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Standard Model: making sense of beta decays

3

Discovery	of	radioac.vity	1896	(Becquerel)	—>	Contact	theory	1934	(Fermi)	

—>	Parity	viola.on	1956-7	(Lee-Yang,	Wu)		

—>		V	-	A	theory	1957	(Sudarshan,	Marshak,	Gell-Mann,	Feynman);	S-PS	not	excluded
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by
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where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

	average	charge	of	fields	involved:	 	but	Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2
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are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
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been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

	average	charge	of	fields	involved:	 	but	Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2

Eventually,	massive	weak	bosons	render	RC	to	beta	decay	UV-finite:	Λ = MW,Z
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CKM	unitarity	-	completeness	of	the	SM:		 	

Top	row	unitarity	constraint:	

VV† = 1
|Vud |2 + |Vus |2 + |Vub |2 = 1

Kobayashi	&	Maskawa:	3	flavors	+	CP	viola.on	—	CKM	matrix	V
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CAA summary - 3 anomalies!

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:
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29
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3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
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Kμ2 result shows better agreement with unitarity than Kℓ3 result 
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= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Can	it	be	a	signal	of	BSM?



Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Constraints on right-handed currents

30

• In SM, W couples only to LH chiral fermion states
• New physics with couplings to RH currents could explain          

both unitarity deficit and Kℓ3-Kμ2 difference
• Define ϵR = admixture of RH currents in non-strange sector

  ϵR + ΔϵR = admixture of RH currents in strange sector

From current fit:
ϵR = −0.69(27)×10−3 (2.5σ)
ΔϵR = −3.9(1.6)×10−3 (2.4σ)
ϵR = ΔϵR = 0 excluded at 3.1σ

Cirigliano et al.
PLB 838 (2023)

CAA in presence of RH currents

8

Review	the	“ ”	that	defines	the	significance	of	the	Cabibbo	angle	anomaly!σ



Are all SM contributions under control?



Nuclear radii and Vud: 
  

An impressive interplay of 

Theory + Experiment



 from superallowed decaysVud

11

Superallowed	0+-0+	nuclear	decays:		
- only	conserved	vector	current		
- many	decays	
- all	rates	equal	modulo	phase	space

Experiment:	f	-	phase	space	(Q	value)	and	t	-	par.al	half-life	(t1/2,	branching	ra.o)
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l	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interac.on	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribu.on	not	the	same)
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Superallowed 0+ → 0+ nuclear beta decay

The simplest 
nuclear beta
decay!

“Outer correction”
Nuclear structure

effects in inner RC
Isospin-breaking

correction

experimental
ft-value free-nucleon 

inner RC

(discussed before)

(well under control)



Vud extraction: Universal RC and Universal Ft

12

To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

QED Isospin-breaking Nuclear structure Universal RC~ Measured
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Average	of	14	decays Hardy,	Towner	1972	-	2020

|Vud |2 =
2984.43s

ℱt(1 + ΔV
R)

|V0+−0+

ud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

Pre-2018:	ℱt = 3072.1 ± 0.7 s

PDG	2022:	ℱt = 3072 ± 2 s



QED + FNS corrections to -spectrumβ
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Tradi.onally:	assumed	that	decay	probability	equally	distributed	across	the	en.re	nucleus
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Only	the	outer	protons	can	decay:		
all	neutron	states	in	the	core	occupied	

Photon	probes	the	en.re	nuclear	charge
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Recent	development:		
isospin	symmetry	+	known	charge	distribu.ons

Seng, 2212.02681
MG, Seng 2311.16755



Impact of precise nuclear radii on Ft and Vud
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.

PHYSICAL REVIEW LETTERS 131, 222502 (2023)
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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Previously guessed Rc(26mAl) = 3.040(20) fm

Plattner et al, arXiv: 2310.15291

was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].
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was not applied to the present 27Al part of the COLLAPS
analysis as the analyzed spectra were a subset of the
measurements examined in Ref. [32].
For 26;26mAl, a model of the I ¼ 5 ground state and one of

the I ¼ 0 isomeric state were superimposed. Within each
experimental campaign, all 26;26mAl resonance spectra were
fitted simultaneously with the same, shared hyperfine
parameters as long as a parameter was not otherwise
constrained, see above. Similarly, the isomer shift between
ground and isomeric state in 26Al was implemented as a
shared fit parameter across a campaign’s entire dataset. The
isomer centroid ν26m0 itself was freely varied for each
individual spectrum. For the determination of ν26m0 , the
Doppler-tuning voltage was converted into frequency based
on the isomer’s ionic mass. It was verified in fits of
simulated spectra that this approach led to accurate results
despite the peak overlap with the resonance spectrum of the
ground state.
Voigt profiles were chosen for the line shapes of

individual resonance peaks with no intensity constraints
in the ground state. The Lorentzian and Gaussian widths
were shared between ground state and isomer peaks within
each individual spectrum but not shared overall. Because of
inelastic collisions in the charge-exchange cell [38,43,44],
four equidistant side peaks were considered in the analysis
of the COLLAPS data [32]. The energy offset of these
sidepeaks was determined empirically and the relative
intensities were constrained by Poisson’s law. Because
of lower statistics, the IGISOL data were found to be
insensitive to the inclusion of these sidepeaks, thus, they
were not considered in the analysis.
Each spectrum of 26;26mAl was measured in sequence

with an independent 27Al reference measurement. The
isotope shift δν27;26m ¼ ν26m0 − ν270 of each measurement
pair was calculated from the frequency centroid ν26m0 of
26mAl with respect to the frequency centroid ν270 of the
closest 27Al reference measurement. The results of all
individual δν27;26m determinations are shown in Fig. 1(f).
Weighted averages in δν27;26m are calculated separately for
the COLLAPS and IGISOL datasets, see Table I.
Systematic uncertainties in CLS for measurements of

isotope shifts are well understood [45–48] and are domi-
nated by the imperfect knowledge of the beam energy. The
acceleration voltage from the cooler-buncher at IGISOL
was calibrated by matching measured isotope shifts in
the D1 and D2 lines for singly charged ions of stable
magnesium isotopes to their precisely known literature
values in Ref. [49]. The remaining uncertainty in beam
energy was 1.8 eV. An additional 1 × 10−4 relative uncer-
tainty was assigned to the scanning voltage in the Doppler
tuning. For the COLLAPS data, a 1.5 × 10−4 relative
uncertainty of the incoming ion beam energy was assigned
following the specifications of the employed voltage
divider (Ohmlabs KV-30A). This was combined with the

uncertainties of the calibrated JRL KV10 voltage divider
used to measure the scanning voltage and of the employed
voltmeters (Agilent 34661A).
Since the systematic uncertainties at COLLAPS and

IGISOL were fully independent, statistical and systematic
uncertainties of each measurement campaign were first
added in quadrature before the weighted average of both
measurement results was calculated, see Table I. Our final
value for the isotope shift between 26mAl and 27Al
is δν27;26m ¼ 377.5ð3.4Þ MHz.
With knowledge of the isotope shift δν27;26m the differ-

ence in mean square nuclear charge radii δhr2i between the
two isotopes could be calculated according to [50]

δν27;26m ¼ Fδhr2i27;26m þM
m26m −m27

m27ðm26m þmeÞ
;

where me is the electron mass [51] and mA are the nuclear
masses obtained when 13 electrons are subtracted from
the atomic masses [52] and an excitation energy of
228.305 keV [53] is added for 26mAl. Precision atomic-
physics calculations were performed in a multiconfigura-
tion Dirac-Hartree-Fock framework to evaluate the field
and mass shift factors F and M of the investigated atomic
transition [32,54]. Combining the adopted values of
F ¼ 76.2ð2.2Þ MHz=fm2 and M ¼ −243ð4Þ GHz u with
the isotope shift δν27;26m of the present work yields
δhr2i27;26m ¼ 0.429ð88Þ fm2, see Table I. Finally, the root
mean square (rms) nuclear charge radius of 26mAl can be
derived:

Rcð26mAlÞ≡ hr2i1=226m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð27AlÞ2 þ δhr2i27;26m

q
:

Using the previously evaluated rms charge radius of 27Al,
Rcð27AlÞ ¼ 3.061ð6Þ fm [32], a value of Rcð26mAlÞ ¼
3.130ð15Þ fm is obtained, see Table II.
Discussion.—Nuclear charge radii of superallowed β

emitters are essential input parameters for the calculation of

TABLE I. Measured isotope shift δν27;26m between 27Al and
26mAl obtained at the IGISOL facility and at COLLAPS-
ISOLDE. The weighted average of the two measurements and
the resulting difference in mean square charge radius δhr2ci27;26m
is listed.

δν27;26m (MHz) δhr2ci27;26m (fm2)

COLLAPS 376.5{1.7}[3.7]a

IGISOL 379.7{5.5}[2.2]a

Weighted average 377.5(3.4)b 0.429ð45Þh76ib

aStatistical and systematic uncertainties given in curly and
square brackets, respectively.

bCombined statistical and systematic uncertainties in
parentheses. Uncertainty from atomic physics calculations of
mass and field shift from [32] in angle brackets.
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1-2%	ISB	effect	on	top	of	a	RC	may	be	assumed	negligible	(but	needs	to	be	tested)
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

−1
2

∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
6

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

−
∑

a

⟨a;2||V ||g;1⟩∗⟨a;2||M(1)||g;1⟩
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

+
∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
3

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

⟨a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z⟩ = C

11;T ′T ′
z

1T z;1T ′′
z
⟨a; T ′||M(1)||g;1⟩

⟨a; T ′, T ′
z|V |g;1, T z⟩ = C

11;T ′T ′
z

1T z;10 ⟨a; T ′||V ||g;1⟩, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|⟨a;0||V ||g;1⟩|2
(Ea,0 − E g,1)2 + 1

2

∑

a≠g

|⟨a;1||V ||g;1⟩|2
(Ea,1 − E g,1)2

−5
6

∑

a

|⟨a;2||V ||g;1⟩|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ≪ Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|⟨a; T ||V (1)
C ||g;1⟩|2

Ea,T − E g,1
, (18)

with a ̸= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z⟩, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T ⟩ are of the 
order (N − Z)/A ≪ 1. Hence, in this approximation scheme all ma-
trix elements are equal, ⟨M; T ||V (1)

C ||g; 1⟩ ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

−1
2

∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
6

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

−
∑

a

⟨a;2||V ||g;1⟩∗⟨a;2||M(1)||g;1⟩
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1
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∑
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3

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:
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z|M(1)

T ′′
z
|g;1, T z⟩ = C

11;T ′T ′
z

1T z;1T ′′
z
⟨a; T ′||M(1)||g;1⟩

⟨a; T ′, T ′
z|V |g;1, T z⟩ = C

11;T ′T ′
z

1T z;10 ⟨a; T ′||V ||g;1⟩, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
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(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:
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While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ≪ Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 
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with a ̸= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z⟩, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T ⟩ are of the 
order (N − Z)/A ≪ 1. Hence, in this approximation scheme all ma-
trix elements are equal, ⟨M; T ||V (1)

C ||g; 1⟩ ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
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κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)
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where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

ISB	due	to	IV	monopole,	VISB ≈
Ze2

8πR3 ∑
i

r2
i

̂Tz(i) =
Ze2

8πR3
M̂(1)

0

Same	operator	generates	nuclear	radii
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
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A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑
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⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
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3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑
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(
1
2
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)
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with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

= 0 if isospin symmetry exact

0+, T = 1, Tz = − 1

0+, T = 1, Tz = 0

0+, T = 1, Tz = 1
RCh,−1 RCh,0

RCh,1



17

Test of isospin symmetry in isotripletT = 1, O+

Test	requires	that	all	3	nuclear	radii	in	the	isotriplet	are	known;	
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

= 0 if isospin symmetry exact

Table 1 Determinations of hr2cwi based on available data of nuclear charge radii for

isotriplets in measured superallowed decays. Notation: 123.12(234) means 123.12±2.34.

A hr2
ch,�1i

1/2 (fm) hr2
ch,0i

1/2 (fm) hr2
ch,1i

1/2 (fm) hr2cwi1/2 (fm)

10 10
6 C 10

5 B(ex) 10
4 Be: 2.3550(170)a N/A

14 14
8 O 14

7 N(ex) 14
6 C: 2.5025(87)a N/A

18 18
10Ne: 2.9714(76)a 18

9 F(ex) 18
8 O: 2.7726(56)a 3.661(72)

22 22
12Mg: 3.0691(89)b 22

11Na(ex) 22
10Ne: 2.9525(40)a 3.596(99)

26 26
14Si 26m

13 Al: 3.130(15)f 26
12Mg: 3.0337(18)a 4.11(15)

30 30
16S

30
15P(ex) 30

14Si: 3.1336(40)a N/A
34 34

18Ar: 3.3654(40)a 34
17Cl 34

16S: 3.2847(21)a 3.954(68)
38 38

20Ca: 3.467(1)c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)a 3.999(35)
42 42

22Ti 42
21Sc: 3.5702(238)a 42

20Ca: 3.5081(21)a 4.64(39)
46 46

24Cr 46
23V

46
22Ti: 3.6070(22)a N/A

50 50
26Fe 50

25Mn: 3.7120(196)a 50
24Cr: 3.6588(65)a 4.82(39)

54 54
28Ni: 3.738(4)e 54

27Co 54
26Fe: 3.6933(19)a 4.28(11)

62 62
32Ge 62

31Ga 62
30Zn: 3.9031(69)b N/A

66 66
34Se 66

33As 66
32Ge N/A

70 70
36Kr 70

35Br 70
34Se N/A

74 74
38Sr 74

37Rb: 4.1935(172)b 74
36Kr: 4.1870(41)a 4.42(62)

Superscripts denote the source of data: Ref.(59)a, Ref.(61)b, Ref.(62)c, Ref.(63)d, Ref.(64)e, and
Ref.(65)f .

Transition fnew fHT

fnew�fHT

fnew
(%)

18Ne!18F 134.62(0)dist(2)scr(17)QEC
134.64(17)QEC

�0.01(0)dist(2)scr
22Mg!22Na 418.27(2)dist(7)scr(13)QEC

418.35(13)QEC
�0.02(0)dist(2)scr

34Ar!34Cl 3409.89(24)dist(60)scr(25)QEC
3410.85(25)QEC

�0.03(1)dist(2)scr
38Ca!38mK 5327.49(39)dist(98)scr(31)QEC

5328.88(31)QEC
�0.03(1)dist(2)scr

42Ti!42Sc 7124.3(58)dist(14)scr(14)QEC
7130.1(14)QEC

�0.08(8)dist(2)scr
50Fe!50Mn 15053(18)dist(3)scr(60)QEC

15060(60)QEC
�0.04(12)dist(2)scr

54Ni!54Co 21137(4)dist(5)scr(52)QEC
21137(57)QEC

+0.00(2)rad(2)scr
34Cl!34S 1995.08(13)dist(36)scr(9)QEC

1996.003(96)QEC
�0.05(1)dist(2)scr

38mK!38Ar 3296.32(22)dist(63)scr(15)QEC
3297.39(15)QEC

�0.03(1)dist(2)scr
42Sc!42Ca 4468.53(340)dist(91)scr(46)QEC

4472.46(46)QEC
�0.09(8)dist(2)scr

50Mn!50Cr 10737.9(117)dist(23)scr(5)QEC
10745.99(49)QEC

�0.08(11)dist(2)scr
54Co!54Fe 15769.4(24)dist(34)scr(27)QEC

15766.8(27)QEC
+0.02(2)dist(2)scr

74Rb!74Kr 47326(128)dist(12)scr(94)QEC
47281(93)QEC

+0.10(27)dist(3)scr
Table 2 Comparison between new and old results of f . The three sources of uncer-

tainty are from charge distributions in the Fermi function and the shape factor (dist),

screening correction (scr) and the decay Q-value (QEC), respectively. Numerical values

from Ref.(40).

than that of the individual hr2chi. More importantly, the central value is significantly larger
in most cases, in contradiction to older estimates (60, 54).

A simultaneous, fully data-driven evaluation of both F (Ee) and C(Ee) requires the
information of at least two nuclear charge distributions within the nuclear isotriplet. This
analysis was recently performed in Ref. (40), and we report the results in Tab. 2. We
observe that adopting this new approach to determine the statistical rate function, the shift
in the central values is not negligible, and neither is the associated uncertainty. It has to

8 Gorchtein, Seng

1
2 (20 × 3.467(1)2 + 18 × 3.4028(19)2) − 19 × 3.437(4)2 = − 0.00(12)(14)(52)

Improvement	of	K-38m	radius	necessary!	(Plans	at	TRIUMF	on	IS	K-38m,	K-37?)

