

Muonic Hydrogen: Theoretical Challenges

V. Lensky JGU Mainz

ECT* Workshop "New perspectives in the charge radii determination for light nuclei"

Outline

- A quick recipe how to understand theory of light muonic atoms
- Two-Photon Exchange (TPE) in muonic Hydrogen (μΗ)
 - Connection to other experiments
 - Pitfalls, results, and work in progress
 - Lamb shift
 - Hyperfine splitting
- Conclusion and outlook

A (Light) Muonic Atoms and Ions Cookbook

TABLE I Contributions to the $2P_{1/2} - 2S_{1/2}$ energy difference E_L in meV, with the charge radii r_C given in fm. All corrections larger than 3% of the overall uncertainty are included. Theoretical predictions for E_L are E_L (theo) = $E_{\rm QED} + \mathcal{C} \, r_C^2 + E_{\rm NS}$. The last two rows show the values of r_C determined from a comparison of E_L (theo) to E_L (exp).

t two rows show	w the values of	- C develimed from a company					
c. Order	er	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^{3} \mathrm{He^{+}}$	$\mu^4 \mathrm{He}^+$	
.A $\alpha (Z\alpha A) = \alpha (Z\alpha A)$.A $\alpha^2 (Z\alpha A) = \alpha^2 (Z\alpha A)$	$(\alpha)^2$	$eVP^{(1)}$ $eVP^{(2)}$ $eVP^{(3)}$	205.00738 1.65885	227.63470 1.83804	1641.886 2 13.084 3	1665.773 1 13.276 9	
C	ookbo						
F	un [C]	d us day Park buld					
H I (UK	also cookery	k/ US ◀》 /ˈkʊk.bʊk/ book)					
Ј К —						Ad	d to word list <u>;</u>
L M N	Treat treb Control	a boo	k that expl	ains how t	to prepare	particular d	lishes:
		• She	has written :	several awa	ard-winning o	ookbooks.	
.P	$(\alpha)^4$	• She	has written :	several awa	0.002 6(1)	0.002 7(1)	
.P .Q $\alpha^2(Z\alpha)$.A $(Z\alpha)^4$.B $\alpha(Z\alpha)$	$(\alpha)^4$			0.00010 $-6.0732r_d^2$			
i.A $(Z\alpha)^4$ i.B $\alpha (Z\alpha)^4$	$(\alpha)^{4}$ $(\alpha)^{4}$ $(\alpha)^{4}$ $(\alpha)^{5}$ $(\alpha)^{4}$ $(\alpha)^{6}$ $(\alpha)^{5}$	hVP with eVP ⁽¹⁾ r_C^2 eVP ⁽¹⁾ with r_C^2	0.00009 $-5.1975r_p^2$ $-0.0282r_p^2$	$0.000 10$ $-6.073 2 r_d^2$ $-0.034 0 r_d^2$	$0.002 6(1)$ $-102.523 r_h^2$ $-0.851 r_h^2$	$0.0027(1)$ $-105.322 r_{\alpha}^{2}$ $-0.878 r_{\alpha}^{2}$	

202.3706(23)

0.84060(39)

0.84087(39)

 $E_L(\exp)$

 r_C

 r_C

experiment^a

this review

previous worka

202.8785(34)

2.12758(78)

2.12562(78)

1258.598(48)

1.97007(94)

1.97007(94)

1378.521(48)

1.6786(12)

1.67824(83)

Li Muli, Bacca, Pohl

^a experiment:

theory review (2022)

CREMA (2013-2023)

A (Light) Muonic Atoms and Ions Cookbook

TABLE I Contributions to the $2P_{1/2} - 2S_{1/2}$ energy difference E_L in meV, with the charge radii r_C given in fm. All corrections larger than 3% of the overall uncertainty are included. Theoretical predictions for E_L are E_L (theo) = $E_{\rm QED} + C r_C^2 + E_{\rm NS}$. The last two rows show the values of r_C determined from a comparison of E_L (theo) to E_L (exp).

