 2p3 /o interval
in uH or uD is less than 5% of the respective experimental error

Dirac wave functions for the Uehling potential and the nucleus charge distribution
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[PRA 108, 052825 (2023)]
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Bounds on gegp

Bounds on g.g, based on the spectroscopy of eH only (World data)

Attractive inter. Repulsive inter.
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[PRA 108, 052825 (2023)]
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Bounds on gegp

Bounds on g.g, based on eH only or on eH + pH (g, = g.)
Aitraciive inter. Repulsive inter.
10-9teH (x1.0) {feH (x1.0) = | gri100%
o lu—lﬂ L X 4
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10 ¢ FeH + uH (x1.6) { | eH+ pH (%1.6) -

o lﬂ‘“" i
With uH, errors expanded by 60% — 2‘; 10~1
- 1“—12
-5%
1077 —L 0%

10 104
my, (eV) m.x, (eV)
[PRA 108, 052825 (2023)]

] ]
W Durham 5

University



Bounds on gegp

Aitraciive inter. Repulsive inter.
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Overall bounds

Goal: 95% - bounds on g.g, and g.g, based on H and D spectroscopy which do
not depend on particular choices of gq/g, or g,/ge.

[NJP 27, 045002 (2025)]
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Overall bounds

Goal: 95% - bounds on g.g, and g.g, based on H and D spectroscopy which do
not depend on particular choices of g4/g, or g,./ge.

Method:

e Vary g.9p, 94/9, and g, /ge and find the maximum values of g.g, and g.gn
(with g, = ga — gp) for which the theory fits the data.

[NJP 27, 045002 (2025)]
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Overall bounds

Goal: 95% - bounds on g.g, and g.g, based on H and D spectroscopy which do
not depend on particular choices of g4/¢g, or g,/ ge.

Method:

o Vary g.9gp, 94/9p and g,,/g. and find the maximum values of g.g, and g.gy,
(with g, = ga — gp) for which the theory fits the data.

e The fit includes values of r,(puH) and r4(pD) rederived taking the NP
Interaction into account.

[NJP 27, 045002 (2025)]
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Overall bounds

Goal: 95% - bounds on g.g, and g.g, based on H and D spectroscopy which do
not depend on particular choices of g4/g, or g,./ge.

Method:

o Vary g.9p, 94/9p and g,,/ge and find the maximum values of g.g, and g.gy,
(with g, = ga — gp) for which the theory fits the data.

e The fit includes values of r,(uH) and rq(puD) rederived taking the NP
interaction into account.

e Additional constraint: The measured isotope shift of the 1s — 2s interval
is consistent with the values of r, and ry obtained from the fit.

[NJP 27, 045002 (2025)]
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Overall bounds

Alternative method, entirely based on the isotope shift of the 1s — 2s, 23S — 21S
or 23S — 23P intervals:

Find the largest value of ¢g.g,, for which
ra(eD) — rp(eH) = rg(uD) — rp(uH)

or
'ri (e’He) — ri (e*He) = r% (u3He) — 7"(21 (u*He)

within experimental and theoretical errors.

[NJP 27, 045002 (2025)]
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Results based on a global fit

Results based on a global fit
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Bounds on gegp

Excluded by eH spectroscopy alone Significant NP contribution to the muonic data

Antractwe NP u:u:e Repulsive NP interaction
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[NJP 27, 045002 (2025)]
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Bounds on gegp

Solid curves: bounds based on eH, eD, uH and uD forg n=g ¢

Dotted curves: bounds based on eH, eD, uH and uD for-g e<g n<100g e

Attractive NP interaction Repulsive NP interaction
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[NJP 27, 045002 (2025)]
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Bounds on gegp

Green curves: bounds based on eH, eD, uH and uD forg n=207g e
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[NJP 27, 045002 (2025)]
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Bounds on gegn

Excluded by neutron scattering data + anomalous magnetic moment of the electron

[Delaunay et al (2017)]
Bounds from Yb/Yb+ 1sotope shift [Hur et al (2022)]
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[NJP 27, 045002 (2025)]
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Bounds on gegn

Solid curves: bounds based on eH, eD, uH and uD for gu = ge

Dotted curves: bounds based on eH, eD, uH and uD for -ge <gu <100 ge

Atiractive NP interaction Repulsive NP interaction
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[NJP 27, 045002 (2025)]
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Bounds on gegn

Long dashed curves: bounds based on the 1s-2s interval, uH and uD for gu = ge

Atiractive NP interaction Repulsive NP interaction
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[NJP 27, 045002 (2025)]
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Comparison with KP results
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[Wilzewski et al, PRL 134, 233002 (2025)]
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Results based on a global fit

Results based on 1sotope shifts
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Sensitivity of the data to a non-zero gegn

Og.g,: @ measure of how large should g.g, be for the NP interaction to affect
the data significantly
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Global fit approach Isotope shift approach
(World data) (1s — 2s interval)
[Also Delaunay et al (2017)]

[NJP 27, 045002 (2025)]
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Sensitivity of the data to a non-zero gegn

Og.g,: @ measure of how large should g.g, be for the NP interaction to affect
the data significantly
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Isotope shift approach (2 *S — 2 'S or 2 3S — 2 3P interval of He)

[NJP 27, 045002 (2025)]
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Bounds on gegn

Dash-dotted curves: bounds based on the isotope shift of the 2 S — 2 'S interval of He

Atiractive NP interaction Repulsive NP interaction
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[NJP 27, 045002 (2025)]
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Reach of the isotope shift approach

Bounds based on the i1sotope shifts of two different transitions

10~
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Phys. Rev. A 108, 032825 (2023), also Delaunay et al (2017)
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Conclusions

To conclude. ..

The pH, 4D and pHet data are unlikely to be significantly affected
by a fifth force of the type considered here, assuming a carrier mass
below 100 keV.

These muonic atom data much help strengthen the bounds on g.g,
and ¢g.g,, particularly those based on isotope shift spectroscopy. The
theoretical error on 73(uD) —r>(pH) is currently the main limitation
on the sensitivity of the latter approach.
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Other calculations

VeV¥n

From C Delaunay et al, Phys. Rev. D 96, 115002 (2017)
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