0+, T = 1, Tz = − 1

0+, T = 1, Tz = 0

0+, T = 1, Tz = 1
RCh,−1 RCh,0

RCh,1



Data-driven approach to ISB

18

ISB	dominated	by	Coulomb	repulsion	between	protons Miller, Schwenk 0805.0603; 0910.2790; 
Auerbach 0811.4742; 2101.06199; 

Seng, MG 2208.03037; 2304.03800; 2212.02681

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

−1
2

∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
6

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

−
∑

a

⟨a;2||V ||g;1⟩∗⟨a;2||M(1)||g;1⟩
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

+
∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
3

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

⟨a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z⟩ = C

11;T ′T ′
z

1T z;1T ′′
z
⟨a; T ′||M(1)||g;1⟩

⟨a; T ′, T ′
z|V |g;1, T z⟩ = C

11;T ′T ′
z

1T z;10 ⟨a; T ′||V ||g;1⟩, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|⟨a;0||V ||g;1⟩|2
(Ea,0 − E g,1)2 + 1

2

∑

a≠g

|⟨a;1||V ||g;1⟩|2
(Ea,1 − E g,1)2

−5
6

∑

a

|⟨a;2||V ||g;1⟩|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ≪ Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|⟨a; T ||V (1)
C ||g;1⟩|2

Ea,T − E g,1
, (18)

with a ̸= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z⟩, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T ⟩ are of the 
order (N − Z)/A ≪ 1. Hence, in this approximation scheme all ma-
trix elements are equal, ⟨M; T ||V (1)

C ||g; 1⟩ ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

ISB	due	to	IV	monopole,	VISB ≈
Ze2

8πR3 ∑
i

r2
i

̂Tz(i) =
Ze2

8πR3
M̂(1)

0

Same	operator	generates	nuclear	radii
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

−1
2

∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
6

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

−
∑

a

⟨a;2||V ||g;1⟩∗⟨a;2||M(1)||g;1⟩
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

⟨a;0||M(1)||g;1⟩∗⟨a;0||V ||g;1⟩
Ea,0 − E g,1

+
∑

a≠g

⟨a;1||M(1)||g;1⟩∗⟨a;1||V ||g;1⟩
Ea,1 − E g,1

−1
3

∑

a

⟨a;2||M(1)||g;1⟩∗⟨a;2||V ||g;1⟩
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

⟨a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z⟩ = C

11;T ′T ′
z

1T z;1T ′′
z
⟨a; T ′||M(1)||g;1⟩

⟨a; T ′, T ′
z|V |g;1, T z⟩ = C

11;T ′T ′
z

1T z;10 ⟨a; T ′||V ||g;1⟩, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|⟨a;0||V ||g;1⟩|2
(Ea,0 − E g,1)2 + 1

2

∑

a≠g

|⟨a;1||V ||g;1⟩|2
(Ea,1 − E g,1)2

−5
6

∑

a

|⟨a;2||V ||g;1⟩|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ≪ Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|⟨a; T ||V (1)
C ||g;1⟩|2

Ea,T − E g,1
, (18)

with a ̸= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z⟩, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T ⟩ are of the 
order (N − Z)/A ≪ 1. Hence, in this approximation scheme all ma-
trix elements are equal, ⟨M; T ||V (1)

C ||g; 1⟩ ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 

3

Nuclear	Hamiltonian:	H = H0 + VISB ≈ H0 + VC

Coulomb	poten.al	for	uniformly	charged	sphere

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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Fig. 5: Linear fit to the mirror shift. Data-points are the individual shifts from Tab. 4. The dark shaded region is the 68% confidence

interval of the fitted slope given in Eq. 6. The light shaded region is the 68% confidence interval calculated from first principles [31].

previous sections. Nevertheless, with the reference radii given in Table 2, �r2 from the literature (the references are

given in Table 5), and the re-calibrated neon di↵erential radii given in Table 3, we have all the ingredients to test the

linear theoretical prediction experimentally.

The relevant data is given in Table 4. We excluded the pair 21Na-21Ne, as its uncertainty is too large to be of use.

We also did not include the pairs with Cl isotopes, as their radii were determined from electron scattering experiments

which are of limited reliability. The result of a one parameter analytical fit to the weighted mirror shifts is shown in

Figure 5. It has a reduced Chi-square of 11.5/11 = 1.04 indicating that a such a fit is not inconsistent with the data.

The resulting mirror shift parametrization is

�I = rN,Z(I)� rZ,N (I) = 1.382(34)⇥ I fm. (6)

The structure of this work enables to remove certain ingredients from the analysis to test their e↵ect. We find that

nearly half of the uncertainty given in Eq. 6 stems from that of the charge distributions, previously overlooked in the

literature. Omitting it would result in a reduced �2 of 2.3. The second-largest contributor is the uncertainty in the

di↵erential radii, as extracted from optical isotope shift measurements. It originates mostly from the atomic factors and

not the statistical accuracy of the optical measurements (see e.g. [32]).

The empirically determined slope of Eq. 8, agrees with the band spanning nuclear theory calculations �I = (1.574⇥

I)± 0.021 fm [31], also shown in Figure 5. To extend the comparison between experiment and theory, it would thus be

very interesting to add experimental data at high asymmetry 0.12 < I for which no precise data is currently available.

The pair which weight is the largest in the fit is 36Ca�36S, which combines high experimental accuracy with a large
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previous sections. Nevertheless, with the reference radii given in Table 2, �r2 from the literature (the references are
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linear theoretical prediction experimentally.

The relevant data is given in Table 4. We excluded the pair 21Na-21Ne, as its uncertainty is too large to be of use.

We also did not include the pairs with Cl isotopes, as their radii were determined from electron scattering experiments

which are of limited reliability. The result of a one parameter analytical fit to the weighted mirror shifts is shown in

Figure 5. It has a reduced Chi-square of 11.5/11 = 1.04 indicating that a such a fit is not inconsistent with the data.

The resulting mirror shift parametrization is

�I = rN,Z(I)� rZ,N (I) = 1.382(34)⇥ I fm. (6)

The structure of this work enables to remove certain ingredients from the analysis to test their e↵ect. We find that

nearly half of the uncertainty given in Eq. 6 stems from that of the charge distributions, previously overlooked in the

literature. Omitting it would result in a reduced �2 of 2.3. The second-largest contributor is the uncertainty in the

di↵erential radii, as extracted from optical isotope shift measurements. It originates mostly from the atomic factors and

not the statistical accuracy of the optical measurements (see e.g. [32]).

The empirically determined slope of Eq. 8, agrees with the band spanning nuclear theory calculations �I = (1.574⇥

I)± 0.021 fm [31], also shown in Figure 5. To extend the comparison between experiment and theory, it would thus be

very interesting to add experimental data at high asymmetry 0.12 < I for which no precise data is currently available.

The pair which weight is the largest in the fit is 36Ca�36S, which combines high experimental accuracy with a large
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high qeff = 1.8 fm�1 range covered. Adopting the charge distributions from either [23] or [24], which only extend to

qeff = 1 fm�1, results in v ⇠ 5 giving r20 = 3.009 fm. The 0.3% di↵erence in the radius obtained using v-factors from

di↵erent scattering experiments is a testament to the importance of accounting for uncertainty in the charge distribution.

The lack of high momentum transfer scattering data in 22Ne prevents us from estimating its radius directly from its

Barrett radius given in [22]. Assuming v22 = v20±0.5, in line with the isotopic variations from Tab. 1, returns a di↵erence

�r220,22 = �0.310(16)exp(5)NP(9)v fm
2, (4)

where we observe that the uncertainty from a possible variation of the charge distribution between the isotopes is not

negligible.

Optical isotope shifts were measured for the 614 nm transition in a long chain of neon isotopes [20, 21]. To calibrate

the radii of the neon chain, a partial king plot procedure is used. It relies on the IS equation

�vA,A0

i ⇡ Kiµ
A,A0

+ Fi(�r
2)A,A0

, (5)

with F614 calculated via many-body atomic theory and one di↵erential radii pair to determine K614. The resulting

K614 and calculated F614 are then used to extract �r2 from optical isotope shifts. Originally, F614 = �40(4)MHz/fm2

was estimated semi-empirically using the Goudsmit-Fermi-Segre method (GFS) [20]. Resulting in the radii of the chain

that were limited by �F . A later ab initio calculation returned F614 = �30.5(1.5)MHz/fm2 [25], where we adopted here

the more conservative uncertainty estimate given in [26]. The disagreement between the semi-empirical and ab initio

methods is attributed to the limited accuracy of the GFS formula, as discussed e.g. in [25, 27–29]. Using this F614, the

radii of the chain could be improved by up to a factor of 1.6 [25], with their uncertainty dominated by that of �r220,22

given in Eq. 4. It is thus clear that a better determination of �r220,22 would increase the accuracy far from stability.

Luckily, a new method has recently emerged to determine di↵erential radii in even-even isotopes. This is accomplished

through measuring the di↵erences in the g-factors of single electron bounds to bare nuclei. For neon, such a measurement

returned r20�r22 = �0.0533(4) fm corresponding to �r220,22 = �0.3171(24) fm2 [30]. A remarkable improvement by factor

8 over the value given in Eq. 4. Applying Eq. 5 with the highly accurate �r220,22 from the g-factor measurement results in

improved di↵erential radii of the entire neon chain. They are given in table 3. These are more precise by up to a factor

2.5 as compared with [25]. The improvement was somewhat curtailed by our more conservative uncertainty estimation

for r20 and F614. The current uncertainty budget both motivates new optical measurements with higher precision, and

a more accurate calculation of F614.

This example shows the tremendous impact of measuring a single �gbound, and motivates extending such measurements

to other stable even-even pairs.

4. The mirror shift fit

Extensive ab initio calculations suggest that the di↵erences in radii between mirror nuclei (mirror shifts) are pro-

portional to the isospin asymmetry I = (N � Z)/A, at least up to I ⇡ 0.2 [31]. The experimental situation is not

as healthy. In contrast with isotope shifts, which can be measured directly via optical spectroscopy, mirror shifts are

di�cult to measure with high fractional precision. To obtain them, one has to take the di↵erence between the absolute

radii of the mirror pair, contending with large experimental and theoretical uncertainties, which are emphasized in the
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but	more	precise
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Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical
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Table 7

Radii of isotriplet nuclei. r±1 are from Tab. 5, r0,SE, �M (1)
B , and rCW are calculated using Eq. 9, Eq. 10, and 11,

respectively. Asterisks denote short-lived excited nuclear states.“m” denotes long-lived nuclear isomers. r0,exp are
determined by combining reference radii from Tab. 2, optical isotopes shifts given in Refs. [76, 81, 95–97], and improved
calculations of atomic factors from Refs. [41, 68, 77].

r�1 fm r0,SE fm r0,exp fm r+1 fm �M (1)
B fm2 r2CW fm2 Ref. [38]

10
6 C 2.638(36) 10

5 B* 2.531(38) 10
4 Be 2.361(36) 9.72(25) N/A

14
8 O 2.706(11) 14

7 N* 2.623(10) 14
6 C 2.508(09) 10.41(12) N/A

18
10Ne 2.934(09) 18

9 F* 2.863(07) 18
8 O 2.777(07) 12.08(12) 13.4(5)

22
12Mg 3.071(05) 22

11Na* 3.017(05) 22
10Ne 2.948(04) 13.24(12) 12.9(7)

26
14Si 3.137(04) 26m

13 Al 3.088(04) 3.132(08) 26
12Mg 3.030(03) �3.5(0.7) 13.77(12) N/A

30
16S 3.224(07) 30

15P* 3.181(06) 30
14Si 3.132(06) 14.50(13) N/A

34
18Ar 3.365(11) 34

17Cl 3.328(04) 34
16S 3.284(04) 15.66(13) 15.6(5)

38
20Ca 3.469(04) 38m

19 K 3.440(07) 3.437(05) 38
18Ar 3.402(06) 0.6(1.1) 16.58(13) 16.0(3)

42
22Ti 3.576(05) 42

21Sc 3.545(04) 3.558(16) 42
20Ca 3.510(04) �2.0(2.4) 17.46(13) 21.5(3.6)

46
24Cr 3.670(05) 46

23V 3.642(05) 46
22Ti 3.610(04) 18.29(14) N/A

50
26Fe 3.719(04) 50

25Mn 3.693(04) 3.728(41) 50
24Cr 3.664(04) �6.6(7.8) 18.73(14) 23.2(3.8)

54
28Ni 3.741(05) 54

27Co 3.715(04) 54
26Fe 3.688(04) 18.93(14) 18.3(9)

58
30Zn 3.820(03) 58

29Cu* 3.797(03) 58
28Ni 3.773(03) 19.66(14) N/A

62
32Ge 3.927(06) 62

31Ga 3.906(06) 62
30Zn 3.883(06) 20.65(15) N/A

74
38Sr 4.205(12) 74

37Rb 4.187(12) 4.194(17) 74
36Kr 4.168(12) �1.9(6.5) 23.32(19) 19.5(5.5)
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Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical
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Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical
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Fill	in	missing	entries	using	mirror	fit

At	present	can	test	5	isotriplets	
A=26	shows	significant	ISB	(??)	
Others	consistent	with	0	within	errors

19



Closing in on ISB: neutron radii from PVES
Another	ISB	combina.on	involves	neutron	radius	vs	proton	radius	of	the	mirror	companion

ΔM(1)
A =

N1

2 [R2
n,1 − R2

p,−1]

Neutron	radius	of	stable	daughter:		
from	parity-viola.ng	e-scawering

⃗e− e−

Af Af

γZAPV = −
GFQ2

4 2πα

QW

Z
FNW(Q2)
FCh(Q2)

Z-boson	couples	to	neutrons,	photon	-	to	protons;	
PV	asymmetry	at	low	Q2	sensi.ve	to	the	difference	 	-	neutron	skin	

Cadeddu	et	al,	2407.09743:	feasibility	study	for	PVES	on	 C	at	Mainz	
3-5%	PV	asymmetry	at	backward	angles	—>	0.3-0.5%	 	extrac6on	possible	
PVES	on	stable	superallowed	daughters	(Mg-26,	Fe-54,	…)	+	mirror	fit	—	test	of	ISB!

⟨r2
n,1⟩ − ⟨r2

p,1⟩

12

Rn

RNW ≈ Rn

20

3-fold	cross	check:	 	from	 	(i)	mirror	fit	(ii)	and	IS	measurement	(iii)Rp,−1 Rn,1



Reference radii from muonic atoms: 
Nuclear Polarization

See	also	talks	by		
Saori,	Natalia,	Sonia,	Mehdi,	Vadim,	Chen	Ji,	…

Gorchtein 2501.15274



aμA
1S = (Zαmμr)−1 ≈ 250 fm Z−1

Rch

a

Rch ≈ 1.1 fm × A1/3

aeA
1S = (Zαmer)−1 ≈ 500 000 fm Z−1

Lepton	feels	pointlike	Coulomb	poten.al	far	outside	the	nucleus	

Finite	size	effects	modify	this	poten.al	in	the	vicinity	of	the	nucleus	

Interplay	between	atomic	and	nuclear	radii

Nuclear Charge Radii from µ atoms

≫

From	Z	~	50	 	—	very	sensi.ve	to	nuclear	radiiRch ≈ aμ
1S

ΔE1S ∝ Zαmr(Rch/aμ
1S)2

For	precision:	include	higher-order	correc.ons	(QED	+	nuclear	structure)	

QED:	numerical	solu.ons	of	Dirac/Schroedinger	radial	equa.ons,	or	analy.cal	 -expansionZα

22



Muon	may	induce	polariza.on	of	the	nucleus		

Structure	constant	 	—>	electric	dipole	polarizability	

Charges	inside	nucleus	are	displaced	against	each	other	

	has	dimension	of	volume

αE1

αE1

In presence of nuclear polarization

ΔE1S ∝ − Zαmr αE1/(aμ
1S)3

Empirical	scaling	(giant	dipole	resonance)	 	

Effec.vely	shils	the	extracted	radius	by	

αE1 ≈ 0.00225A5/3 fm3

δRch

Rch
∝

αE1

2R2
ch aμ

1S
∝

Zαmr 0.00225 fm3 × A5/3

2 × (1.1 fm × A1/3)2
∼ 3.6ZA × 10−6

Typical	precision	 	—>	precision	requirement	on	NPδR /R ∼ 10−4 104 δRch

Rch
∼ 7

Z
10

A
20

Accuracy	of	calculated	NP	reflects	directly	in	the	precision	of	nuclear	radii	(not	via	this	formula)

23



First	approxima.on:		

nucleus	much	smaller	than	atom		

nuclear	energy	spliyngs	much	larger	than	atomic	energy

Nuclear polarization - basics

24

2nd	order	PT
Ericson,	Hüfner	1972	
Friar	1977

Perturba.on:	transi.on	induced	by	Coulomb	interac.on	

1542 J. L. FRlAR 16

tain the semiclassical approximation

nz, = &f I v„(r)I f &, (4a)

i „(r)= +&01~,(r) ~,(~.)l 0&, (4b)
/~0 ~0-~~

o( (f q, q. , „( )p q
q

(5a.)