Sec.	Order	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^3 \mathrm{He}^+$	$\mu^4 \mathrm{He}^+$
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731
III.A	$\alpha^2(Z\alpha)^2$	$eVP^{(2)}$	1.65885	1.83804	13.0843	13.2769
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.00752	0.00842(7)	0.0730(30)	0.0740(30)
III.B	$(Z, Z^2, Z^3) \alpha^5$	light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)
III.C	$(Z\alpha)^4$	recoil	0.05747	0.06722	0.1265	0.2952
III.D	$\alpha (Z\alpha)^4$	relativistic with eVP ⁽¹⁾	0.01876	0.02178	0.5093	0.5211
III.E	$\alpha^2(Z\alpha)^4$	relativistic with eVP ⁽²⁾	0.00017	0.00020	0.0056	0.0057
III.F	$\alpha (Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.66345	-0.76943	-10.6525	-10.9260
III.G	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797
III.H	$\alpha^2(Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.00013	0.00015	0.0038	0.0039
III.I	$\alpha^2(Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330
III.K	$\alpha (Z\alpha)^5$	recoil with eVP ⁽¹⁾	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)}, \mu F_2^{(2)}, \mu VP^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)
III.Q	$\alpha^2(Z\alpha)^4$	hVP with eVP ⁽¹⁾	0.00009	0.00010	0.0026(1)	0.0027(1)
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975 r_p^2$	$-6.0732 r_d^2$	$-102.523 r_h^2$	$-105.322 r_{\alpha}^2$
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.0282r_p^2$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^{2}$
IV.C	$\alpha^2(Z\alpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.0002r_{p}^{2}$	$-0.0002 r_d^2$	$-0.009(1) r_h^2$	$-0.009(1) r_{\alpha}^{2}$
		_	P			() 4
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)
V.B	$\alpha^2(Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
V.C	$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)
V.D	$\alpha (Z\alpha)^5$	eVP ⁽¹⁾ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)
V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)
III	E_{QED}	point nucleus	206.0344(3)	228.7740(3)	1644.348(8)	1668.491(7)
IV	$\mathcal{C} r_C^2$	finite size	$-5.2259 r_p^2$	$-6.1074 r_d^2$	$-103.383 r_h^2$	$-106.209 r_{\alpha}^2$
V	$E_{ m NS}$	nuclear structure	0.0289(25)	1.7503(200)	15.499(378)	9.276(433)
	$E_L(\exp)$	experiment ^a	202.3706(23)	202.8785(34)	1258.598(48)	1378.521(48)
	r_C	this review	0.84060(39)	2.127 58(78)	1.970 07(94)	1.6786(12)
	r_C	previous work ^a	0.840 87(39)	2.125 62(78)		1.678 24(83
	-	-	()	, , ,	,	*

Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl – theory review (2022) a experiment: CREMA (2013-2023)

$$E_{LS}(theo) = E_{QED} + C R_E^2 + E_{NS}$$

Sec.	Order	Correction	$\mu { m H}$	$\mu { m D}$	$\mu^3 \mathrm{He}^+$	$\mu^4 \mathrm{He^+}$		
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731	1	
III.A	$\alpha^2(Z\alpha)^2$	$eVP^{(2)}$	1.65885	1.83804	13.0843	13.2769		
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.00752	0.00842(7)	0.0730(30)	0.0740(30)		
III.B	$(Z, Z^2, Z^3) \alpha^5$	light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)		
III.C	$(Z\alpha)^4$	recoil	0.05747	0.06722	0.1265	0.2952		
III.D	$\alpha (Z\alpha)^4$	relativistic with eVP ⁽¹⁾	0.01876	0.02178	0.5093	0.5211		
III.E	$\alpha^2(Z\alpha)^4$	relativistic with eVP ⁽²⁾	0.00017	0.00020	0.0056	0.0057		
III.F	$\alpha (Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.66345	-0.76943	-10.6525	-10.9260		
III.G	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797	- (_
III.H	$\alpha^2(Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.00013	0.00015	0.0038	0.0039	>	E_{QED}
III.I	$\alpha^2(Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646		QLD
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330		
III.K	$\alpha (Z\alpha)^5$	recoil with $eVP^{(1)}$	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)		
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505		
III.M	$\alpha^2(Z\alpha)^4$	$\mu F_1^{(2)}, \mu F_2^{(2)}, \mu VP^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319		
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014		
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023		
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)		
III.Q	$\alpha^2(Z\alpha)^4$	hVP with $eVP^{(1)}$	0.00009	0.00010	0.0026(1)	0.0027(1)		
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975 r_p^2$	$-6.0732 r_d^2$	$-102.523 r_h^2$	$-105.322 r_{\alpha}^2$	7	•
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.0282r_p^2$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^2$		$C R^2$
IV.C	$\alpha^2(Z\alpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.0002r_p^{5}$	$-0.0002 r_d^2$	$-0.009(1) r_h^2$	$-0.009(1) r_{\alpha}^{2}$	J	CNE
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)	5	
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536		
V.C	$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)		ENG
V.D	$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)		E_{NS}
V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)		