(5b}
which has the classic form of a polarization poten-
tial and is the "A" term of Ref. 9. Rather than
proceeding along these lines, it is profitable to
Fourier transform the matrix element in Eq. 3
(using G, ). We also write ~, in the form

where p(r} is the nuclear charge operator, and
its Fourier transform satisfies P(q =0)=Z. We
also define f exp(iq r) (t((r) d'r to be (t((q). We
obtain

(4r)'o' ~, . . .-„&oIp(-q')I && &l(fl P(q")I o&
1~0 @ +9

(6)

n.Eo=-Bo'I y(0)l' . '; (i&g, (Ba)
o q ~,„~+(f

mhere

w'. (e, ~) = Q I&h'I p(q)l o& I'6(~ —~~)
g&0

(Bb)

is the usual inelastic Coulomb response function
obtainable from electron scattering~'" above the
inelastic threshold &u„,. We will evaluate Eq. (8)
using a crude model in Sec. IV.
Equations (7) and (8) demonstrate the fact that

the convergence of the q integral may be drastic-
ally altered by approximations and that the model

One of the primary approximations used in Refs.
6 and 8 (besides the replacement G, -G„.) results
from the recognition that the momentum compo-
nents of the atomic wave function p are confined
to reasonably small values. For the 1S state, for
example, P(q)-P/(q'+P2)', with (8 =P&p roughly
an MeV in size for p-He. All the other energy and mo-
mentum scales in Eq. (6) are considerably larger, and
thus p(q}=0 unless q=—0. The expression for p
above is an adequate representation for a 5 func-
tion provided P is small and we may approximate
&(((q) by p(0)(2w)'6'(q) for any S state. For lack of
a better name, me will call this low -Z approxi-
mation the wave function app~oxin~ation, mhich
simplifies Eq. (6) to the form

~E 2
'

I @(0}l.~ d'ql&&lp(q)l &

(( ~~ q4((u„+q'/2p)

after dropping &0 compared mith u„, this is the
nonrelativistic version of the model of Bernabeu
and Jarlskog. ' The comparison is most easily
made by dropping all magnetic (transverse), re-
tardation, and other relativistic effects in the re-
sults of Ref. 8 and re(writing Eq. (7) in the form

dependence of the r(: ul (iE~) depends in a signifi-
cant way on the extent to which the q dependence of
W, is needed to cut off the q integral. Because me
are dealing only with inelastic virtual transitions,
the threshold behavior of W, is determined by di-
pole states and g, -q' for small q'; thus there are
no small-q (infrared) problems with Eq. (8). A
natural approximation would be to ignore the q'
dependence of the denominator. This is the same
as Eq. (4b) after the wave function approximation
and places the burden of convergence on W, .
Clearly, results obtained using this approximation
could be quite model dependent. Furthermore, for
small IL(, some damping must be provided by W, or
the nonrelativistic approximation mill be completely
inadequate for lepton intermediate states. This is
the case for electrons. "'" For muons, p, is suf-
ficiently large that the denominator in Eq. (Bc}pro-.
vides most of the convergence needed in the non-
relativistic regime.
Experience'~'" has shown that dipole excitations

are the most important in calculating polarization
corrections. For nuclear transitions from spin-
less ground states to 1 states, angular momentum
considerations lead to

&Nl p(q)l 0& =iq ~ D~oFN(q2),

where F„(0)= l and D is the nuclear dipole oper-
ator. The unretarded dipole appxoxi mati on consists
of neglecting I „; although it is clearly incorrect
for large q', it guarantees the correct threshold
properties. Furthermore, it relates the matrix
element of p to photoabsorption, s4nce at lorn pho-
ton energies the unretarded dipole approximation
is excellent and current continuity" then relates
current matrix elements to D„„. An alternative
derivation of the same result in coordinate space
is instructive. We expand I r-r„l according to
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state energies can be achieved using the unretarded
dipole approximation, which has been somemhat
useful in calculating dispersion corrections for
lom-energy electron scattering. "" Keeping only
first-order Coulomb distortion effects me mill find
for S states

&E,"= ~u —I y(0)l'[o, g. +go~2p, (o', +ac, )],
where

g ), —= (d 0'~b3 (d dh) y

th

0' ), = (d EF~b3 43 ln +A 2p. (d d4P ~

th

[These are Eqs. (26a) and (26c) of Sec. III.] In this
expression p. is the muon-nucleus reduced mass,
y(0) is the muon wave function at the nucleus,
o~&»(~) is the total photoabsorption cross section
of a nucleus for a photon mith energy ~, g is the
proton number, and a is a state-dependent con-
stant. Since g, is essentially proportional to ~~
and p,~, is a closely related quantity, observation
(2) above is confirmed. Both quantities may be
deduced from recent experiments. "'" This equa-
tion is one of our primary results; note that no
cutoff is needed. More accurate numerical results
than those given by Eq. (26) will be obtained by re-
laxing the unretarded approximation and will con-
firm the results of Hinker' and Bernabeu and Jarls-
kog s

II. GENERAL FORMALISM

Our primary assumptions in this work will be:
the nonrelativistic treatment of both the muon and
nucleus, and the ignoring of all but the static Cou-
lomb interaction between the tmo systems. The
first step" is to separate the Coulomb interaction
into a piece Ho mhich is elastic mith respect to the
nucleus and a piece ~, which generates only nu-
clear transitions. The first piece is treated to all
orders by including it as part of the unperturbed
lepton Hamiltonian, and it generates the usual
static hydrogenic spectrum modified by the nuclear
charge distribution plus recoil corrections. " The
second piece ~, generates nuclear transitions and
is treated perturbatively; it contributes to the en-
ergy in second- and higher-order perturbation the-
ory. Because both the nuclear finite size and the
nuclear polarization generate small corrections, it
is sufficient to restrict ourselves to a second-
order treatment of ~, and to ignore the nuclear
finite size while doing so. With these assumptions
the polarization correction in the lepton-nucleus

center-of-mass frame becomes

gE, = Q &0 I ~.l pr &
N~0

~E = g &o'
I ~, I

hl'& G(-E„)&~l nH, I
o'& . (2)

N ~0

A more useful form may be obtained by noting that
the nuclear matrix element &Nl ~, I 0) is just the
lepton transition potential 6 V„(r), where r is the
vector from the nuclear center of mass to the
lepton. This leads to

aZp= ~ a~N r t"c -F.Nir, r' ZVN r' (3)

in an obvious notation which emphasizes the lepton
coordinate. We wish to evaluate ~F~ for four spec-
ial cases: (a) ignore the Coulomb attraction in the
lepton states and use the nonrelativistic equivalent
of the nuclear model of Bernabeu and Jarlskog
(denoted BJ); (b) ignore Coulomb effects and use
dipole nuclear states only; (c) ignore Coulomb ef-
fects and use the umeIa~ded dipole approximation;
(d) work in the unretarded dipole approximation
and include first-order Coulomb distortion effects.
We begin our discussion by ignoring Coulomb

effects in the Green's function G„. in this limit G,
is essentially the nonrelativistic free Green's
function for complex momentum. We find that G,
-G.= -v, exp(-~„l r —r' I)/2vl r —r' I, where K„
—= (2p,E„)' . The first observation is that y„ is a
number which varies roughly from —,'--," over the
region of the intermediate nuclear spectrum which
can be expected to dominate the polarization cor-
rections; furthermore, the exponential is small
unless r and r' are «&g&~p equal. Clearly the
latter situation becomes a better and better ap-
proximation as FN increases. Therefore, as a
rough approximation we may write G, -=X5'(r- r')
and, integrating with respect to r, we find X = -1/
E„Substitutin. g this result into Eq. (3), we ob-

&ÃI ~II. I o &, (1)
- n &O &n

where we have labeled by I N& each internal nuclear
state mhich has energy ~N mith respect to the nu-
clear ground state, and by I n& each lepton state in
the center of mass which has an energy g„. In ad-
dition, I

0'& is simultaneously the ground state of
the nucleus I 0) and the unperturbed atomic state
I i &, which we denote by p(r) in coordinate space;
the latter state has an energy eo. We have written
the lepton intermediate state I n& in a way that em-
phasizes that the bracket contains the Coulomb
Green's function. "" Defining E„=sr„—eo (&0),
the Green's function is denoted G(-E„) and we may
rewrite Eq. (1) in the form
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state energies can be achieved using the unretarded
dipole approximation, which has been somemhat
useful in calculating dispersion corrections for
lom-energy electron scattering. "" Keeping only
first-order Coulomb distortion effects me mill find
for S states

&E,"= ~u —I y(0)l'[o, g. +go~2p, (o', +ac, )],
where
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[These are Eqs. (26a) and (26c) of Sec. III.] In this
expression p. is the muon-nucleus reduced mass,
y(0) is the muon wave function at the nucleus,
o~&»(~) is the total photoabsorption cross section
of a nucleus for a photon mith energy ~, g is the
proton number, and a is a state-dependent con-
stant. Since g, is essentially proportional to ~~
and p,~, is a closely related quantity, observation
(2) above is confirmed. Both quantities may be
deduced from recent experiments. "'" This equa-
tion is one of our primary results; note that no
cutoff is needed. More accurate numerical results
than those given by Eq. (26) will be obtained by re-
laxing the unretarded approximation and will con-
firm the results of Hinker' and Bernabeu and Jarls-
kog s

II. GENERAL FORMALISM

Our primary assumptions in this work will be:
the nonrelativistic treatment of both the muon and
nucleus, and the ignoring of all but the static Cou-
lomb interaction between the tmo systems. The
first step" is to separate the Coulomb interaction
into a piece Ho mhich is elastic mith respect to the
nucleus and a piece ~, which generates only nu-
clear transitions. The first piece is treated to all
orders by including it as part of the unperturbed
lepton Hamiltonian, and it generates the usual
static hydrogenic spectrum modified by the nuclear
charge distribution plus recoil corrections. " The
second piece ~, generates nuclear transitions and
is treated perturbatively; it contributes to the en-
ergy in second- and higher-order perturbation the-
ory. Because both the nuclear finite size and the
nuclear polarization generate small corrections, it
is sufficient to restrict ourselves to a second-
order treatment of ~, and to ignore the nuclear
finite size while doing so. With these assumptions
the polarization correction in the lepton-nucleus

center-of-mass frame becomes

gE, = Q &0 I ~.l pr &
N~0

~E = g &o'
I ~, I

hl'& G(-E„)&~l nH, I
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A more useful form may be obtained by noting that
the nuclear matrix element &Nl ~, I 0) is just the
lepton transition potential 6 V„(r), where r is the
vector from the nuclear center of mass to the
lepton. This leads to

aZp= ~ a~N r t"c -F.Nir, r' ZVN r' (3)

in an obvious notation which emphasizes the lepton
coordinate. We wish to evaluate ~F~ for four spec-
ial cases: (a) ignore the Coulomb attraction in the
lepton states and use the nonrelativistic equivalent
of the nuclear model of Bernabeu and Jarlskog
(denoted BJ); (b) ignore Coulomb effects and use
dipole nuclear states only; (c) ignore Coulomb ef-
fects and use the umeIa~ded dipole approximation;
(d) work in the unretarded dipole approximation
and include first-order Coulomb distortion effects.
We begin our discussion by ignoring Coulomb
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unless r and r' are «&g&~p equal. Clearly the
latter situation becomes a better and better ap-
proximation as FN increases. Therefore, as a
rough approximation we may write G, -=X5'(r- r')
and, integrating with respect to r, we find X = -1/
E„Substitutin. g this result into Eq. (3), we ob-
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
8↵2m

i⇡
|�n`(0)|2 (1)

⇥
Z

d4q
(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =

1

4⌫
F2(⌫, q

2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]

⇥
�Ehadr

2S

⇤
µD

= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as

⇥
�EnP

nS

⇤
µA

= �28(2)µeV
|�µA

nS (0)|2

|�µD
2S (0)|2

A

2
. (4)

Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,

�ENP
nS = �8↵2|�nS(0)|2

Z 1

0

dq

q2

Z 1

0

d⌫SL(⌫,q)

⌫ + q2/2m
, (5)

where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
��(⌫)

4⇡2↵⌫
F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,

↵E1 =
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2⇡2

Z
d⌫

⌫2
��(⌫). (7)

The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at
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with �(x) = 2mxR2

ch
/3, Rch standing for the respective

nuclear charge radius, and Erfc is the complementary er-
ror function. Ref. [40] represents NP as an “⌘-expansion”
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FIG. 1. The fixed-pole contribution to the Compton amplitude
may arise due to an effective local two-photon coupling to elementary
constituents within the proton.

QCD partons and we extract the α = 0 pole contribution to
scattering at asymptotic energies for various nuclear targets.
Our summary and conclusions are presented in Sec. IV.

II. NUCLEAR PHOTO-ABSORPTION AT LOW ENERGIES

The spin-averaged forward Compton scattering amplitude
T (ν) satisfies a once-subtracted dispersion relation where the
subtraction constant at ν = 0 is determined by the classical
Thomson limit,

ReT (ν) = −Z2

A2

α

MN

+ ν2

π

∫ ∞

0

dν ′2

ν ′2(ν ′2 − ν2)
ImT (ν ′),

(1)

where the integral in Eq. (1) is understood in terms of
its principal value. To facilitate easier comparison between
different nuclei we have normalized T (ν) by dividing it by A,
the number of nucleons. The nuclear Thomson term, i.e., the
constant on the r.h.s. of Eq. (1) is given in terms of the fine
structure constant α, the net charge Z of the target, and the
mass of the nucleus given by A times the nucleon mass, MN (in
the following we ignore isospin breaking terms). The optical
theorem relates the imaginary part of the Compton amplitude
to the total photoabsorption cross section per nucleon σ (ν),

ImT (ν) = ν

4π
σ (ν), (2)

so that the dispersion relation takes the form

ReT (ν) = −Z2

A2

α

MN

+ ν2

2π2

∫ ∞

0

dν ′

ν ′2 − ν2
σ (ν ′). (3)

To evaluate the dispersive integral, strictly speaking the
photoabsorption cross section should be included all the
way up to infinite energy; however, the scale separation
between the nuclear and hadronic domains allows us to
approximate the integral by using a limited range of nuclear
photoabsorption data. As shown in Fig. 2, for a typical target
nuclear resonances saturate the photoabsorption cross section
for energies below Emax ≈ 30 MeV. The dominant feature
of nuclear photoabsorption in the MeV range is the giant
dipole resonance (GDR) (cf. Ref. [24] for a comprehensive
review of GDR data and theory). As an example, the 207Pb
data in the nuclear range are plotted along with the higher
energy data in Fig. 2, in which the GDR is seen as a sharp
peak with width %GDR ≈ 7 MeV. We evaluate the dispersion
relation at νmax ! 100 MeV, which roughly demarcates the
scale of hadronic physics where single-nucleon resonances

FIG. 2. (Color online) Photoabsorption cross-section data for a
207Pb target. Data in the nuclear range ν " 27 MeV (crosses) are
from Ref. [19]; data in the hadronic and high-energy range 0.2
GeV" ν "100 GeV are from Refs. [20–23]. Nuclear deformations
are responsible for the giant resonance that saturates the cross section
for ν ! 100 MeV (region I). Excitations of individual nucleons are
responsible for the hadronic resonances (region II) in the energy
range between pion production threshold and O (2–3 GeV). Finally,
for energies above a few GeV (region III), the smooth cross section
is the result of partonic scattering via Regge exchanges.

begin contributing to the cross section,

ReT (νmax) ≈ −Z2

A2

α

MN

− 1
2π2

∫ Emax

0
dν ′σ (ν ′). (4)

For an energy that is low compared to the hadronic scale,
the scattering amplitude can be approximated by the sum of
contributions describing photon interactions with point-like
nucleons, i.e., it is given by a sum of Thomson terms on Z
protons,

ReT (νmax) ≈ −Z

A

α

MN

. (5)

Combining Eqs. (4) and (5) leads to the Thomas-Reiche-Kuhn
sum rule [1] (with α/MN ≈ 3.03 mb MeV),

∫ Emax

0
dνσ (ν) = 2π2 NZ

A2

α

MN

≈ 60
NZ

A2
mbMeV. (6)

Furthermore, adopting a Breit-Wigner form for the GDR cross
section,

σ (ν) ≈ σGDR(ν) = M2
GDR%2

GDRσGDR
(
ν2 − M2

GDR

)2 + M2
GDR%2

GDR

, (7)

the integral over the resonance photoabsorption cross section
gives πσGDR%GDR/2, and the TRK sum rule leads to the
relation

σGDR%GDR ≈ 12π
NZ

A2
mb MeV. (8)

In Eq. (8), σGDR is the value of the photoabsorption cross
section at the peak of the GDR resonance, and %GDR is the
resonance half-width. This sum rule has been confronted with
experimental data on a vast number of nuclear targets and is
found to be satisfied to within ∼30%. This level of agreement
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FIG. 3. (Color online) High energy photoabsorption cross sections per nucleon for six nuclear targets compared to the fit results (solid
lines) using the Breit-Wigner resonance plus background pametrization of Eq. (19). Data are from Ref. [26] for the proton and the deuteron,
and from Refs. [21–23] for heavier nuclei. The Regge plus Pomeron curves are shown by dashed lines. The background fit parameters are
given in Table I.

this relies on a mean-field approach to the target, which we
would expect to become more accurate as the number of
target nucleons increases. For the α = 0 pole contribution,
our new result for the proton is significantly different from
the Thomson term, which is at variance with the original
result of Damashek and Gilman [5]. This discrepancy is
due to our use of the very high energy photoabsorption
data that has become available only recently [27]. As a
result, instead of the high-energy parametrization used in
Ref. [5],

σR+P (ν) ≈
(

96.6 + 70.2

√
1 GeV

ν

)

µb, (23)

we find

σR+P (ν) ≈
[

68.0
( ν

1 GeV

)0.097
+ 99.0

√
1 GeV

ν

]

µb. (24)

At an energy ν = 1 GeV, both formulas give almost identical
results, but at high energies they differ dramatically. At the

same time, the data in the resonance region have not changed
much, so this leads to our new value for the α = 0 contribution
to photoabsorption on the proton.

For heavier nuclei, however, the bottom panel of Fig. 4
and the final row of Table II show that the α = 0 contribution
appears to be consistent with the Thomson term. This result is
due to an interplay of various nuclear effects in the resonance
region that affect the value of the integrated photoabsorption
cross section and also shadowing at medium-to-high energies.
Shadowing at energies below ν = 200 GeV causes the value
of cP to decrease from 68 µb for the proton to approximately
43 µb for lead, respectively. On the other hand, the Pomeron
is a QCD phenomenon that is due to the interaction of
quarks and gluons and should be the leading mechanism of
photoabsorption at extremely high energies. It can be expected
that at asymptotic energies nuclear effects should be negligible,
and the strength of the Pomeron should be the same for
both the proton and heavier nuclei. If in the future nuclear
photoabsorption data above ν = 200 GeV becomes available,
they could shed more light on the asymptotic behavior of

TABLE I. Reggeon and Pomeron parameters in µb

Proton Deuteron 12
6 C 27

13Al 65
29Cu 207

82 Pb

cP (µb) 68.0 ± 0.2 70.08 ± 1.26 57.24 ± 1.13 62.70 ± 6.0 45.88 ± 0.57 42.08 ± 1.96
cR (µb) 99.0 ± 1.15 80.50 ± 2.27 76.49 ± 4.40 53.53 ± 11.6 76.95 ± 3.60 91.43 ± 9.14
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Fig. 3. Ratio of photonuclear and photonucleon absorption cross 
section. Same notation as Fig. 2. Solid line is a A-hole model [ 191 
while dashed [ 131 and dotted [ 141 lines are VMD predictions. 

sorption cross section for carbon and lead nuclei in the 
energy range 0.5 + 2.6 GeV, using the photohadronic 
technique with a 47r NaI detector to detect hadronic 
events and a lead-glass counter to tag the electromag- 
netic ones. From the comparison between the results 
for the nuclei and previous data for the free nucleon, 
we showed a considerable reduction of the cross sec- 
tion that could be ascribed to a low energy onset of 
the shadowing effect. 
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periment. 
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Abstract 

The total pho~abso~tion cross section for carbon and lead has been measured in the energy range 0.5 -& 2.6 GeV at 
Bonn using the SAPHIR tagged photon beam. Nuclear data show a si~ificant reduction of the abso~tion strength with 
respect to the free nucleon case suggesting a shadowing effect at low energies. @ 1997 Elsevier Science B.V. 