$$E_{LS}(theo) = E_{QED} + C R_E^2 + E_{NS}$$

Sec.	Order	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^{3}\mathrm{He^{+}}$	$\mu^4 \mathrm{He}^+$		
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731	1	
III.A	$\alpha^2(Z\alpha)^2$	$eVP^{(2)}$	1.65885	1.83804	13.0843	13.2769		
III.A	$\alpha^3(Z\alpha)^2$	$eVP^{(3)}$	0.00752	0.00842(7)	0.0730(30)	0.0740(30)		
III.B	$(Z, Z^2, Z^3) \alpha^5$	light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)		
III.C	$(Z\alpha)^4$	recoil	0.05747	0.06722	0.1265	0.2952		
III.D	$\alpha (Z\alpha)^4$	relativistic with eVP ⁽¹⁾	0.01876	0.02178	0.5093	0.5211		
III.E	$\alpha^2(Z\alpha)^4$	relativistic with eVP ⁽²⁾	0.00017	0.00020	0.0056	0.0057		
III.F	$\alpha (Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.66345	-0.76943	-10.6525	-10.9260		
III.G	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797	- (_
III.H	$\alpha^2(Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.00013	0.00015	0.0038	0.0039	>	E_{QED}
III.I	$\alpha^2(Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646		QLD
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330		
III.K	$\alpha (Z\alpha)^5$	recoil with eVP ⁽¹⁾	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)		
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505		
III.M	$\alpha^2(Z\alpha)^4$	$\mu F_1^{(2)}, \mu F_2^{(2)}, \mu VP^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319		
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014		
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023		
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)		
III.Q	$\alpha^2(Z\alpha)^4$	hVP with $eVP^{(1)}$	0.00009	0.00010	0.0026(1)	0.0027(1)		
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975 r_p^2$	$-6.0732 r_d^2$	$-102.523 r_h^2$	$-105.322 r_{\alpha}^2$		
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.0282r_p^2$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^{2}$		CR_F^2
IV.C	$\alpha^2(Z\alpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.0002r_p^2$	$-0.0002 r_d^2$	$-0.009(1) r_h^2$	$-0.009(1) r_{\alpha}^{2}$		CNE
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)	5	
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536		
V.C	$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)		E_{NS}
V.D	$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)		L NS
V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)	J	
		, , ,			(-)	(-)		

(Partial) expansion in powers of α , $Z\alpha$: light means that you can still expand

Recoil (expansion in powers of m_{μ}/M_A): more important than in ordinary atoms

$$E_{LS}(theo) = E_{QED} + C R_E^2 + E_{NS}$$

Sec.	Order	Correction	$\mu \mathrm{H}$	$\mu \mathrm{D}$	$\mu^3 \mathrm{He}^+$	$\mu^4 \mathrm{He^+}$
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731

Bohr radius

$$a = (Z\alpha \, m_{\mu})^{-1} \simeq m_e^{-1}$$

Electron loops are enhanced (matching scales)! Sotiris Pitelis's talk

Recall that in normal hydrogen eVP is a small term ~0.5% on top of the electron vertex correction

Eides, Grotch, Shelyuto 2000 (review), 2007 (book)

IV.A IV.B IV.C	$(Z\alpha)^4$ $\alpha (Z\alpha)^4$ $\alpha^2 (Z\alpha)^4$	r_C^2 eVP ⁽¹⁾ with r_C^2 eVP ⁽²⁾ with r_C^2	$-5.1975 r_p^2 -0.0282 r_p^2 -0.0002 r_p^2$	$-6.073 2 r_d^2 -0.034 0 r_d^2 -0.000 2 r_d^2$	$-102.523 r_h^2 -0.851 r_h^2 -0.009(1) r_h^2$	$-105.322 r_{\alpha}^{2} -0.878 r_{\alpha}^{2} -0.009(1) r_{\alpha}^{2}$	}	CR_E^2
V.A V.B V.C V.D V.E	$(Z\alpha)^{5}$ $\alpha^{2}(Z\alpha)^{4}$ $(Z\alpha)^{6}$ $\alpha(Z\alpha)^{5}$ $\alpha(Z\alpha)^{5}$	TPE Coulomb distortion 3PE $eVP^{(1)}$ with TPE $\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.029 2(25) 0.0 -0.001 3(3) 0.000 6(1) 0.000 4	$1.979(20) \\ -0.261 \\ 0.0022(9) \\ 0.0275(4) \\ 0.0026(3)$	$16.38(31) \\ -1.010 \\ -0.214(214) \\ 0.266(24) \\ 0.077(8)$	$9.76(40) \\ -0.536 \\ -0.165(165) \\ 0.158(12) \\ 0.059(6)$	}	E_{NS}

 E_{QED}

$$E_{LS}(theo) = E_{QED} + C R_E^2 + E_{NS}$$

Sec.	Order	Correction	$\mu \mathrm{H}$	$\mu \mathrm{D}$	$\mu^{3} \mathrm{He}^{+}$	$\mu^4 \mathrm{He^+}$
III.A	$\alpha (Z\alpha)^2$	eVP ⁽¹⁾	205.00738	227.63470	1641.8862	1665.7731

Bohr radius

$$a = (Z\alpha \, m_{\mu})^{-1} \simeq m_e^{-1}$$

Electron loops are enhanced (matching scales)! Sotiris Pitelis's talk

Recall that in normal hydrogen eVP is a small term ~0.5% on top of the electron vertex correction

Eides, Grotch, Shelyuto 2000 (review), 2007 (book)

 $\text{IV.A} \qquad \qquad (Z\alpha)^4 \qquad \qquad r_C^2 \qquad \qquad -5.197\,5\,r_p^2 \qquad -6.073\,2\,r_d^2 \qquad -102.523\,r_h^2 \qquad -105.322\,r_\alpha^2$