PACS: 25.20.Gf: 12.4O.V~ 
Keywonls: Photoabsorption; Shadowing; Nuclear medium effect 

The study of nuclear medium effects on the ele- 
mentary couplings and the properties of hadrons is 
one of the main fields of interest in modern nuclear 
physics. The experimental finding of shadowing in the 
real photon absorption on nuclei has been largely ex- 
plored during the ‘7Os, in a wide photon energy range 
k N 2 t 200 GeV [ I-51. The effect was generally 
explained in terms of the vector meson dominance 
(VMD) model which was able to reproduce the ex- 
perimental behavior. [ 61 

Interest in this field has been recently renewed for 
different reasons: 

i) low energy photoabsorption and photofission ex- 
periments at Frascati [7,8] and Mainz [9] showed a 
large nuclear medium effect in the second and third 

nucleon resonance region with a depletion of the 
absorption strength with respect to the free nucleon 
case; ii) deep inelastic experiments at Cm [ lo] 
and FNAL [ 111 have proved a large shadowing ef- 
feet at low x (X being the Bjorken variable) and 
close to the real photon point; iii) theoretical specula- 
tions derived from QCD sum rules suggest hadronic 
mass modifications in the nuclear medium and in 
particular a large decrease of the p-meson mass pp 
up to 10 f 15% 1121. This reflects into an increase 
of the coherence length of the hadronic fluctua~on 
A, = 2k/& of the photon thus lowering the energy 
threshold for the shadowing effect; iv) recent standard 
VMD calculations predict a negligible shadowing ef- 
feet [ 131 or an anti-shadowing behavior [ 141 in the 
photon energy region below 2 GeV. 

* Corresponding author. Email: bi~chi@lnf.infn,it. 
All these ~guments raised the interest to look for 

0370-2693/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved. 
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Fit	to	nuclear	photoabsorp.on	—	CS	per	nucleon

Oscilla.ng	around	Aeff	=	A	in	resonance	region;	

Shadowing	(Aeff	<	A)	at	high	energies	

For	µ-atoms:	ν̄ = σ−1/σ−2 ∼ 500 MeV
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Fig. 1. The average yields measured with different, solid-angle 
coverage of the HD. The carbon target data (open cncles) are 
compared with the MC prediction (dashed line) for Ea = 2.8 
GeV, the lead target data (close circles) are compared with the 
MC prediction (solid line) for EO = 2.2 GeV. The arrow indicates 
the solid angle loss relevant to the rn~~~nt position. 

overlapping regions and provided a good check of the 
systematic errors that could arise from different run- 
ning conditions. Fig. 2a) shows the cross sections on 
carbon measured at the three electron beam energies. 
In Figs. 2b) and 2c) the carbon and lead data are 
shown averaged over bins of about 100 MeV together 
with previous data on the same nuclei. The solid line 
is the absorption cross section on the proton. The bars 
indicate the statistical errors while the bands at the 
bottom of the figures represent the systematic errors. 
The latter ones were mainly due to uncertainties in the 
target thickness (0.5% for carbon and 1.5% for lead), 
in the photon beam flux ( N 1%) , in the back~ound 
subtraction (N 1 + 3%) and in the MC correction (N 
2 f 5%). Present data are well in agreement at low 
energy with data of Ref. 171 within the statistical er- 
rors and, at high energy, with data of Ref. 121 within 
the statistical plus systematic errors. 

The new data confnm the absence of the second 
and third nucleon resonance structures in the bound 
nucleon cross section. They also show a significant re- 
duction with respect to the free nucleon cross section 
above 1.2 GeV, where resonance effects are expected 
to be small. The reduction is emphasized by the ra- 
tio of the measured nuclear cross section to the free 
nucleon one. Fig. 3 shows the ratios of the measured 
cross sections for carbon and lead to the free nucleon 
one, derived in a previous paper [7] by fitting proton 
and deuteron data. As can be seen the reduction in 
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F ig . 2. (a)Total cross section measured on Carbon at three elec- 
tron beam energies: 2.8 GeV (triangles), 2.2 GeV (circles) and 
1.6 GeV (squares). (b)Total averaged cross section measured 
on carbon (solid circles) compared with previous experiments : 
squares [ 11, diamonds 121, triangles [ 41, open circles [7] and 
crosses [ 201. Also shown is the proton absorption cross sec- 
tion( solid line). (c)Same as (b) but for lead. 

the 1.2 + 2 GeV energy range, seems to be bigger for 
the lighter nucleus. This effect could be due to shad- 
owing onset at lower energy for light nuclei and to a 
wider broadening of nucleon resonances in heavy nu- 
clei. Also shown in Fig. 3, are the low-energy calcu- 
lation of a A - hate model [ 191 and two recent VMD 
predictions above the resonance region [ 13,141. Both 
VIvID calculations assumed p, = 770 MeV. They are 
systematically higher than the data and thus do not pre- 
dict the nuclear damping of the cross section clearly 
indicated by this experiment. Moreover in Ref. I: 141 
the inclusion of nucleon correlations leads to an anti- 
shadowing behavior below 2 GeV. Therefore a differ- 
ent parameterization of the low-energy shadowing ef- 
fect, in terms of spreads and shifts of vector-meson 
masses and of the low-energy behavior of the V-N 
cross sections could be considered in order to better 
reproduce the experimental data. 

In summary we have measured the total photoab- 

https://arxiv.org/abs/1110.5982
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FIG. 1. Full squares: σ−2 data deduced from relativistic Coulomb
excitation experiments for 208Pb [18], 120Sn [17], and 68Ni [21,22] and
from total photoabsorption experiments for 40Ca, 27Al, 16O, and 12C
[19]. Error bars are partly smaller than the symbol size. Short-dashed
(green) and long-dashed (blue) lines: Empirical formulas (1) and (2).
Dotted (red) line: Equation (4) using symmetry energy parameters of
Ref. [27]. Dashed-dotted and full black lines: Fit to Eq. (4) including
and excluding the 12C data point.

[18]. Additionally, total photoabsorption data in light nuclei
over a wide energy range are reported in Ref. [19]. Although
natural targets were used in these measurements, a single
isotope is most abundant for each element. Thus, the results are
representative for 12C, 16O, 27Al, and 40Ca. (Note that Ref. [19]
also provides data for 7Li and 9Be but the hydrodynamical
picture is highly questionable and corrections due to the
magnetic polarizability are large [20] for these very light
nuclei.) Magnetic contributions to the σ−2 values have been
separated for 120Sn [13] and 208Pb [12] and can generally be
neglected for A ! 12.

This set of data including a recent result for 68Ni [21] with
corrections for unobserved strength [22] is shown in Fig. 1 as
full squares. The value for 40Ca [σ−2 = 2.05(10) mb/MeV]
differs from Table II in Ref. [19] because the data with very

coarse energy binning in the GDR energy region were replaced
by subsequent results with finer energy steps by the same
group [23], cf. Ref. [24]. The data cover a wide range of mass
numbers and thus permit a test of Eqs. (1) and (2) shown as
short-dashed (green) and long-dashed (blue) lines in Fig. 1,
respectively.

The experimental results are systematically larger than
Eq. (1) as expected from the above arguments. The deviation
increases towards smaller mass numbers. Equation (2) leads
to similar results for heavy nuclei. The description for lighter
masses is improved but still underestimates the data except
for 12C. The numerical coefficients in Eq. (2) stem from the
mass dependence of the symmetry energy [Eq. (3)] using the
parameters of Ref. [7] (Sv = 28.3 MeV, κ = 1.27). Similar
values have been reported by Ref. [25]. However, alternative
parameters have been derived, e.g., in Refs. [26,27]. While
the value of Sv is fairly consistent in all models, larger values
of κ are obtained in the latter approaches. The dotted (red)
line in Fig. 1 uses parameters of Ref. [27] (Sv = 27.3 MeV,
κ = 1.68) and provides a good description of the data both in
absolute magnitude as well as reproducing the A dependence
with the exception of 12C. An alternative parameter set (Sv =
24.1 MeV, κ = 0.545) discussed in Ref. [27] completely fails
to describe the data.

One can also perform a free fit to Eq. (4). The result
depends crucially on the inclusion (black solid line) or
exclusion (black dashed-dotted line) of the 12C data point. In
the former case, the results [Sv = 23.5(7) MeV, κ = 1.41(5),
χ2/dof = 5.7] are closer to Eq. (2). The latter analysis without
the 12C result provides a better fit to the data (χ2/dof = 1.3)
with parameters [Sv = 25.6(8) MeV, κ = 1.66(5)] similar to
those of Ref. [27]. These examples illustrate the importance
of studying the experimental systematics of σ−2 (i.e., the
polarizability) over a wide mass range. Despite the limitations
of the underlying approach neglecting structure effects one
can expect relevant information on the volume and surface
coefficients and thus the density dependence of the symmetry
energy.

This work was supported by the DFG under Contract No.
SFB 1245.
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with ⌘2 ⇠ �(⌫̄). The result in Eq.(8) thus corresponds
to including subleading terms in the ⌘-expansion.

As a check of the model dependence, the above in-
tegral was evaluated with the form factor correspond-
ing to the homogeneously charged sphere distribution,
F (q) = 3J1(qR)/qR with R =

p
5/3Rch the radius of

the sphere. The di↵erence between the two never exceeds
1%.

The dipole polarizability is an external input for which
I use the empirical scaling formula obtained from a fit
from oxygen to lead [41, 42]

↵E1 =
0.0518MeV fm3A2

Sv(A1/3 � )
, (9)

with Sv = 27.3(8) MeV and  = 1.69(6). For lighter
elements I use the values from Ref. [43]. Since that
Ref. does not cover 14N I extrapolate it from the
measured polarizability of 12C assuming for simplicity
↵E1(14N) = ↵E1(12C)(14/12)5/3. Within the range of
validity of the fit of Eq.(9) (oxygen and above) the uncer-
tainty always stays well below 10%. To take into account
that individual polarizabilities may deviate from the fit
by more than 1�, I assign a conservative 10% uncertainty
on the normalization of ↵E1 in the entire range, and use
the central values Sv = 27.3 MeV and  = 1.69. The
value of the mean excitation energy ⌫̄ is also deduced
from the moments of the photoabsorption cross section
��n =

R
d⌫��(⌫)/⌫n for n = 0, 1, 2. I define

⌫̄ = ��1/��2. (10)

The values of ��n are taken from [43, 44]. In case the en-
try is missing, the value for the closest neighbor element
from [44] is adopted. Since ⌫̄N changes very little be-
tween nearby elements, the associated uncertainty does
not exceed 1-2%, well below other sources of uncertainty.

Eqs.(4),(8),(9),(10) represent the result at the leading
order in Z↵.

It is well known that even for low Z the next-to-leading
order corrections are non-negligible. The approximation
scheme underlying Eq.(1) assumes that (i) the atomic size
is much larger than the nuclear one, (Z↵mr)�1 � Rch;
(ii) nuclear excitations lie at energies ⌫N that are much
larger than atomic ones, ⌫N � (Z↵)2mr/2. To extend
the validity of the calculation, one should include the
higher-order corrections in the two specified expansion
parameters, ✏1 = Z↵mrRch and ✏2 = (Z↵)2mr/2⌫N .

The reduction factor FR accounts for the variation of
the atomic 1S-wave function squared ⇠ exp(�2Z↵mrr)
over the nucleus volume. The nuclear charge distri-
bution is taken for simplicity in the Gaussian form ⇠
exp(�3r2/2R2

ch). This gives

FR =

Z 1

0

r2dre�2Z↵mrr 3
p
6p

⇡R3

ch

e
� 3r2

2R2
ch , (11)

and it quantifies the corrections in the expansion param-
eter ✏1. This correction accounts for the spatial distribu-
tion of the probability for the nucleus to be polarized by

the orbiting muon. Since the strong interaction responsi-
ble for nuclear transitions is short-range, the muon should
be on top of the active nucleons. This correction applies
to both NP and nP. To estimate the uncertainty, I also
compute R using the homogeneous sphere distribution
corresponding to the same charge radius,

F 0
R =

Z Rsph

0

3r2dr

Rsph
3
e�2Z↵mrr, Rsph =

r
5

3
Rch (12)

To include higher orders in ✏2, I account for the
Coulomb distortion of the muon propagator inside the
loop, following Ref. [19] (see also details reported in
Ref. [40]). Coulomb interaction is described by the point
Coulomb radial Green’s function defined by


1

2mr

d2

dr2
� l(l + 1)

2mrr2
+

Z↵

r
+ E

�
gl(E, r, r0) = �(r � r0).

(13)
In the unretarded dipole approximation, the muon
Green’s function should be taken for l = 1 and for
E = �⌫N [19]. The task is reduced to the following
radial integral:

K = �
r

⌫N
2mr

1Z

0

dr

1Z

0

dr0�nS(r)
g1(�⌫N , r, r0)

rr0
�nS(r

0).

(14)
Such integrals have been evaluated in the general case
in the literature [45]. The integral at hand is a special
case of the integral K⌫�

µ1µ2
(p1, p2,!) defined in Eq.(5.1) of

Ref. [45]1. For the 1S states, the values of the parameters

should be chosen as µ1,2 = 0, � = 1, p1,2 = Z↵
2

q
2mr
⌫N

and

! =
p
2mr⌫N . Using the representation in terms of the

Gauss hypergeometric function in Eq. (5.7) of Ref. [45],
I find

K =
2

9

1

(1 + p)4

X

k=0

�(k + 4)

k!(2 + k � p)


2F1(2,�k; 4;

2

1 + p
)

�2
.

(15)

The sum can be performed analytically in a closed form
if the p-dependence under the sum is only kept in the
hypergeometric function. To proceed, I Taylor-expand
the denominator,

1

2 + k � p
=

1

2 + k

X

m=0

✓
p

2 + k

◆m

, (16)

which is justified because p =
p
✏2 < 1 in the approxima-

tion scheme used here. Each term in the expansion can be
evaluated analytically, e.g. using Mathematica. Denot-
ing with K(n) the result of wrapping the series in Eq.(16)

1 Note that Ref. [45] uses the definition g = �2mrg/rr0 with re-
spect to that used here.
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It is well known that even for low Z the next-to-leading
order corrections are non-negligible. The approximation
scheme underlying Eq.(1) assumes that (i) the atomic size
is much larger than the nuclear one, (Z↵mr)�1 � Rch;
(ii) nuclear excitations lie at energies ⌫N that are much
larger than atomic ones, ⌫N � (Z↵)2mr/2. To extend
the validity of the calculation, one should include the
higher-order corrections in the two specified expansion
parameters, ✏1 = Z↵mrRch and ✏2 = (Z↵)2mr/2⌫N .

The reduction factor FR accounts for the variation of
the atomic 1S-wave function squared ⇠ exp(�2Z↵mrr)
over the nucleus volume. The nuclear charge distri-
bution is taken for simplicity in the Gaussian form ⇠
exp(�3r2/2R2

ch). This gives

FR =

Z 1

0

r2dre�2Z↵mrr 3
p
6p

⇡R3

ch

e
� 3r2

2R2
ch , (11)

and it quantifies the corrections in the expansion param-
eter ✏1. This correction accounts for the spatial distribu-
tion of the probability for the nucleus to be polarized by

the orbiting muon. Since the strong interaction responsi-
ble for nuclear transitions is short-range, the muon should
be on top of the active nucleons. This correction applies
to both NP and nP. To estimate the uncertainty, I also
compute R using the homogeneous sphere distribution
corresponding to the same charge radius,

F 0
R =

Z Rsph

0

3r2dr

Rsph
3
e�2Z↵mrr, Rsph =

r
5

3
Rch (12)

To include higher orders in ✏2, I account for the
Coulomb distortion of the muon propagator inside the
loop, following Ref. [19] (see also details reported in
Ref. [40]). Coulomb interaction is described by the point
Coulomb radial Green’s function defined by


1

2mr

d2

dr2
� l(l + 1)

2mrr2
+

Z↵

r
+ E

�
gl(E, r, r0) = �(r � r0).

(13)
In the unretarded dipole approximation, the muon
Green’s function should be taken for l = 1 and for
E = �⌫N [19]. The task is reduced to the following
radial integral:

K = �
r

⌫N
2mr

1Z

0

dr

1Z

0

dr0�nS(r)
g1(�⌫N , r, r0)

rr0
�nS(r

0).

(14)
Such integrals have been evaluated in the general case
in the literature [45]. The integral at hand is a special
case of the integral K⌫�

µ1µ2
(p1, p2,!) defined in Eq.(5.1) of

Ref. [45]1. For the 1S states, the values of the parameters

should be chosen as µ1,2 = 0, � = 1, p1,2 = Z↵
2

q
2mr
⌫N

and

! =
p
2mr⌫N . Using the representation in terms of the

Gauss hypergeometric function in Eq. (5.7) of Ref. [45],
I find

K =
2

9

1

(1 + p)4

X

k=0

�(k + 4)

k!(2 + k � p)


2F1(2,�k; 4;

2

1 + p
)

�2
.