Finite size correction is also enhanced (2nd most important term)

V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
V.C	$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)
V.D	$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)
V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)

 $E_{\rm NS}$

$$E_{LS}(theo) = E_{QED} + C R_E^2 + E_{NS}$$

Sec.	Order	Correction	$\mu { m H}$	$\mu { m D}$	$\mu^3 \mathrm{He^+}$	$\mu^4 \mathrm{He}^+$		
I.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.007 38	227.63470	1641.8862	1665.7731)	
		II.	Bohr radius					
	}	<i>F</i>	a =	$= (Z\alpha m)$	$_{\mu})^{-1}\simeq$	m_e^{-1}		
	e		Electron loop (matching sc		nanced Sotiris Pitelis's	talk	}	E_{QED}
		A	Recall that in is a small ter electron vert	m ~0.5% ex correc	on top o		ok)	
{IV.A} Finite	$(Zlpha)^4$ e size corr	$rac{r{C}^{2}}{r_{C}^{2}}$ ection is also	$^{-5.1975r_p^2}$ enhanced (2 nd r		-102.523 r_h^2 Ortant teri		}	CR_E^2
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)	7	
		ure correction the overall u	ns are enhanced ncertainty!	d, too, an	d, most ir	mportantly	/ ,	E_{NS}

Finite Size and Nuclear Structure

Squeezed Table

$$E_{LS}(\text{theo}) = E_{QED} + C R_E^2 + E_{NS}$$

	Correction	$\mu { m H}$	$\mu { m D}$	$\mu^{3} \mathrm{He}^{+}$	$\mu^{4}\mathrm{He^{+}}$	
$E_{ m QED} \ {\cal C} r_C^2 \ E_{ m NS}$	point nucleus finite size nuclear structure	$ 206.034 4(3) -5.225 9 r_p^2 0.028 9(25) $	$ 228.774 0(3) -6.107 4 r_d^21.750 3(200)$	76	$ \begin{array}{r} 1668.491(7) \\ -106.209 r_{\alpha}^{2} \\ 9.276(433) \end{array} $	Bohr radius $a = (Z\alpha m_r)^{-1}$
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)	u (2001117)

Dominant nuclear structure effect: Two-Photon Exchange (TPE)

- TPE also dominates the uncertainty (90-95%)
- Finite size enhanced (by a factor ~10⁸) great sensitivity!
- Also greater sensitivity to subleading nuclear structure

TPE and VVCS

- TPE is naturally described in terms of (doubly virtual fwd)
 Compton scattering (VVCS)
- Elastic ($v = \pm Q^2/2M_{\text{target}}$, elastic e.m. form factors) and inelastic (~ nuclear [generalised] polarisabilities)

Forward spin-1/2 VVCS amplitude

$$\alpha_{\text{em}} M^{\mu\nu}(\nu, Q^{2}) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) T_{1}(\nu, Q^{2}) + \frac{1}{M^{2}} \left(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu} \right) T_{2}(\nu, Q^{2}) + \frac{i}{M} e^{\nu\mu\alpha\beta} q_{\alpha} s_{\beta} S_{1}(\nu, Q^{2}) + \frac{i}{M^{3}} e^{\nu\mu\alpha\beta} q_{\alpha} (p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_{2}(\nu, Q^{2}) \right\}$$

$$E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int_{S} \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

~HFS

TPE and Elastic Electron Scattering

Forward spin-1/2 VVCS amplitude

$$\alpha_{\text{em}} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) + \frac{i}{M} \epsilon^{\nu\mu\alpha\beta} q_{\alpha} s_{\beta} S_1(\nu, Q^2) + \frac{i}{M^3} \epsilon^{\nu\mu\alpha\beta} q_{\alpha} (p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_2(\nu, Q^2) \right\}$$

Born amplitudes: proton form factors

$$T_1^{\text{Born}}(\nu, Q^2) = \frac{4\pi\alpha}{M} \left\{ \frac{Q^4 \left[F_1(Q^2) + F_2(Q^2) \right]^2}{Q^4 - 4M^2\nu^2} - F_1^2(Q^2) \right\}$$
$$T_2^{\text{Born}}(\nu, Q^2) = \frac{16\pi\alpha M Q^2}{Q^4 - 4M^2\nu^2} \left\{ F_1^2(Q^2) + \frac{Q^2}{4M^2} F_2^2(Q^2) \right\}$$

Elastic TPE contribution to the Lamb shift: Friar radius

$$\Delta E_{nS} = \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3} \left[R_E^2 - \frac{Z\alpha m_r}{2} R_F^3 \right] + \dots$$

$$R_{\mathsf{F}}^{3} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{4}} \left[G_{\mathsf{E}}^{2}(Q^{2}) - 1 - 2G_{\mathsf{E}}'(0) Q^{2} \right]$$

Friar and Charge Radii Correlation

- Friar and charge radii are moments of the same form factor/charge distribution, so they are correlated
- The value of R_E intrinsic to the form factor influences the value of R_F (elastic TPE) \rightarrow and the extraction from μ H
- The form factor used to calculate TPE has to be consistent with the extracted value of R_E
- A solution: split the integral

Karshenboim (2014)

$$R_{\mathsf{F}}^{3} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{4}} \left[G_{\mathsf{E}}^{2}(Q^{2}) - 1 - 2G_{\mathsf{E}}'(0) Q^{2} \right] = \frac{48}{\pi} \left[\int_{0}^{q_{0}} + \int_{q_{0}}^{\infty} \right] \frac{dQ}{Q^{4}} \left[G_{\mathsf{E}}^{2}(Q^{2}) - 1 - 2G_{\mathsf{E}}'(0) Q^{2} \right]$$

- In the first integral, use a simple polynomial model to cancel the divergence: $G_E(Q^2) = 1 R_F^2 Q^2/3 CQ^4$; the last term can be varied
- The second integral converges and can even be taken using data points, and the value of R_E can be adjusted
- Alternatively, fit the form factors constraining the charge radius and see if the resulting elastic TPE is consistent with the extraction from µH

Friar and Charge Radii Correlation: Fits of the FFs

Fit ep scattering world data

- F. Hagelstein, VL, V. Sharkovska, in preparation (2025)
- Unpolarized cross sections: 33 experiments, 2055 data points
- Polarization transfer: 14 experiments, 69 data points
- Initial state radiation extraction: 1 experiment, 25 points
- 10 values of $R_E = 0.83...0.89$ fm set as a constraint
- 40 different fit Ansätze
- TPE = the resulting Friar term + recoil (small) + the inelastic TPE compare with **experiment** ($E_{LS} = 202.3076(23) \text{ meV}$) and **theory review** ($E_{LS}^{th} = \left[206.0344(3) 5.2259(R_E/\text{fm})^2 + 0.0289(25)\right] \text{ meV}$)
- Consistent with the review: $R_E = 0.84060(39)$ fm

Deuteron Charge Form Factor and TPE in µD

- Self-consistency isn't trivial: An example from μD
- Pionless EFT at N3LO
- Correlation between R_F and R_E analytic result, generated by an N3LO LEC

$$R_{F}^{3} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{4}} \left[G_{C}^{2}(Q^{2}) - 1 - 2G_{C}'(0) Q^{2} \right]$$

$$= \frac{3}{80\gamma^{3}} \left\{ \mathcal{Z} \left[5 - 2\mathcal{Z} (1 - 2\ln 2) \right] -320/9 \ r_{0}^{2} \gamma^{2} \left[\mathcal{Z} (1 - 4\ln 2) - 2 + 2\ln 2 \right] +80(\mathcal{Z} - 1)^{3} \ell_{1}^{C0s} \right\}$$

$$R_{E}^{2} = \frac{1}{8\gamma^{2}} + \frac{\mathcal{Z} - 1}{8\gamma^{2}} + 2r_{0}^{2} + \frac{3(\mathcal{Z} - 1)^{3}}{\gamma^{2}} \ell_{1}^{C0s}$$

 Some form factor parametrizations do not reproduce the correlation!

TPE and Structure Functions

Forward spin-1/2 VVCS amplitude

$$\alpha_{\text{em}} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) + \frac{i}{M} \epsilon^{\nu\mu\alpha\beta} q_{\alpha} s_{\beta} S_1(\nu, Q^2) + \frac{i}{M^3} \epsilon^{\nu\mu\alpha\beta} q_{\alpha} (p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_2(\nu, Q^2) \right\}$$

Unitarity and analyticity, data-driven: dispersive relations

Structure functions
$$F_1(x, Q^2)$$
, $F_2(x, Q^2)$, $g_1(x, Q^2)$, $g_2(x, Q^2)$

$$T_{1}(v, Q^{2}) = T_{1}(0, Q^{2}) + \frac{32\pi M v^{2}}{Q^{4}} \int_{0}^{1} dx \frac{x f_{1}(x, Q^{2})}{1 - x^{2}(v/v_{el})^{2} - i0^{+}},$$

$$T_{2}(v, Q^{2}) = \frac{16\pi M}{Q^{2}} \int_{0}^{1} dx \frac{f_{2}(x, Q^{2})}{1 - x^{2}(v/v_{el})^{2} - i0^{+}}$$

- In practice, one deals with the non-Born subtraction function (everything minus Born)
- The subtraction function is not directly accessible in experiment

Various Subtraction Functions

- The diversity of the results for the proton subtraction function $T_1(0, Q^2)$
 - HBChPT: dipole FF, matches β_{M1} [PDG] and the slope at 0 modification of Birse, McGovern (2012)
 - BChPT: transition FFs change the subtraction function
 - Empirical: Regge asymptotic at high energy subtracted