(15)

The sum can be performed analytically in a closed form
if the p-dependence under the sum is only kept in the
hypergeometric function. To proceed, I Taylor-expand
the denominator,

1

2 + k � p
=

1

2 + k

X

m=0

✓
p

2 + k

◆m

, (16)

which is justified because p =
p
✏2 < 1 in the approxima-

tion scheme used here. Each term in the expansion can be
evaluated analytically, e.g. using Mathematica. Denot-
ing with K(n) the result of wrapping the series in Eq.(16)

1 Note that Ref. [45] uses the definition g = �2mrg/rr0 with re-
spect to that used here.
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4.2. M O M E N T S  A N D  M E A N  ENERGIES 

The predictions of  the sum rules concern in general the values of  the moments 
~_~(0,E") of  the cross section ar, r (E  ). These moments are dcfined by 

~.~(0,/~) = E~a.,.T(E)dE. (l) 

TABLE 2 

The moments  of  the experimental nuclear cross section distributions integrated from 10 MeV to the 
energy ~, and their statistical errors 

t Z-2 Z-, Eo E~, Z+2 
(MeV) (mb/MeV) +(~,,) (rob) + ( ~ )  (mb. MeV) + ( ~ )  (b. MeV z) +(~o) (b "MeV~) +(~o) 

Li 100 0.196 1.1 4.64 1.0 143 1.7 5.82 3.1 305 5 
140 0.197 1.1 4.79 1.0 161 1.9 8.03 3.4 577 5 
210 0.198 1.1 5.03 1.0 206 2.0 16.60 3.7 2220 5 

Be 100 0.192 2.5 5.19 1.5 173 2.0 7.11 3.4 362 5 
140 0.194 2.5 5.33 1.5 189 2.1 9.09 3.6 600 6 
210 0.195 2.5 5.58 1.5 236 2.1 17.80 3.5 2240 5 

C 100 0.313 1.7 8.81 1.1 291 1.6 12.00 2.9 630 4 
140 0.316 1.7 9.18 1.2 334 2.2 17.10 5 1250 7 

O 100 0.580 1.6 14.50 1.3 432 2.0 16.00 4 748 8 
140 0.585 1.6 15.10 1.3 508 2.5 25.20 5 1880 8 

AI 100 1.10 1.8 25.70 1.5 739 2.6 27.9 5 1400 8 
140 1.11 1.8 26.3 1.7 807 3.9 36.4 9 2450 16 

Ca 100 2.22 1.2 45.5 1.5 1120 3.6 34.9 9 1430 18 
140 2.23 1.2 46.8 1.7 1290 4.6 56.6 I 1 3710 19 

From the cross sections given above only the contributions to this integral from 10 
MeV up to E, ,~__~(10, E), can be obtained. The values of  these contributions are dif- 
ferent from the moments defined in eq. (1) i fa  particle emission threshold lies below 
10 MeV and if this results in an appreciable contribution ~,~(0, 10) to the moments 
below 10 MeV. This is the case for Li [ref. 12)] and Be [ref. 13)'] especially for ~, = - 1 
and - 2 .  The experimental values of  the moments are given for ~ = 0, + I and +2  
in table 2. The errors of  these values also given in table 2 have been calculated using 
counting statistics alone. 

5. D i scus s ion  

There is no theory which predicts total photonuclear cross sections in the whole 
energy range covered by this experiment. Usually this entire range is subdivided into 
two regions called the "giant dipole resonance region" and the region "above the 
giant dipole resonance" or "at  intermediate energies". Theories have been developed 
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
8↵2m

i⇡
|�n`(0)|2 (1)

⇥
Z

d4q
(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =

1

4⌫
F2(⌫, q

2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]

⇥
�Ehadr

2S

⇤
µD

= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as

⇥
�EnP

nS

⇤
µA

= �28(2)µeV
|�µA

nS (0)|2

|�µD
2S (0)|2

A

2
. (4)

Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,

�ENP
nS = �8↵2|�nS(0)|2

Z 1

0

dq

q2

Z 1

0

d⌫SL(⌫,q)

⌫ + q2/2m
, (5)

where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
��(⌫)

4⇡2↵⌫
F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,

↵E1 =
1

2⇡2

Z
d⌫

⌫2
��(⌫). (7)

The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at

�ENP

nS = �2⇡↵|�nS(0)|2↵E1

p
2m⌫̄ e�

2
(⌫̄)Erfc(�(⌫̄)),

(8)

with �(x) = 2mxR2

ch
/3, Rch standing for the respective

nuclear charge radius, and Erfc is the complementary er-
ror function. Ref. [40] represents NP as an “⌘-expansion”
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
8↵2m

i⇡
|�n`(0)|2 (1)

⇥
Z

d4q
(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =

1

4⌫
F2(⌫, q

2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]

⇥
�Ehadr

2S

⇤
µD

= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as

⇥
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nS
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= �28(2)µeV
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nS (0)|2
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2
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,

�ENP
nS = �8↵2|�nS(0)|2

Z 1

0

dq
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0

d⌫SL(⌫,q)

⌫ + q2/2m
, (5)

where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
��(⌫)

4⇡2↵⌫
F 2(q), (6)

with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,

↵E1 =
1
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⌫2
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The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at
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nuclear charge radius, and Erfc is the complementary er-
ror function. Ref. [40] represents NP as an “⌘-expansion”

Nuclear	shadowing	(Aeff	<	A)	concentrated	at	high	energies,	~does	not	affect	Npol
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],

�En` =
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|�n`(0)|2 (1)

⇥
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(q2 � ⌫2)T2 � (q2 + 2⌫2)T1

q4(q4 � 4m2⌫2)

with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1
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F1(⌫, q

2)

ImT2(⌫, q
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2). (2)

The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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The respective contribution to the nS level in a muonic
atom µA will then read as
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],
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with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.
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tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
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The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],
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with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,

ImT1(⌫, q
2) =

1

4M
F1(⌫, q

2)

ImT2(⌫, q
2) =
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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= �28(2)µeV. (3)

The respective contribution to the nS level in a muonic
atom µA will then read as
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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where the longitudinal response function SL is taken in
the retarded dipole approximation,

SL(⌫,q) = q2
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with ��(⌫) the total photoabsorption cross section in the
nuclear range. The electric dipole polarizability is given
by its �2 moment,
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The nuclear form factor is taken in Gaussian form F (q) =
exp(�q2R2

ch/6). The q-integral can be taken analyti-
cally. The ⌫-integral has ⌫�3/2 weighting [19] but can be
approximated by that with ⌫�2 weighting since nuclear
photoabsorption is strongly peaked at an energy⇠ 15�25
MeV, depending on the nucleus. I arrive at
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sion of NP but dates back to 1982 and lacks recent devel-
opments. Future plans for improved measurements with
nuclei heavier than helium are put forward by several
collaborations [28–32] and an update of NP which would
comprise all currently available knowledge and a robust
uncertainty estimate is highly desirable. This work is in-
tended as a first step in this direction. Anticipating, I find
the e↵ects of the inelastic contributions in the hadronic
range, which I coin ”nucleon polarization” (nP), non-
negligible. It is by now well studied and included in NP
for the lightest systems [10], but is missing in all atoms
heavier than helium. Starting from calcium, this correc-
tion is of the same size as the experimental precision, so
its inclusion is mandatory.

At the leading order in Z↵, NP is given by the following
one-loop integral [17, 33],
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with |�n`(0)|2 = (Z↵mr/n)3/⇡�`0 the squared atomic
WF at the origin, and mr = mM/(m+M) the reduced
mass for the lepton and nucleus masses m,M , respec-
tively. The spin-independent forward Compton ampli-
tudes T1,2(⌫, q2), functions of the energy ⌫ = (pq)/M
and the virtuality q2 < 0 of the loop photons, encompass
all the information about the nuclear structure.

The dispersion approach is well suited for evaluating
the loop integral (1). The imaginary part of the Compton
amplitudes is related to the inelastic structure functions
F1,2,
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The latter can be obtained from abundant experimen-
tal data on real and virtual photoabsorption. The real
part of T1,2 is obtained from a dispersion representation
which permits an evaluation of the loop integral analyt-
ically, and one is left with a twofold integral over the
photoabsorption data (i.e. F1,2) over the energy and q2

with the known kinematical weighting (see Eq. (16) in
Ref. [33]). The integral over the hadronic range ⌫ � ⌫⇡
(⌫⇡ ⇡ 140 MeV denotes the pion production threshold)
must be treated in a fully relativistic manner. This result
can easily be extended to heavier nuclei. The total pho-
toabsorption on the proton and neutron is essentially the
same, suggesting that for a generic nucleus the hadronic
contribution should roughly scale with the atomic mass
number A. Studies of this scaling and deviations there-
from A ! Ae↵ < A, generally coined shadowing in the
literature, have been performed on a variety of nuclei. In
the resonance region, it was found that Ae↵ ⇡ A, such
that the integrated cross section is largely una↵ected [34].
At high energies, however, shadowing leads to a more sig-
nificant suppression: e.g. for lead Ae↵ ⇡ 0.6A [35]. Since

the integrand is strongly weighted at lower energies, I
take Ae↵ ⇡ A. The nP correction to the 2S level in µD
amounts to [36]
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Note that this contribution has traditionally been ne-
glected in all atoms heavier than helium.
I now turn to the nuclear range ⌫ < ⌫⇡. Although

the same entirely data-driven approach may also be used
here, the resulting estimates are plagued by large un-
certainties [36, 37] which can only partially be cured by
the approximate finite-energy sum rules [38]. Instead, a
hybrid approach which combines the data input in the
hadronic range with the microscopic nuclear theory at
low energies is more reliable [39]. Such calculations need
to be performed case by case. Here, I aim for a more
synthetic calculation applicable for a range of nuclei.
To proceed, I notice that the bulk of nuclear excitations

resides at ⌫N  35 MeV, rather well separated from the
hadronic range. Because nuclear excitation energies are
small compared to the nucleon mass, the nuclear part
of the integral can be treated nonrelativistically. Here,
I follow Refs. [19, 21]. The most important part of the
nuclear response is due to the longitudinal response func-
tion,
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ch/6). The q-integral can be taken analyti-
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16 N UC LEAR POLARIZATION CORRECTION S IN p- He ATOMS

state energies can be achieved using the unretarded
dipole approximation, which has been somemhat
useful in calculating dispersion corrections for
lom-energy electron scattering. "" Keeping only
first-order Coulomb distortion effects me mill find
for S states

&E,"= ~u —I y(0)l'[o, g. +go~2p, (o', +ac, )],
where

g ), —= (d 0'~b3 (d dh) y

th

0' ), = (d EF~b3 43 ln +A 2p. (d d4P ~

th

[These are Eqs. (26a) and (26c) of Sec. III.] In this
expression p. is the muon-nucleus reduced mass,
y(0) is the muon wave function at the nucleus,
o~&»(~) is the total photoabsorption cross section
of a nucleus for a photon mith energy ~, g is the
proton number, and a is a state-dependent con-
stant. Since g, is essentially proportional to ~~
and p,~, is a closely related quantity, observation
(2) above is confirmed. Both quantities may be
deduced from recent experiments. "'" This equa-
tion is one of our primary results; note that no
cutoff is needed. More accurate numerical results
than those given by Eq. (26) will be obtained by re-
laxing the unretarded approximation and will con-
firm the results of Hinker' and Bernabeu and Jarls-
kog s

II. GENERAL FORMALISM

Our primary assumptions in this work will be:
the nonrelativistic treatment of both the muon and
nucleus, and the ignoring of all but the static Cou-
lomb interaction between the tmo systems. The
first step" is to separate the Coulomb interaction
into a piece Ho mhich is elastic mith respect to the
nucleus and a piece ~, which generates only nu-
clear transitions. The first piece is treated to all
orders by including it as part of the unperturbed
lepton Hamiltonian, and it generates the usual
static hydrogenic spectrum modified by the nuclear
charge distribution plus recoil corrections. " The
second piece ~, generates nuclear transitions and
is treated perturbatively; it contributes to the en-
ergy in second- and higher-order perturbation the-
ory. Because both the nuclear finite size and the
nuclear polarization generate small corrections, it
is sufficient to restrict ourselves to a second-
order treatment of ~, and to ignore the nuclear
finite size while doing so. With these assumptions
the polarization correction in the lepton-nucleus

center-of-mass frame becomes

gE, = Q &0 I ~.l pr &
N~0

~E = g &o'
I ~, I

hl'& G(-E„)&~l nH, I
o'& . (2)

N ~0

A more useful form may be obtained by noting that
the nuclear matrix element &Nl ~, I 0) is just the
lepton transition potential 6 V„(r), where r is the
vector from the nuclear center of mass to the
lepton. This leads to

aZp= ~ a~N r t"c -F.Nir, r' ZVN r' (3)

in an obvious notation which emphasizes the lepton
coordinate. We wish to evaluate ~F~ for four spec-
ial cases: (a) ignore the Coulomb attraction in the
lepton states and use the nonrelativistic equivalent
of the nuclear model of Bernabeu and Jarlskog
(denoted BJ); (b) ignore Coulomb effects and use
dipole nuclear states only; (c) ignore Coulomb ef-
fects and use the umeIa~ded dipole approximation;
(d) work in the unretarded dipole approximation
and include first-order Coulomb distortion effects.
We begin our discussion by ignoring Coulomb

effects in the Green's function G„. in this limit G,
is essentially the nonrelativistic free Green's
function for complex momentum. We find that G,
-G.= -v, exp(-~„l r —r' I)/2vl r —r' I, where K„
—= (2p,E„)' . The first observation is that y„ is a
number which varies roughly from —,'--," over the
region of the intermediate nuclear spectrum which
can be expected to dominate the polarization cor-
rections; furthermore, the exponential is small
unless r and r' are «&g&~p equal. Clearly the
latter situation becomes a better and better ap-
proximation as FN increases. Therefore, as a
rough approximation we may write G, -=X5'(r- r')
and, integrating with respect to r, we find X = -1/
E„Substitutin. g this result into Eq. (3), we ob-

&ÃI ~II. I o &, (1)
- n &O &n

where we have labeled by I N& each internal nuclear
state mhich has energy ~N mith respect to the nu-
clear ground state, and by I n& each lepton state in
the center of mass which has an energy g„. In ad-
dition, I

0'& is simultaneously the ground state of
the nucleus I 0) and the unperturbed atomic state
I i &, which we denote by p(r) in coordinate space;
the latter state has an energy eo. We have written
the lepton intermediate state I n& in a way that em-
phasizes that the bracket contains the Coulomb
Green's function. "" Defining E„=sr„—eo (&0),
the Green's function is denoted G(-E„) and we may
rewrite Eq. (1) in the form

Obtained	via	radial	integral	with	Coulomb	GF	and	atomic	WF

3

with ⌘2 ⇠ �(⌫̄). The result in Eq.(8) thus corresponds
to including subleading terms in the ⌘-expansion.

As a check of the model dependence, the above in-
tegral was evaluated with the form factor correspond-
ing to the homogeneously charged sphere distribution,
F (q) = 3J1(qR)/qR with R =

p
5/3Rch the radius of

the sphere. The di↵erence between the two never exceeds
1%.

The dipole polarizability is an external input for which
I use the empirical scaling formula obtained from a fit
from oxygen to lead [41, 42]

↵E1 =
0.0518MeV fm3A2

Sv(A1/3 � )
, (9)

with Sv = 27.3(8) MeV and  = 1.69(6). For lighter
elements I use the values from Ref. [43]. Since that
Ref. does not cover 14N I extrapolate it from the
measured polarizability of 12C assuming for simplicity
↵E1(14N) = ↵E1(12C)(14/12)5/3. Within the range of
validity of the fit of Eq.(9) (oxygen and above) the uncer-
tainty always stays well below 10%. To take into account
that individual polarizabilities may deviate from the fit
by more than 1�, I assign a conservative 10% uncertainty
on the normalization of ↵E1 in the entire range, and use
the central values Sv = 27.3 MeV and  = 1.69. The
value of the mean excitation energy ⌫̄ is also deduced
from the moments of the photoabsorption cross section
��n =

R
d⌫��(⌫)/⌫n for n = 0, 1, 2. I define

⌫̄ = ��1/��2. (10)

The values of ��n are taken from [43, 44]. In case the en-
try is missing, the value for the closest neighbor element
from [44] is adopted. Since ⌫̄N changes very little be-
tween nearby elements, the associated uncertainty does
not exceed 1-2%, well below other sources of uncertainty.

Eqs.(4),(8),(9),(10) represent the result at the leading
order in Z↵.

It is well known that even for low Z the next-to-leading
order corrections are non-negligible. The approximation
scheme underlying Eq.(1) assumes that (i) the atomic size
is much larger than the nuclear one, (Z↵mr)�1 � Rch;
(ii) nuclear excitations lie at energies ⌫N that are much
larger than atomic ones, ⌫N � (Z↵)2mr/2. To extend
the validity of the calculation, one should include the
higher-order corrections in the two specified expansion
parameters, ✏1 = Z↵mrRch and ✏2 = (Z↵)2mr/2⌫N .

The reduction factor FR accounts for the variation of
the atomic 1S-wave function squared ⇠ exp(�2Z↵mrr)
over the nucleus volume. The nuclear charge distri-
bution is taken for simplicity in the Gaussian form ⇠
exp(�3r2/2R2

ch). This gives

FR =

Z 1

0

r2dre�2Z↵mrr 3
p
6p

⇡R3

ch

e
� 3r2

2R2
ch , (11)

and it quantifies the corrections in the expansion param-
eter ✏1. This correction accounts for the spatial distribu-
tion of the probability for the nucleus to be polarized by

the orbiting muon. Since the strong interaction responsi-
ble for nuclear transitions is short-range, the muon should
be on top of the active nucleons. This correction applies
to both NP and nP. To estimate the uncertainty, I also
compute R using the homogeneous sphere distribution
corresponding to the same charge radius,

F 0
R =

Z Rsph

0

3r2dr

Rsph
3
e�2Z↵mrr, Rsph =

r
5

3
Rch (12)

To include higher orders in ✏2, I account for the
Coulomb distortion of the muon propagator inside the
loop, following Ref. [19] (see also details reported in
Ref. [40]). Coulomb interaction is described by the point
Coulomb radial Green’s function defined by


1

2mr

d2

dr2
� l(l + 1)

2mrr2
+

Z↵

r
+ E

�
gl(E, r, r0) = �(r � r0).

(13)
In the unretarded dipole approximation, the muon
Green’s function should be taken for l = 1 and for
E = �⌫N [19]. The task is reduced to the following
radial integral:

K = �
r

⌫N
2mr

1Z

0

dr

1Z

0

dr0�nS(r)
g1(�⌫N , r, r0)

rr0
�nS(r

0).