Tomalak, Vanderhaeghen (2015)

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- Zero crossing at low Q^2 emerges in BChPT with FFs; established in the empirical derivation, but the position not well known (0.1..0.4 GeV²)
- Big cancellations between different mechanisms (πN and $\pi \Delta$ loops vs. Δ pole), also cancellations in the LS integral because of the sign change
- Empirical derivation has sizeable errors towards $Q^2=0$ (not shown) attributed to mismatch between structure function fit in the resonance region (Christy-Bosted) and at high energies (Donnachie-Landshoff) => needs a better (combined) structure function parametrization

Yet Another Subtraction Function

• One doesn't have to subtract at $\nu=0$, one can use any value $\nu=\nu_0$

$$T_{1}(v, Q^{2}) = T_{1}(v_{0}, Q^{2}) + \frac{32\pi M}{Q^{4}} \int_{0}^{1} dx x f_{1}(x, Q^{2}) \frac{v^{2} - v_{0}^{2}}{\left[1 - x^{2} \left(\frac{v}{v_{el}}\right)^{2}\right] \left[1 - x^{2} \left(\frac{v_{0}}{v_{el}}\right)^{2}\right]}$$

- In particular, using v = iQ is advantageous:
 - Shrinks the inelastic contribution
 Hagelstein, Pascalutsa (2020)
 - Simplifies a Lattice QCD calculation
 Fu et al. (2025)
 - The (non-Born) limit at $Q \to 0$ is proportional to the relatively bigger α_{E1}
 - Potentially, $T_1(iQ,Q^2)$ is less affected by cancellations than $T_1(0,Q^2)$ more reliable results in an empirical fit
- Results for $T_1(iQ, Q^2)$ have recently been obtained in LQCD Fu et al. (2025)
- It's slightly cumbersome to compare the different results because of different separation of the TPE... but we have a recipe for that, too!

TPE: Results

F. Hagelstein, VL, S. Pitelis, V. Sharkovska, in preparation (2025)

FIG. 1. LQCD in green. This work (+ LQCD) in black. Data-driven in blue. BChPT in red.

- Results across different approaches are in agreement, also on the sizes of separate contributions
- Subtraction function still carries the biggest uncertainty and needs to be further constrained, especially in view of a more precise experiment

LS in µH

- Elastic form factors seem to be under control, although shrinking the uncertainty is desirable
- Subtraction function: new promising results from LQCD; a more reliable empirical extraction can be possible (especially if a new structure function parametrization becomes available); this can be supplemented at low virtualities by the BChPT results

Hyperfine Splitting (HFS) of µH

$$E_{\mathsf{hfs}}(nS) = \frac{8}{3} \frac{Z\alpha}{(an)^3} \frac{1+\kappa}{mM} \left(1 + \Delta_{\mathsf{QED}} + \Delta_{\mathsf{weak}} + \Delta_{\mathsf{strong}}\right)$$

$$\Delta_{ extst{strong}} = \Delta_{ extst{Z}} + \Delta_{ ext{recoil}} + \Delta_{ extst{pol}}$$

$$egin{aligned} \Delta_{
m pol.} &= \Delta_1 + \Delta_2 = rac{Zm}{2\pi(1+\kappa)M} ig(\delta_1 + \delta_2ig), \ \delta_1 &= 2 \int_0^\infty rac{{
m d} Q}{Q} \left\{ rac{5+4v_I}{(v_I+1)^2} \Big[4I_1(Q^2)/Z^2 + F_2^2(Q^2) \Big] - rac{32M^4}{Q^4} \int_0^{x_0} {
m d} x \, x^2 g_1(x,Q^2)
ight. \ & imes rac{1}{(v_I+v_X)(1+v_X)(1+v_I)} \left(4 + rac{1}{1+v_X} + rac{1}{v_I+1}
ight)
ight\}, \ \delta_2 &= 96M^2 \int_0^\infty rac{{
m d} Q}{Q^3} \int_0^{x_0} {
m d} x \, g_2(x,Q^2) \left(rac{1}{v_I+v_X} - rac{1}{v_I+1}
ight) \end{aligned}$$

$$I_1(Q^2) = \frac{2M^2Z^2}{Q^2} \int_0^{x_0} dx \, g_1(x, Q^2)$$

The generalised GDH integral

$$v_I = \sqrt{1 + \frac{1}{\tau_I}}, \ v_X = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_I = \frac{Q^2}{4m^2}, \ \tau = \frac{Q^2}{4M^2}$$
 Kinematic functions

- No need for subtraction
- Cancellations between the elastic and the inelastic contribution