(14)
Such integrals have been evaluated in the general case
in the literature [45]. The integral at hand is a special
case of the integral K⌫�

µ1µ2
(p1, p2,!) defined in Eq.(5.1) of

Ref. [45]1. For the 1S states, the values of the parameters

should be chosen as µ1,2 = 0, � = 1, p1,2 = Z↵
2

q
2mr
⌫N

and

! =
p
2mr⌫N . Using the representation in terms of the

Gauss hypergeometric function in Eq. (5.7) of Ref. [45],
I find

K =
2

9

1

(1 + p)4

X

k=0

�(k + 4)

k!(2 + k � p)


2F1(2,�k; 4;

2

1 + p
)

�2
.

(15)

The sum can be performed analytically in a closed form
if the p-dependence under the sum is only kept in the
hypergeometric function. To proceed, I Taylor-expand
the denominator,

1

2 + k � p
=

1

2 + k

X

m=0

✓
p

2 + k

◆m

, (16)

which is justified because p =
p
✏2 < 1 in the approxima-

tion scheme used here. Each term in the expansion can be
evaluated analytically, e.g. using Mathematica. Denot-
ing with K(n) the result of wrapping the series in Eq.(16)

1 Note that Ref. [45] uses the definition g = �2mrg/rr0 with re-
spect to that used here.
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Nuclear polarization - beyond leading approximation4

at the power pn (i.e., K(n) = · · ·
Pn

m=0

pm

(2+k)m+1 . . . ) and
introducing a shorthand for the often recurring combina-
tion, ⇠ = p�1

p+1
, I find

K(0) = 1 + 2p ln(1 + ⇠)� p2

Li2 (�⇠) +

⇡2

12

�
, (17)

K(1) = 1 + 2p ln(1� ⇠2)� p+ p2
�
1� 2Li2

�
⇠2
��

(18)

+ p3

Li3 (⇠)�

3

2
Li3

�
⇠2
�
+ ln(1 + ⇠)� ⇣(3)

2

�
,

K(2) = 1 + 2p ln(1� ⇠2)� p+ p2
⇥
1� 2Li2(⇠

2)
⇤

(19)

+ p3

Li3(⇠)�

3

2
Li3(⇠

2) + ln(1 + ⇠) +
⇣(3)

2

�

+ p4

Li4(⇠)�

1

2
Li4(⇠

2)� Li2 (�⇠)� ⇡2

12
� ⇡4

180

�

with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.

KLL
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Z

�2 = Z�
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FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:

�ETOT

nS = �ENP

nS FR(✏1)K
(1)(

p
✏2)

+�EnP

nS FR(✏1)K
(1)(

p
✏n
2
), (21)

with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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at the power pn (i.e., K(n) = · · ·
Pn

m=0

pm

(2+k)m+1 . . . ) and
introducing a shorthand for the often recurring combina-
tion, ⇠ = p�1

p+1
, I find

K(0) = 1 + 2p ln(1 + ⇠)� p2

Li2 (�⇠) +

⇡2

12

�
, (17)

K(1) = 1 + 2p ln(1� ⇠2)� p+ p2
�
1� 2Li2

�
⇠2
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(18)

+ p3

Li3 (⇠)�

3

2
Li3
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⇠2
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K(2) = 1 + 2p ln(1� ⇠2)� p+ p2
⇥
1� 2Li2(⇠

2)
⇤

(19)

+ p3

Li3(⇠)�
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12
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with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:

�ETOT

nS = �ENP

nS FR(✏1)K
(1)(

p
✏2)

+�EnP

nS FR(✏1)K
(1)(

p
✏n
2
), (21)

with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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at the power pn (i.e., K(n) = · · ·
Pn

m=0

pm

(2+k)m+1 . . . ) and
introducing a shorthand for the often recurring combina-
tion, ⇠ = p�1

p+1
, I find

K(0) = 1 + 2p ln(1 + ⇠)� p2

Li2 (�⇠) +
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with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:

�ETOT
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with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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Nuclear polarization - beyond leading approximation4
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with Lin denoting the polylogarithm and ⇣ the Riemann
zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)

in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(

p
✏2) for the central value and half the dif-

ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:
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with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
reduction factor FR, conservatively estimated as 100%
di↵erence between Eqs.(11) and (12); (iii) uncertainty on
the Coulomb correction obtained as half the di↵erence
of Eqs.(18) and (17). For nP, the uncertainty results by
combining the latter two uncertainties with the 10% on
the input in Eq.(3). For the total, I add the individual
uncertainties in quadrature.
The results of the calculation along with the respec-

tive entries in Ref. [7] are shown in Tabs.I,II. Generally,
a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,

KLL = 1 + 2p ln 2p (20)
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moderate atomic numbers.

KLL

K(2)

K(0)K(n)( �2)

Z

�2 = Z�
mr

2�̄N
� Z

84

K(1)

0 10 20 30 40 50

0.4

0.6

0.8

1.0

1.2

FIG. 1. Radial Coulomb integrals K(0) (red dashed curve),
K(1) (solid black curve), and K(2) (dotted green curve) in
comparison with the leading-logarithm approximation (solid
blue curve).

This brings me to the final expression that can be used

for numerical estimates:

�ETOT

nS = �ENP

nS FR(✏1)K
(1)(

p
✏2)

+�EnP

nS FR(✏1)K
(1)(

p
✏n
2
), (21)

with �ENP
nS as given in Eq.(8), �EnP

nS as given in Eq.(4),
FR from Eq.(11) and K(1) from Eq.(18). The Coulomb
correction to nP is evaluated at ✏n

2
= (Z↵)2mr/2⌫n

with ⌫n ⇡ 500 MeV the mean excitation energy in the
hadronic range.
The overall uncertainty is composed as follows. For

NP: (i) 10% uncertainty on ↵E1; (ii) uncertainty of the
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di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
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zeta function. Note that the result of Ref. [19] widely
adopted in light muonic atoms corresponds to only keep-
ing the leading logarithm,
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in Eq.(17). In Fig.1 I show the e↵ect of including higher
orders up to p4. All curves are seen to agree nicely below
Z = 5 but the leading-logarithm result starts to deviate
from K(1) above that value. For the numerical estimates,
I will use K(1)(
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ference, (K(1)�K(0))/2, as an uncertainty estimate. This
is conservative because the higher-order result K(2) only
di↵ers from K(1) very little, as seen in Fig.1. It would
be interesting to compare these results to the recently
considered three-photon exchange correction to NP [46],
especially in view of the fact that the leading-order ap-
proximation was found here to be ill-behaved already for
moderate atomic numbers.
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a good agreement for the nuclear part is observed, within
the errors. This is reassuring since the input used here
di↵ers significantly from that used in Ref. [7] for obtain-
ing the radii. Ref. [15] which serves as a basis for those
calculations, uses the energy-weighted sum rule (�0) to
normalize the NP, rather than the needed ��3/2. I use
��2 related to the polarizability which is much closer.
It has been argued that the polarizability is strongly
a↵ected by the low-lying “pygmy dipole resonance” to
which the energy-weighted sum rule has less sensitiv-
ity [47, 48]. Rather than using the phenomenological ap-
proach of [15] based on approximating the e↵ective muon-
induced potential by a power rk [49], I explicitly account
for higher-order corrections in Z↵ by computing an over-
lap of the atomic wave functions with the nuclear charge
distribution and Coulomb corrections. For the latter, I
show that the approximate formulas used for light muonic
atoms are ill-suited even for moderate Z, and the exact
result should be expanded to higher orders. The nP con-
tribution, not included in any of the previous calculations
in the shown Z range, is sizable. In particular, starting
from calcium, it is comparable to the experimental pre-
cision quoted in Ref. [7] and displayed in Tables I and II
for reader’s convenience. Future work will be dedicated
to further reducing the uncertainties, providing predic-
tions for other atomic levels, and to including hitherto
neglected e↵ects, e.g. higher multipole excitations, sub-
leading terms, magnetic polarizability, relativistic correc-
tions, and finite size e↵ects in Coulomb corrections.
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All	ingredients	have	simple	parametriza.on	in	terms	of	few	input	parameters	

Easy	to	use	and	reproduce!	Evaluate	and	compare	to	entries	in	Fricke,	Heilig	(used	to	extract	radii)

Rinker,	Speth	1978:	

NUCLEAR POLARIZATION (II) 399 

these factors may be removed from the sums, so that dE a may be written in terms of 
eq. (4): 

g2B2k2Z(r2k-2}[Z(E~'-lZ(a)'\-2 -LN /E(b)--E~)}~2J. (5) AE~- 2M --N,/~=O--A'\ N = 

For  the muon is state in Pb, k ,~ 1, and the factors outside the brackets work out 
to be 0.27 MeV 3. If we take the average isoscalar and isovector excitation energies 
to be 14 and 28 MeV, respectively, the result is AEls.L= o '~ 0.75 keV. Numerical 
calculations show that this restricted sum, in which excited intermediate muon 
states are neglected, contributes about half to the total for L = 0, so that we should 
expect about 1.5 keV for the total ls monopole shift in Pb. This is in reasonable 
agreement with more detailed calculations 2.7). It has often been suggested in the 
past 8) from fits to experimental dhta that the monopole shift should be much larger, 
perhaps 4 or 5 keV. From eq. (5) we see that the average isoscalar and isovector 
energies would have to be lowered by almost a factor of 2 to produce such a large 
shift. This seems quite unreasonable in view of the fact that 2hco ~ 17 MeV single- 
particle excitations are required to produce monopole states. A residual nucleon- 
nucleon force which is strong enough to lower the isoscalar states to, e.g. 8 MeV 
would push the isovector resonances to such high energies that their effect on the 
N P  correction would be almost negligible. Thus if our overall microscopic picture 
of giant resonances is valid, it would be difficult to obtain even as much as 3 keV 
for this shift. One may instead question the EWSR, since significant modifications 
may be produced by momentum- and isospin-dependent nuclear forces. It is clear 
that very large modifications would be required at relatively low energies in order 
to change the N P  shifts by factors of 2 to 3, but so far there is no evidence to support 
such a conjecture 5.6). 

The above estimate exhibits all of the major issues which enter the problem. Nuclear 
matrix elements of  specified coordinate operators arise as in eq. (2), and sums of  
these matrix elements with specified energy weights give the shifts as in eq. (3). 
In the general case, two different muon wave functions and other multipole operators 
may appear in eq. (2), and muon excitation energies are added to the denominators 
of eq. (3). Thus a different form factor and energy denominator is associated with 
each muon excitation. If only a few intermediate muon states contributed, one might 
attempt to work out eqs. (2) and (3) explicitly for each of these to obtain a quantitative 
result; however, it is now well established that the muon continuum contributes 
importantly and must be summed carefully 7). Thus, there arises in the overall sum 
a complicated energy dependence in both numerator and denominator, so that such 
an explicit approach is impractical at present. Rather, we prefer to construct a nuclear 
model which satisfies related sums as much as possible, and use this model to calculate 
the resulting energy shifts. Given any such model, these energy shifts may be calculated 
without significant further approximation or error using established techniques 
[refs. x. 2, 7)]. 

Energy-weighted	(TRK)	sum	rule	to	normalize		

Polarizability	~	inverse	energy	sum	rule	—>	enhanced	sensi.vity	to	low-lying	states	(PDR)	

Long-range	part	of	the	induced	dipole	poten.al	 	taken	between	atomic	WF	

Already	noted	in	Ericson,	Hüfner	1972

∼ αE1/r4
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Results, Uncertainties, Comparisons



Predic.ons	for	Npol	for	 	—	not	the	final	answer	(which	is	42)	

Uncertain.es:	

Polarizability	10%;	FR	(Gauss	vs	hard	sphere),	Coulomb	distor.on	(higher	orders	in	 )	

If	a	“bewer”	dipole	polarizability	at	hand	—	simply	rescale	the	NP	contribu.on

3 ≤ Z ≤ 41

ϵ2

Close	agreement	with	F&H	for	light	elements	

Should	not	be	taken	for	granted:	approaches	are	different	

Nucleon	polariza.on	surprisingly	large	~10%	—	has	been	neglected	un.l	now!
32
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TABLE I. Nuclear dipole polarizability in units of fm3 along with the nuclear and nucleon polarization contributions to the 2p3/2-
1s1/2 transition in muonic atoms in units of eV, in comparison with the respective entries in Ref. [7]. The three uncertainties

refer to the polarizability, FR and K(3), respectively. NP to 2p states is ignored as it is much smaller than the uncertainty.
The superscript a at the value of ↵E1 for light nuclei indicates that it is taken from Ref. [46], while no superscript implies that
it is evaluated using the fit of Eq. (9). The a⇤ superscript indicates an extrapolation from neighboring nuclei according to the
A5/3 scaling. A generic 10% uncertainty is applied to ↵E1. Last column shows the experimental precision in Ref. [7].

Z�Element A ↵E1 (fm
3) ��ENP

1S ��EnP
1S Total NP Entry in [7] �exp

4�Be 9 0.192(19)a 0.44(4)(0)(0) 0.063(6)(0)(0) 0.50(4) 1.0(3) 10

5�B 10 0.230(23)a⇤ 0.99(10)(0)(1) 0.13(1)(0)(0) 1.12(10) 1.0(3) 7

6�C 12 0.313(31)a 2.1(2)(0)(0) 0.27(3)(0)(0) 2.4(2) 2.5(7) 0.5

7�N 14 0.405(40)a⇤ 3.8(4)(0)(1) 0.48(5)(0)(0) 4.3(4) 3.0(9) 5

8�O 16 0.580(58)a 7.8(0.8)(0.1)(0.1) 0.79(8)(1)(1) 8.6(8) 5.0(1.5) 4

9�F 19 0.700(70) 11.9(1.2)(0.1)(0.2) 1.28(13)(1)(1) 13.2(1.2) 9.0(2.7) 2

10�Ne 20 0.741(74) 15.7(1.6)(0.2)(0.3) 1.78(18)(2)(1) 17.5(1.6) 19(6) 5

21 0.783(78) 17.0(1.7)(0.2)(0.4) 1.88(19)(2)(1) 19(2) 18(5) 4

22 0.823(82) 18.0(1.8)(0.2)(0.4) 1.98(20)(2)(1) 20(2) 18(5) 4

11�Na 23 0.870(87) 23.3(2.3)(0.3)(0.6) 2.64(26)(4)(1) 26(3) 25(8) 2

12�Mg 24 0.915(91) 30.0(3.0)(0.5)(0.8) 3.46(35)(6)(2) 33(3) 38(11) 2

25 0.961(96) 31.3(3.1)(0.5)(0.8) 3.61(36)(6)(2) 35(3) 31(9) 3

26 1.01(10) 32.3(3.2)(0.5)(0.9) 3.75(38)(6)(2) 36(3) 33(10) 3

13�Al 27 1.10(11)a 42.2(4.2)(0.8)(1.2) 4.80(48)(9)(3) 48(5) 40(12) 2

14�Si 28 1.10(11) 51.5(5.2)(1.1)(1.5) 5.99(60)(12)(4) 58(6) 55(16) 5

29 1.15(12) 53.9(5.4)(1.1)(1.6) 6.21(62)(13)(4) 60(6) 53(16) 45

30 1.20(12) 56.1(5.6)(1.2)(1.6) 6.42(64)(13)(4) 63(6) 51(15) 45

15�P 31 1.26(13) 67.5(6.8)(1.6)(2.1) 7.86(79)(18)(6) 76(7) 61(18) 11

16�S 32 1.31(13) 79.7(8.0)(2.0)(2.6) 9.48(95)(24)(7) 89(9) 83(25) 12

34 1.42(14) 85.6(8.6)(2.2)(2.8) 10.1(1.0)(0.3)(0.1) 97(9) 79(24) 14

36 1.53(15) 91.8(9.2)(2.4)(3.0) 10.6(1.1)(0.3)(0.1) 102(10) 75(23) 13

17�Cl 35 1.47(15) 98.5(9.9)(2.9)(3.4) 11.9(1.2)(0.3)(0.1) 110(11) - -

37 1.58(16) 106(11)(3)(4) 12.6(1.3)(0.4)(0.1) 119(12) - -

18�Ar 36 1.53(15) 116(12)(4)(4) 14(1.4)(0.4)(0.1) 130(12) 118(36) 24

38 1.64(16) 124(12)(4)(5) 15(1.5)(0.5)(0.1) 139(14) 107(32) 24

40 1.75(18) 132(13)(4)(5) 16(1.6)(0.5)(0.1) 148(15) 126(38) 25

19�K 39 1.70(17) 141(14)(5)(5) 18(1.8)(0.6)(0.2) 159(16) 119(36) 32

41 1.81(18) 150(15)(5)(6) 18(1.8)(0.6)(0.2) 168(17) 132(40) 28

20�Ca 40 1.75(18) 160(16)(6)(6) 20(2.0)(0.7)(0.2) 181(18) 142(40) 25

42 1.87(19) 170(17)(6)(7) 21(2.1)(0.8)(0.2) 191(19) 166(50) 29

43 1.93(19) 176(18)(7)(7) 21(2.1)(0.8)(0.2) 198(20) 145(43) 27

44 2.00(20) 180(18)(7)(7) 22(2.2)(0.8)(0.2) 203(21) 175(52) 26

46 2.12(21) 193(19)(7)(8) 23(2.3)(0.8)(0.2) 216(22) 156(47) 107

48 2.25(22) 206(21)(8)(8) 24(2.4)(0.9)(0.2) 230(24) 153(46) 26

21�Sc 45 2.06(21) 203(20)(8)(9) 25(2.5)(1.0)(0.2) 230(24) 203(61) 41

22�Ti 46 2.12(21) 226(23)(10)(10) 28(2.8)(1.2)(0.3) 256(27) 257(77) 26

47 2.18(22) 230(23)(10)(11) 29(2.9)(1.2)(0.3) 259(27) 252(76) 25

48 2.25(22) 237(24)(10)(11) 29(2.9)(1.3)(0.3) 266(28) 241(72) 26

49 2.31(23) 246(25)(11)(11) 30(3.0)(1.3)(0.3) 276(29) 215(64) 33

50 2.38(24) 253(25)(11)(11) 31(3.1)(1.3)(0.3) 284(30) 216(65) 26

23�V 51 2.44(24) 276(28)(13)(13) 35(3.5)(1.6)(0.4) 319(33) 245(73) 26

24�Cr 50 2.38(24) 286(29)(14)(14) 37(4)(2)(1) 323(35) 333(100) 27

52 2.51(25) 304(30)(15)(15) 39(4)(2)(1) 343(37) 299(90) 21

53 2.58(26) 310(31)(15)(15) 39(4)(2)(1) 349(38) 302(91) 25

54 2.65(26) 316(32)(16)(15) 40(4)(2)(1) 356(39) 318(96) 31

25�Mn 55 2.72(27) 351(35)(19)(17) 44(4)(2)(1) 395(44) 364(109) 34
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TABLE I. Nuclear dipole polarizability in units of fm3 along with the nuclear and nucleon polarization contributions to the 2p3/2-
1s1/2 transition in muonic atoms in units of eV, in comparison with the respective entries in Ref. [7]. The three uncertainties

refer to the polarizability, FR and K(3), respectively. NP to 2p states is ignored as it is much smaller than the uncertainty.
The superscript a at the value of ↵E1 for light nuclei indicates that it is taken from Ref. [46], while no superscript implies that
it is evaluated using the fit of Eq. (9). The a⇤ superscript indicates an extrapolation from neighboring nuclei according to the
A5/3 scaling. A generic 10% uncertainty is applied to ↵E1. Last column shows the experimental precision in Ref. [7].

Z�Element A ↵E1 (fm
3) ��ENP

1S ��EnP
1S Total NP Entry in [7] �exp

4�Be 9 0.192(19)a 0.44(4)(0)(0) 0.063(6)(0)(0) 0.50(4) 1.0(3) 10

5�B 10 0.230(23)a⇤ 0.99(10)(0)(1) 0.13(1)(0)(0) 1.12(10) 1.0(3) 7

6�C 12 0.313(31)a 2.1(2)(0)(0) 0.27(3)(0)(0) 2.4(2) 2.5(7) 0.5

7�N 14 0.405(40)a⇤ 3.8(4)(0)(1) 0.48(5)(0)(0) 4.3(4) 3.0(9) 5

8�O 16 0.580(58)a 7.8(0.8)(0.1)(0.1) 0.79(8)(1)(1) 8.6(8) 5.0(1.5) 4

9�F 19 0.700(70) 11.9(1.2)(0.1)(0.2) 1.28(13)(1)(1) 13.2(1.2) 9.0(2.7) 2

10�Ne 20 0.741(74) 15.7(1.6)(0.2)(0.3) 1.78(18)(2)(1) 17.5(1.6) 19(6) 5

21 0.783(78) 17.0(1.7)(0.2)(0.4) 1.88(19)(2)(1) 19(2) 18(5) 4

22 0.823(82) 18.0(1.8)(0.2)(0.4) 1.98(20)(2)(1) 20(2) 18(5) 4

11�Na 23 0.870(87) 23.3(2.3)(0.3)(0.6) 2.64(26)(4)(1) 26(3) 25(8) 2

12�Mg 24 0.915(91) 30.0(3.0)(0.5)(0.8) 3.46(35)(6)(2) 33(3) 38(11) 2

25 0.961(96) 31.3(3.1)(0.5)(0.8) 3.61(36)(6)(2) 35(3) 31(9) 3

26 1.01(10) 32.3(3.2)(0.5)(0.9) 3.75(38)(6)(2) 36(3) 33(10) 3

13�Al 27 1.10(11)a 42.2(4.2)(0.8)(1.2) 4.80(48)(9)(3) 48(5) 40(12) 2

14�Si 28 1.10(11) 51.5(5.2)(1.1)(1.5) 5.99(60)(12)(4) 58(6) 55(16) 5

29 1.15(12) 53.9(5.4)(1.1)(1.6) 6.21(62)(13)(4) 60(6) 53(16) 45

30 1.20(12) 56.1(5.6)(1.2)(1.6) 6.42(64)(13)(4) 63(6) 51(15) 45

15�P 31 1.26(13) 67.5(6.8)(1.6)(2.1) 7.86(79)(18)(6) 76(7) 61(18) 11

16�S 32 1.31(13) 79.7(8.0)(2.0)(2.6) 9.48(95)(24)(7) 89(9) 83(25) 12

34 1.42(14) 85.6(8.6)(2.2)(2.8) 10.1(1.0)(0.3)(0.1) 97(9) 79(24) 14

36 1.53(15) 91.8(9.2)(2.4)(3.0) 10.6(1.1)(0.3)(0.1) 102(10) 75(23) 13

17�Cl 35 1.47(15) 98.5(9.9)(2.9)(3.4) 11.9(1.2)(0.3)(0.1) 110(11) - -

37 1.58(16) 106(11)(3)(4) 12.6(1.3)(0.4)(0.1) 119(12) - -

18�Ar 36 1.53(15) 116(12)(4)(4) 14(1.4)(0.4)(0.1) 130(12) 118(36) 24

38 1.64(16) 124(12)(4)(5) 15(1.5)(0.5)(0.1) 139(14) 107(32) 24

40 1.75(18) 132(13)(4)(5) 16(1.6)(0.5)(0.1) 148(15) 126(38) 25

19�K 39 1.70(17) 141(14)(5)(5) 18(1.8)(0.6)(0.2) 159(16) 119(36) 32

41 1.81(18) 150(15)(5)(6) 18(1.8)(0.6)(0.2) 168(17) 132(40) 28

20�Ca 40 1.75(18) 160(16)(6)(6) 20(2.0)(0.7)(0.2) 181(18) 142(40) 25

42 1.87(19) 170(17)(6)(7) 21(2.1)(0.8)(0.2) 191(19) 166(50) 29

43 1.93(19) 176(18)(7)(7) 21(2.1)(0.8)(0.2) 198(20) 145(43) 27

44 2.00(20) 180(18)(7)(7) 22(2.2)(0.8)(0.2) 203(21) 175(52) 26

46 2.12(21) 193(19)(7)(8) 23(2.3)(0.8)(0.2) 216(22) 156(47) 107

48 2.25(22) 206(21)(8)(8) 24(2.4)(0.9)(0.2) 230(24) 153(46) 26

21�Sc 45 2.06(21) 203(20)(8)(9) 25(2.5)(1.0)(0.2) 230(24) 203(61) 41

22�Ti 46 2.12(21) 226(23)(10)(10) 28(2.8)(1.2)(0.3) 256(27) 257(77) 26

47 2.18(22) 230(23)(10)(11) 29(2.9)(1.2)(0.3) 259(27) 252(76) 25

48 2.25(22) 237(24)(10)(11) 29(2.9)(1.3)(0.3) 266(28) 241(72) 26

49 2.31(23) 246(25)(11)(11) 30(3.0)(1.3)(0.3) 276(29) 215(64) 33

50 2.38(24) 253(25)(11)(11) 31(3.1)(1.3)(0.3) 284(30) 216(65) 26

23�V 51 2.44(24) 276(28)(13)(13) 35(3.5)(1.6)(0.4) 319(33) 245(73) 26

24�Cr 50 2.38(24) 286(29)(14)(14) 37(4)(2)(1) 323(35) 333(100) 27

52 2.51(25) 304(30)(15)(15) 39(4)(2)(1) 343(37) 299(90) 21

53 2.58(26) 310(31)(15)(15) 39(4)(2)(1) 349(38) 302(91) 25

54 2.65(26) 316(32)(16)(15) 40(4)(2)(1) 356(39) 318(96) 31

25�Mn 55 2.72(27) 351(35)(19)(17) 44(4)(2)(1) 395(44) 364(109) 34
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TABLE I. Nuclear dipole polarizability in units of fm3 along with the nuclear and nucleon polarization contributions to the 2p3/2-
1s1/2 transition in muonic atoms in units of eV, in comparison with the respective entries in Ref. [7]. The three uncertainties

refer to the polarizability, FR and K(3), respectively. NP to 2p states is ignored as it is much smaller than the uncertainty.
The superscript a at the value of ↵E1 for light nuclei indicates that it is taken from Ref. [46], while no superscript implies that
it is evaluated using the fit of Eq. (9). The a⇤ superscript indicates an extrapolation from neighboring nuclei according to the
A5/3 scaling. A generic 10% uncertainty is applied to ↵E1. Last column shows the experimental precision in Ref. [7].

Z�Element A ↵E1 (fm
3) ��ENP

1S ��EnP
1S Total NP Entry in [7] �exp

4�Be 9 0.192(19)a 0.44(4)(0)(0) 0.063(6)(0)(0) 0.50(4) 1.0(3) 10

5�B 10 0.230(23)a⇤ 0.99(10)(0)(1) 0.13(1)(0)(0) 1.12(10) 1.0(3) 7

6�C 12 0.313(31)a 2.1(2)(0)(0) 0.27(3)(0)(0) 2.4(2) 2.5(7) 0.5

7�N 14 0.405(40)a⇤ 3.8(4)(0)(1) 0.48(5)(0)(0) 4.3(4) 3.0(9) 5

8�O 16 0.580(58)a 7.8(0.8)(0.1)(0.1) 0.79(8)(1)(1) 8.6(8) 5.0(1.5) 4

9�F 19 0.700(70) 11.9(1.2)(0.1)(0.2) 1.28(13)(1)(1) 13.2(1.2) 9.0(2.7) 2

10�Ne 20 0.741(74) 15.7(1.6)(0.2)(0.3) 1.78(18)(2)(1) 17.5(1.6) 19(6) 5

21 0.783(78) 17.0(1.7)(0.2)(0.4) 1.88(19)(2)(1) 19(2) 18(5) 4

22 0.823(82) 18.0(1.8)(0.2)(0.4) 1.98(20)(2)(1) 20(2) 18(5) 4

11�Na 23 0.870(87) 23.3(2.3)(0.3)(0.6) 2.64(26)(4)(1) 26(3) 25(8) 2

12�Mg 24 0.915(91) 30.0(3.0)(0.5)(0.8) 3.46(35)(6)(2) 33(3) 38(11) 2

25 0.961(96) 31.3(3.1)(0.5)(0.8) 3.61(36)(6)(2) 35(3) 31(9) 3

26 1.01(10) 32.3(3.2)(0.5)(0.9) 3.75(38)(6)(2) 36(3) 33(10) 3

13�Al 27 1.10(11)a 42.2(4.2)(0.8)(1.2) 4.80(48)(9)(3) 48(5) 40(12) 2

14�Si 28 1.10(11) 51.5(5.2)(1.1)(1.5) 5.99(60)(12)(4) 58(6) 55(16) 5

29 1.15(12) 53.9(5.4)(1.1)(1.6) 6.21(62)(13)(4) 60(6) 53(16) 45

30 1.20(12) 56.1(5.6)(1.2)(1.6) 6.42(64)(13)(4) 63(6) 51(15) 45

15�P 31 1.26(13) 67.5(6.8)(1.6)(2.1) 7.86(79)(18)(6) 76(7) 61(18) 11

16�S 32 1.31(13) 79.7(8.0)(2.0)(2.6) 9.48(95)(24)(7) 89(9) 83(25) 12

34 1.42(14) 85.6(8.6)(2.2)(2.8) 10.1(1.0)(0.3)(0.1) 97(9) 79(24) 14

36 1.53(15) 91.8(9.2)(2.4)(3.0) 10.6(1.1)(0.3)(0.1) 102(10) 75(23) 13

17�Cl 35 1.47(15) 98.5(9.9)(2.9)(3.4) 11.9(1.2)(0.3)(0.1) 110(11) - -

37 1.58(16) 106(11)(3)(4) 12.6(1.3)(0.4)(0.1) 119(12) - -

18�Ar 36 1.53(15) 116(12)(4)(4) 14(1.4)(0.4)(0.1) 130(12) 118(36) 24

38 1.64(16) 124(12)(4)(5) 15(1.5)(0.5)(0.1) 139(14) 107(32) 24

40 1.75(18) 132(13)(4)(5) 16(1.6)(0.5)(0.1) 148(15) 126(38) 25

19�K 39 1.70(17) 141(14)(5)(5) 18(1.8)(0.6)(0.2) 159(16) 119(36) 32

41 1.81(18) 150(15)(5)(6) 18(1.8)(0.6)(0.2) 168(17) 132(40) 28

20�Ca 40 1.75(18) 160(16)(6)(6) 20(2.0)(0.7)(0.2) 181(18) 142(40) 25

42 1.87(19) 170(17)(6)(7) 21(2.1)(0.8)(0.2) 191(19) 166(50) 29

43 1.93(19) 176(18)(7)(7) 21(2.1)(0.8)(0.2) 198(20) 145(43) 27

44 2.00(20) 180(18)(7)(7) 22(2.2)(0.8)(0.2) 203(21) 175(52) 26

46 2.12(21) 193(19)(7)(8) 23(2.3)(0.8)(0.2) 216(22) 156(47) 107

48 2.25(22) 206(21)(8)(8) 24(2.4)(0.9)(0.2) 230(24) 153(46) 26

21�Sc 45 2.06(21) 203(20)(8)(9) 25(2.5)(1.0)(0.2) 230(24) 203(61) 41

22�Ti 46 2.12(21) 226(23)(10)(10) 28(2.8)(1.2)(0.3) 256(27) 257(77) 26

47 2.18(22) 230(23)(10)(11) 29(2.9)(1.2)(0.3) 259(27) 252(76) 25

48 2.25(22) 237(24)(10)(11) 29(2.9)(1.3)(0.3) 266(28) 241(72) 26

49 2.31(23) 246(25)(11)(11) 30(3.0)(1.3)(0.3) 276(29) 215(64) 33

50 2.38(24) 253(25)(11)(11) 31(3.1)(1.3)(0.3) 284(30) 216(65) 26

23�V 51 2.44(24) 276(28)(13)(13) 35(3.5)(1.6)(0.4) 319(33) 245(73) 26

24�Cr 50 2.38(24) 286(29)(14)(14) 37(4)(2)(1) 323(35) 333(100) 27

52 2.51(25) 304(30)(15)(15) 39(4)(2)(1) 343(37) 299(90) 21

53 2.58(26) 310(31)(15)(15) 39(4)(2)(1) 349(38) 302(91) 25

54 2.65(26) 316(32)(16)(15) 40(4)(2)(1) 356(39) 318(96) 31

25�Mn 55 2.72(27) 351(35)(19)(17) 44(4)(2)(1) 395(44) 364(109) 34
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TABLE I. Nuclear dipole polarizability in units of fm3 along with the nuclear and nucleon polarization contributions to the 2p3/2-
1s1/2 transition in muonic atoms in units of eV, in comparison with the respective entries in Ref. [7]. The three uncertainties

refer to the polarizability, FR and K(3), respectively. NP to 2p states is ignored as it is much smaller than the uncertainty.
The superscript a at the value of ↵E1 for light nuclei indicates that it is taken from Ref. [46], while no superscript implies that
it is evaluated using the fit of Eq. (9). The a⇤ superscript indicates an extrapolation from neighboring nuclei according to the
A5/3 scaling. A generic 10% uncertainty is applied to ↵E1. Last column shows the experimental precision in Ref. [7].