HFS of µH

$$E_{
m hfs}(nS) = rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1 + \Delta_{
m QED} + \Delta_{
m weak} + \Delta_{
m strong}
ight)$$
 $\Delta_{
m strong} = \Delta_{
m Z} + \Delta_{
m recoil} + \Delta_{
m pol}$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_{LT} + \Delta_{TT} + \Delta_{F_2} = \frac{m}{2\pi(1+\kappa)M} \left(\delta_{LT} + \delta_{TT} + \delta_{F_2} \right), \\ \delta_{LT} &= \frac{4M}{\alpha\pi^2} \int_0^\infty \text{d}Q \int_0^{x_0} dx \, \frac{1}{v_I + v_x} \frac{1}{x^2 + \tau} \left[1 - \frac{1}{(1+v_I)(1+v_x)} \right] \sigma_{LT}(x,Q^2), \\ \delta_{TT} &= \frac{4M^2}{\alpha\pi^2} \int_0^\infty \frac{\text{d}Q}{Q} \int_0^{x_0} \frac{\text{d}x}{x} \frac{1}{1+v_I} \left[\frac{2\tau}{x^2 + \tau} + \frac{1}{(v_I + v_x)(1+v_x)} \right] \sigma_{TT}(x,Q^2), \\ \delta_{F_2} &= 2 \int_0^\infty \frac{Q}{Q} \frac{5 + 4v_I}{(v_I + 1)^2} \, F_2^2(Q^2) \end{split}$$

$$v_I = \sqrt{1 + 1/\tau_I}, \ v_X = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_I = Q^2/4m^2, \ \tau = Q^2/4M^2$$
 Kinematic functions

Rewritten in terms of scattering cross sections

HFS of μH in Covariant BχPT: Cancellations

LO BχPT result

$$E_{
m hfs}^{\langle
m LO
angle \, pol.}(1S,
m H) = 0.69(2.03) \,
m peV$$
 $E_{
m hfs}^{\langle
m LO
angle \, pol.}(1S,
m \mu H) = 6.8(11.4) \,
m \mu eV$

- Consistent with zero
- Cancellations!

Ε(Δ_{pol.})

--- E(Δ_{LT})

--- E(Δ_{TT})

 $--- E(\Delta_1)$

--- E(Δ_2)

Hagelstein, VL, Pascalutsa (2023)

- The LT and TT contributions are large and almost cancel each other
- The LO BxPT result is nearly zero
- Sizeable uncertainty

HFS of µH

 New results from g2p@JLab shrink discrepancy between data and BχPT

$$0.02 \text{ GeV}^2 < Q^2 < 0.12 \text{ GeV}^2$$

- Compare with expected experimental precision (cyan line)
- Theory needs to do better than that
- Rescaling non-recoil contributions from the HFS in H

$$E_{nS-hfs}^{Z+pol}(\mu H) = \frac{E_{F}(\mu H) m_{r}(\mu H) b_{nS}(\mu H)}{n^{3} E_{F}(H) m_{r}(H) b_{1S}(H)} E_{1S-hfs}^{Z+pol}(H) - \frac{E_{F}(\mu H)}{n^{3}} \Delta_{pol}(\mu H) \underbrace{\left[c_{1S}(H) \frac{b_{nS}(\mu H)}{b_{1S}(H)} - c_{nS}(\mu H)\right]}_{\simeq 10^{-5}}$$

Antognini, Hagelstein, Pascalutsa (2022)

Potentially can allow one to disentangle Zemach and polarizability terms

HFS in µH

- One needs to increase theory precision to constrain the frequency scan window
- The rescaling needs to be further investigated
- Possible "missing" contributions see Sotiris Pitelis's talk
- Revisit other contributions
 - Hadronic Vacuum Polarization (HVP)

Hadronic Vacuum Polarization (HVP)

Hadronic Vacuum Polarization

$$\Pi^{\mu\nu}(q^2) = -(g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\Pi(Q^2)$$

$$Q^2 = -q^2$$

Dispersion relation

$$\overline{\Pi}(Q^2)=\Pi(Q^2)-\Pi(0)=-rac{Q^2}{\pi}\int_{t_0}^{\infty}\!\!\mathrm{d}t\,rac{\mathrm{Im}\Pi(t)}{t(t+Q^2-i0)},$$

(Semi-)empirical evaluation

$$\operatorname{Im}\Pi(t) = -\frac{\alpha}{3}R(t)$$

$$R(t) = rac{\sigma(e^+e^- o ext{hadrons})}{\sigma(e^+e^- o ext{$\mu^+\mu^-$})}.$$

A few compilations on the market;
 we use those of F. Jegerlehner
 (αQCD19) and M. Davier, A. Hoecker,
 B. Malaescu, Z. Zhang (DHMZ, 2019)

HVP for Point-Like Nucleus

In the point-like limit

$$E_{nS}^{\mathrm{VP}} = -rac{4Zlpha}{n^3a^3}\,\Pi'(0) + O(Z^5lpha^6)$$
 Lamb shift contribution $\Pi'(0) = -rac{1}{\pi}\int_{t_0}^{\infty}\!\mathrm{d}t\,rac{\mathrm{Im}\Pi(t)}{t^2}$

$$a = (Z\alpha m_r)^{-1}$$
$$E_F = \frac{8Z}{3a^3} \frac{1 + \kappa_N}{mM}$$

$$b=t/4M^2$$

$$\frac{E_{nS-HFS}^{VP}}{E_{F}} = -\frac{2Z\alpha}{\pi^{2}n^{3}(1+\kappa_{N})} \frac{mM}{M^{2}-m^{2}} \int_{t_{0}}^{\infty} \frac{\mathrm{d}t}{t} \mathrm{Im}\Pi(t)W(t) \quad \text{HFS contribution}$$

$$W(t) = -8\pi(M-m)t^{-1/2} \quad \text{in the non-recoil limit}$$

- HFS contains recoil corrections (two-photon exchange)
- HVP: typical momenta are of the order of a few m_{π} , comparable with muon or nuclear masses \Longrightarrow one cannot use the non-recoil limit!

$$W(t) = (b+2)\,\sqrt{1-1/b}\, {
m ln}\, rac{1-\sqrt{1-1/b}}{1+\sqrt{1-1/b}} + (b+3/2)\, {
m ln}\, 4b - 1/2 - (M o m)$$

Sapirstein, Terray, Yennie (1984), Karshenboim, Shelyuto (2021)

(H)VP and Finite Size Effects

 $v = \sqrt{1 + 4M^2/Q^2}$

 $v_I = \sqrt{1 + 4m^2/Q^2}$

- One needs to account for the effects of the nuclear form factors
- Since FFs depend on Q^2 only, it is very convenient to treat VP in a dispersive approach
- This boils down to having a different weighting function

$$\frac{E_{\mathsf{HFS}}^{\mathsf{Born}}(nS)}{E_{\mathsf{F}}(nS)} = \frac{2Z}{1+\kappa_{\mathsf{N}}} \left(\frac{\alpha}{\pi}\right)^2 \frac{mM}{M^2-m^2} \int\limits_{s_0}^{\infty} \frac{\mathrm{d}t}{3t} R(t) W(t)$$

$$W(t) = \int_{0}^{\infty} \frac{dQ}{Q} \left\{ 2(v - v_I) G_M(Q^2) \left(2F_1(Q^2) + \frac{F_1(Q^2) + 3F_2(Q^2)}{(v_I + 1)(v + 1)} \right) - \left(1 - \frac{m^2}{M^2} \right) \frac{5 + 4v_I}{(1 + v_I)^2} F_2^2(Q^2) \right\} \frac{Q^2}{t + Q^2}$$

- F₁ and F₂ Dirac and Pauli, G_M magnetic FFs
- Point-like limit correspoinds to F₁=1, F₂=0
- The weighting function is suppressed!
- We implicitly assume that HVP radiative corrections are subtracted from the FFs

Results: 1S HFS

Previous work	Mu [kHz]	H [kHz]	μΗ [μeV]	μ³He⁺ [μeV]
Sapirstein et al. (1984)	0.22(3)			
Faustov et al. (1999)	0.2397(70)			
Czarnecki et al. (2002)	0.233(3)			
Nomura, Teubner (2013)	0.23268(144)			
Keshavarzi et al. (2020)	0.23204(82)			
Karshenboim, Shelyuto (2021)	0.236(5)			
Karshenboim (1997) point-like		0.19(8)		
finite-size		0.14(3)		
Faustov, Martynenko (1998)			3.5610	
Borie (2012)			4.8(8)	-72.7
This work — DHMZ R function				
non-recoil	1.236(6)*	0.395(2)	9.44(5)	-152(1)
 Jegerlehner R function (αQCD19) 				
non-recoil with recoil finite-size**	1.226(8) 0.230(1)	0.392(2) 0.2097(13) 0.0827(5)	9.37(6) 5.42(3) 2.07(1)	-151.0(9) -110.4(7) -15.49(8)

^{*}uncertainties shown are solely due to the R function(s)

^{**}dipole form factors with $r_E = r_M = 0.8406$ fm [H] or 1.9643 fm [3 He]

Results: 1S HFS

HVP contribution is of the order of the polarizability contribution It is crucial to know it well!

Conclusions and Outlook

- To evaluate TPE in μH: an intricate interplay of different methods and inputs coming from many sources [ep elastic scattering, ep inclusive scattering, proton CS, ...]
- Consistency checks are very important at this level of precision (e.g., verify that proton form factors give consistent R_E and R_F)
- Work is in progress in many directions
 - Form factor moments: use data directly, investigate Zemach radius
 - LS subtraction function: various approaches are consistent, work is going on, trying to achieve a better precision [Lattice? Empirical? NLO BchPT?]
 - HFS: different approaches agree, various bits and pieces are being revisited – important for a prospective improvement of precision
 - Investigating form factors and revisiting various contributions (HVP, $\pi^0\gamma$, ...)
- Stay tuned!

Thank you!

- To my collaborators for the great work
- And to you for listening!