Z�Element A ↵E1 (fm
3) ��ENP

1S ��EnP
1S Total NP Entry in [7] �exp

4�Be 9 0.192(19)a 0.44(4)(0)(0) 0.063(6)(0)(0) 0.50(4) 1.0(3) 10

5�B 10 0.230(23)a⇤ 0.99(10)(0)(1) 0.13(1)(0)(0) 1.12(10) 1.0(3) 7

6�C 12 0.313(31)a 2.1(2)(0)(0) 0.27(3)(0)(0) 2.4(2) 2.5(7) 0.5

7�N 14 0.405(40)a⇤ 3.8(4)(0)(1) 0.48(5)(0)(0) 4.3(4) 3.0(9) 5

8�O 16 0.580(58)a 7.8(0.8)(0.1)(0.1) 0.79(8)(1)(1) 8.6(8) 5.0(1.5) 4

9�F 19 0.700(70) 11.9(1.2)(0.1)(0.2) 1.28(13)(1)(1) 13.2(1.2) 9.0(2.7) 2

10�Ne 20 0.741(74) 15.7(1.6)(0.2)(0.3) 1.78(18)(2)(1) 17.5(1.6) 19(6) 5

21 0.783(78) 17.0(1.7)(0.2)(0.4) 1.88(19)(2)(1) 19(2) 18(5) 4

22 0.823(82) 18.0(1.8)(0.2)(0.4) 1.98(20)(2)(1) 20(2) 18(5) 4

11�Na 23 0.870(87) 23.3(2.3)(0.3)(0.6) 2.64(26)(4)(1) 26(3) 25(8) 2

12�Mg 24 0.915(91) 30.0(3.0)(0.5)(0.8) 3.46(35)(6)(2) 33(3) 38(11) 2

25 0.961(96) 31.3(3.1)(0.5)(0.8) 3.61(36)(6)(2) 35(3) 31(9) 3

26 1.01(10) 32.3(3.2)(0.5)(0.9) 3.75(38)(6)(2) 36(3) 33(10) 3

13�Al 27 1.10(11)a 42.2(4.2)(0.8)(1.2) 4.80(48)(9)(3) 48(5) 40(12) 2

14�Si 28 1.10(11) 51.5(5.2)(1.1)(1.5) 5.99(60)(12)(4) 58(6) 55(16) 5

29 1.15(12) 53.9(5.4)(1.1)(1.6) 6.21(62)(13)(4) 60(6) 53(16) 45

30 1.20(12) 56.1(5.6)(1.2)(1.6) 6.42(64)(13)(4) 63(6) 51(15) 45

15�P 31 1.26(13) 67.5(6.8)(1.6)(2.1) 7.86(79)(18)(6) 76(7) 61(18) 11

16�S 32 1.31(13) 79.7(8.0)(2.0)(2.6) 9.48(95)(24)(7) 89(9) 83(25) 12

34 1.42(14) 85.6(8.6)(2.2)(2.8) 10.1(1.0)(0.3)(0.1) 97(9) 79(24) 14

36 1.53(15) 91.8(9.2)(2.4)(3.0) 10.6(1.1)(0.3)(0.1) 102(10) 75(23) 13

17�Cl 35 1.47(15) 98.5(9.9)(2.9)(3.4) 11.9(1.2)(0.3)(0.1) 110(11) - -

37 1.58(16) 106(11)(3)(4) 12.6(1.3)(0.4)(0.1) 119(12) - -

18�Ar 36 1.53(15) 116(12)(4)(4) 14(1.4)(0.4)(0.1) 130(12) 118(36) 24

38 1.64(16) 124(12)(4)(5) 15(1.5)(0.5)(0.1) 139(14) 107(32) 24

40 1.75(18) 132(13)(4)(5) 16(1.6)(0.5)(0.1) 148(15) 126(38) 25

19�K 39 1.70(17) 141(14)(5)(5) 18(1.8)(0.6)(0.2) 159(16) 119(36) 32

41 1.81(18) 150(15)(5)(6) 18(1.8)(0.6)(0.2) 168(17) 132(40) 28

20�Ca 40 1.75(18) 160(16)(6)(6) 20(2.0)(0.7)(0.2) 181(18) 142(40) 25

42 1.87(19) 170(17)(6)(7) 21(2.1)(0.8)(0.2) 191(19) 166(50) 29

43 1.93(19) 176(18)(7)(7) 21(2.1)(0.8)(0.2) 198(20) 145(43) 27

44 2.00(20) 180(18)(7)(7) 22(2.2)(0.8)(0.2) 203(21) 175(52) 26

46 2.12(21) 193(19)(7)(8) 23(2.3)(0.8)(0.2) 216(22) 156(47) 107

48 2.25(22) 206(21)(8)(8) 24(2.4)(0.9)(0.2) 230(24) 153(46) 26

21�Sc 45 2.06(21) 203(20)(8)(9) 25(2.5)(1.0)(0.2) 230(24) 203(61) 41

22�Ti 46 2.12(21) 226(23)(10)(10) 28(2.8)(1.2)(0.3) 256(27) 257(77) 26

47 2.18(22) 230(23)(10)(11) 29(2.9)(1.2)(0.3) 259(27) 252(76) 25

48 2.25(22) 237(24)(10)(11) 29(2.9)(1.3)(0.3) 266(28) 241(72) 26

49 2.31(23) 246(25)(11)(11) 30(3.0)(1.3)(0.3) 276(29) 215(64) 33

50 2.38(24) 253(25)(11)(11) 31(3.1)(1.3)(0.3) 284(30) 216(65) 26

23�V 51 2.44(24) 276(28)(13)(13) 35(3.5)(1.6)(0.4) 319(33) 245(73) 26

24�Cr 50 2.38(24) 286(29)(14)(14) 37(4)(2)(1) 323(35) 333(100) 27

52 2.51(25) 304(30)(15)(15) 39(4)(2)(1) 343(37) 299(90) 21

53 2.58(26) 310(31)(15)(15) 39(4)(2)(1) 349(38) 302(91) 25

54 2.65(26) 316(32)(16)(15) 40(4)(2)(1) 356(39) 318(96) 31

25�Mn 55 2.72(27) 351(35)(19)(17) 44(4)(2)(1) 395(44) 364(109) 34
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TABLE II. Same as in Table I

Z�Element A ↵E1 (fm
3) ��ENP

1S ��EnP
1S Total NP Entry in [7] Goal

26�Fe 54 2.65(26) 371(37)(21)(19) 48(5)(3)(1) 419(47) 362(109) 48

56 2.79(28) 384(38)(22)(20) 49(5)(3)(1) 433(49) 403(121) 44

57 2.86(29) 391(39)(22)(20) 50(5)(3)(1) 441(50) 390(117) 56

58 2.93(29) 397(40)(23)(20) 50(5)(3)(1) 447(50) 400(120) 54

27�Co 59 3.00(30) 433(43)(26)(23) 56(6)(4)(2) 489(56) 438(131) 50

28�Ni 58 2.93(29) 459(46)(29)(25) 59(6)(4)(1) 518(60) 437(131) 46

60 3.07(31) 467(47)(30)(25) 61(6)(4)(1) 528(61) 461(138) 45

61 3.14(31) 476(48)(30)(26) 62(6)(4)(1) 538(63) 426(138) 54

62 3.22(32) 484(48)(31)(26) 62(6)(4)(1) 546(64) 458(138) 45

64 3.36(34) 502(50)(33)(27) 64(6)(4)(1) 566(66) 438(138) 49

29�Cu 63 3.29(33) 506(51)(35)(29) 68(7)(5)(1) 574(68) 538(161) 47

65 3.44(34) 530(53)(36)(30) 70(7)(5)(1) 600(71) 489(147) 49

30�Zn 64 3.36(34) 545(54)(39)(32) 73(7)(5)(1) 618(75) 609(183) 47

66 3.52(35) 565(56)(41)(33) 75(8)(5)(1) 640(78) 595(179) 45

68 3.67(37) 585(59)(43)(34) 77(8)(6)(1) 662(81) 581(174) 32

70 3.82(38) 606(61)(45)(35) 79(8)(6)(1) 685(84) 615(184) 131

31�Ga 69 3.75(37) 616(62)(48)(37) 83(8)(6)(1) 699(87) 567(169) 12

71 3.90(39) 647(65)(50)(38) 86(9)(7)(1) 733(91) 551(165) 12

32�Ge 70 3.82(38) 662(66)(54)(40) 89(9)(7)(1) 751(95) 706(212) 16

72 3.98(40) 671(67)(55)(42) 92(9)(8)(1) 763(97) 738(221) 12

73 4.06(41) 683(68)(56)(42) 93(9)(8)(1) 776(99) 700(210) 24

74 4.14(41) 694(69)(57)(43) 94(9)(8)(1) 788(101) 839(242) 17

76 4.30(43) 719(72)(60)(44) 96(10)(8)(1) 815(104) 819(246) 15

33�As 75 4.22(42) 737(74)(64)(47) 101(10)(9)(2) 838(109) 761(228) 10

34�Se 76 4.30(43) 775(78)(71)(50) 107(11)(10)(2) 882(117) 1036(311) 16

77 4.39(44) 790(79)(72)(51) 109(11)(10)(2) 899(119) 790(237) 16

78 4.47(45) 805(80)(74)(52) 110(11)(10)(2) 915(122) 949(285) 13

80 4.64(46) 835(83)(76)(54) 113(11)(10)(2) 948(126) 872(262) 12

82 4.81(48) 865(87)(79)(56) 116(12)(11)(2) 981(133) 814(244) 19

35�Br 79 4.55(46) 850(85)(81)(56) 117(12)(11)(2) 967(131) 933(280) 17

81 4.72(47) 883(88)(84)(58) 120(12)(11)(2) 105(136) 827(248) 20

36�Kr 78 4.47(45) 858(86)(86)(57) 121(12)(12)(2) 979(136) 1183(355) 40

80 4.64(46) 892(89)(90)(59) 124(12)(12)(2) 1016(141) 1071(321) 40

82 4.81(48) 927(93)(93)(62) 128(13)(13)(2) 1055(146) 938(281) 40

83 4.89(49) 946(95)(95)(63) 129(13)(13)(2) 1075(149) 936(281) 47

84 4.98(50) 962(96)(96)(64) 131(13)(13)(2) 1093(152) 838(251) 39

86 5.15(52) 997(100)(100)(67) 134(13)(13)(2) 1133(157) 866(260) 34

37�Rb 85 5.06(51) 1014(101)(106)(69) 139(14)(14)(2) 1151(163) 853(256) 10

87 5.24(52) 1051(105)(109)(71) 142(14)(15)(2) 1193(169) 807(242) 14

38�Sr 84 4.98(50) 1034(103)(112)(71) 145(14)(16)(3) 1179(169) 1136(341) 24

86 5.15(52) 1061(106)(115)(73) 147(15)(16)(3) 1208(174) 929(279) 11

87 5.24(52) 1082(108)(118)(75) 149(15)(16)(3) 1231(178) 843(253) 49

88 5.33(53) 1101(110)(120)(76) 151(15)(16)(3) 1252(181) 937(281) 8

39�Y 89 5.42(54) 1165(116)(132)(81) 158(16)(18)(3) 1323(195) 867(260) 9

40�Zr 90 5.51(55) 1218(122)(143)(86) 166(17)(20)(3) 1384(208) 975(292) 10

91 5.60(56) 1198(120)(142)(86) 167(17)(20)(3) 1365(206) 957(287) 33

92 5.69(57) 1212(121)(144)(87) 169(17)(20)(3) 1381(209) 984(295) 13

94 5.87(59) 1237(124)(148)(89) 171(17)(20)(3) 1408(214) 946(284) 15

96 6.05(61) 1266(127)(153)(91) 174(17)(21)(3) 1440(220) 966(293) 36

41�Nb 93 5.78(58) 1264(126)(156)(92) 177(18)(20)(3) 1441(223) 1127(338) 16
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TABLE II. Same as in Table I

Z�Element A ↵E1 (fm
3) ��ENP

1S ��EnP
1S Total NP Entry in [7] Goal

26�Fe 54 2.65(26) 371(37)(21)(19) 48(5)(3)(1) 419(47) 362(109) 48

56 2.79(28) 384(38)(22)(20) 49(5)(3)(1) 433(49) 403(121) 44

57 2.86(29) 391(39)(22)(20) 50(5)(3)(1) 441(50) 390(117) 56

58 2.93(29) 397(40)(23)(20) 50(5)(3)(1) 447(50) 400(120) 54

27�Co 59 3.00(30) 433(43)(26)(23) 56(6)(4)(2) 489(56) 438(131) 50

28�Ni 58 2.93(29) 459(46)(29)(25) 59(6)(4)(1) 518(60) 437(131) 46

60 3.07(31) 467(47)(30)(25) 61(6)(4)(1) 528(61) 461(138) 45

61 3.14(31) 476(48)(30)(26) 62(6)(4)(1) 538(63) 426(138) 54

62 3.22(32) 484(48)(31)(26) 62(6)(4)(1) 546(64) 458(138) 45

64 3.36(34) 502(50)(33)(27) 64(6)(4)(1) 566(66) 438(138) 49

29�Cu 63 3.29(33) 506(51)(35)(29) 68(7)(5)(1) 574(68) 538(161) 47

65 3.44(34) 530(53)(36)(30) 70(7)(5)(1) 600(71) 489(147) 49

30�Zn 64 3.36(34) 545(54)(39)(32) 73(7)(5)(1) 618(75) 609(183) 47

66 3.52(35) 565(56)(41)(33) 75(8)(5)(1) 640(78) 595(179) 45

68 3.67(37) 585(59)(43)(34) 77(8)(6)(1) 662(81) 581(174) 32

70 3.82(38) 606(61)(45)(35) 79(8)(6)(1) 685(84) 615(184) 131

31�Ga 69 3.75(37) 616(62)(48)(37) 83(8)(6)(1) 699(87) 567(169) 12

71 3.90(39) 647(65)(50)(38) 86(9)(7)(1) 733(91) 551(165) 12

32�Ge 70 3.82(38) 662(66)(54)(40) 89(9)(7)(1) 751(95) 706(212) 16

72 3.98(40) 671(67)(55)(42) 92(9)(8)(1) 763(97) 738(221) 12

73 4.06(41) 683(68)(56)(42) 93(9)(8)(1) 776(99) 700(210) 24

74 4.14(41) 694(69)(57)(43) 94(9)(8)(1) 788(101) 839(242) 17

76 4.30(43) 719(72)(60)(44) 96(10)(8)(1) 815(104) 819(246) 15

33�As 75 4.22(42) 737(74)(64)(47) 101(10)(9)(2) 838(109) 761(228) 10

34�Se 76 4.30(43) 775(78)(71)(50) 107(11)(10)(2) 882(117) 1036(311) 16

77 4.39(44) 790(79)(72)(51) 109(11)(10)(2) 899(119) 790(237) 16

78 4.47(45) 805(80)(74)(52) 110(11)(10)(2) 915(122) 949(285) 13

80 4.64(46) 835(83)(76)(54) 113(11)(10)(2) 948(126) 872(262) 12

82 4.81(48) 865(87)(79)(56) 116(12)(11)(2) 981(133) 814(244) 19

35�Br 79 4.55(46) 850(85)(81)(56) 117(12)(11)(2) 967(131) 933(280) 17

81 4.72(47) 883(88)(84)(58) 120(12)(11)(2) 105(136) 827(248) 20

36�Kr 78 4.47(45) 858(86)(86)(57) 121(12)(12)(2) 979(136) 1183(355) 40

80 4.64(46) 892(89)(90)(59) 124(12)(12)(2) 1016(141) 1071(321) 40

82 4.81(48) 927(93)(93)(62) 128(13)(13)(2) 1055(146) 938(281) 40

83 4.89(49) 946(95)(95)(63) 129(13)(13)(2) 1075(149) 936(281) 47

84 4.98(50) 962(96)(96)(64) 131(13)(13)(2) 1093(152) 838(251) 39

86 5.15(52) 997(100)(100)(67) 134(13)(13)(2) 1133(157) 866(260) 34

37�Rb 85 5.06(51) 1014(101)(106)(69) 139(14)(14)(2) 1151(163) 853(256) 10

87 5.24(52) 1051(105)(109)(71) 142(14)(15)(2) 1193(169) 807(242) 14

38�Sr 84 4.98(50) 1034(103)(112)(71) 145(14)(16)(3) 1179(169) 1136(341) 24

86 5.15(52) 1061(106)(115)(73) 147(15)(16)(3) 1208(174) 929(279) 11

87 5.24(52) 1082(108)(118)(75) 149(15)(16)(3) 1231(178) 843(253) 49

88 5.33(53) 1101(110)(120)(76) 151(15)(16)(3) 1252(181) 937(281) 8

39�Y 89 5.42(54) 1165(116)(132)(81) 158(16)(18)(3) 1323(195) 867(260) 9

40�Zr 90 5.51(55) 1218(122)(143)(86) 166(17)(20)(3) 1384(208) 975(292) 10

91 5.60(56) 1198(120)(142)(86) 167(17)(20)(3) 1365(206) 957(287) 33

92 5.69(57) 1212(121)(144)(87) 169(17)(20)(3) 1381(209) 984(295) 13

94 5.87(59) 1237(124)(148)(89) 171(17)(20)(3) 1408(214) 946(284) 15

96 6.05(61) 1266(127)(153)(91) 174(17)(21)(3) 1440(220) 966(293) 36

41�Nb 93 5.78(58) 1264(126)(156)(92) 177(18)(20)(3) 1441(223) 1127(338) 16

Agreement	worse	for	larger	Z,	nP	contribu.on	important!	

If	disagree	with	other	calcula.ons,	also	extracted	radii	disagree

What	do	we	learn	from	comparing	two	theory	calcula.ons?	

If	disagree	—	which	one’s	right?	If	agree	—	what	if	both	wrong?



Compare	to	more	advanced	calcula.on	by	Natalia	et	al:	

									NP							Natalia														MG	

Cl	 :	104(24)	eV	vs.	99(11)	eV	

Cl	 :	100(23)	eV	vs.	106(12)	eV	

Take	the	simple	model	to	the	extreme:	 Pb	

Should	not	work	great:	ε1	=	1.76	and	ε2	=	1.33	

												NP							Natalia	et	al	2504.19977														MG	

Pb	 :																	5.7(6)	keV															vs.				4.9(7)	keV	

nP	(nucleon	polariza.on)	~10%,	unexpectedly	large	

Simple	E1	polarizability	approach	gives	the	bulk	of	NP	
Fine	details	(magne.c,	higher	mul.poles)	important	for	IS	—	but	are	below	uncertainty!

35 ΔE1S
37 ΔE1S

208

208 ΔE1S

Nuclear polarization - how good is good enough?

35
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TABLE III: Breakdown of the experimental
uncertainties on the muonic transition energies and

isotope shifts.

Isotope Line �stat+cal �bias �lit �f �tot

(eV) (eV) (eV) (eV) (eV)
35Cl 2p1s 13.0 8.2 1.1 0.11 15.5

3p1s 06.6 8.2 1.1 0.13 10.6
4p1s 09.4 8.2 1.1 0.20 12.5

37Cl 2p1s 08.7 8.2 1.1 0.2 12.0
3p1s 15.4 8.2 1.1 0.2 17.5
4p1s 26.4 8.2 1.1 0.3 27.6

37Cl - 35Cl 2p1s 11.6 / / 0.11 11.6
3p1s 16.8 / / 0.07 16.8
4p1s 28.1 / / 0.09 28.2

TABLE IV: Extracted absolute np1s energies of
35, 37Cl. The reduced chisquare is given for the fits
(�2

⌫,fit) and for the weighted average between the 19

detectors that were used (�2
⌫,av).

Isotope Line Energy (keV) �2
⌫,fit �2

⌫,av
35Cl 2p1s 578.867(16) 1.31 2.53

3p1s 692.094(11) 0.55 1.36
4p1s 731.663(13) 0.54 1.23

37Cl 2p1s 578.734(12) 1.16 1.70
3p1s 691.997(18) 1.11 0.60
4p1s 731.55(3) 0.95 0.85

and �tot respectively correspond to the summed statisti-441

cal and calibration error after averaging, the systematic442

bias uncertainty induced by averaging over detectors, the443

uncertainty of the best calibration line, and the total un-444

certainty obtained by adding the errors in quadrature.445

The resulting absolute np1s energies and muonic isotope446

shifts are given in Table IV and Table V, respectively.447

It should be noted that 37Cl was measured longer than448

35Cl due to the limited target mass, which resulted in449

a better calibration uncertainty, while the statistical un-450

certainty on the np1s energies are larger in each detector.451

Given that the 2p1s transition of Cl lies at the edge of452

the calibration interval, this region benefits more from453

increased calibration statistics. As such, �stat+cal shows454

a non-standard behavior across the di↵erent transitions.455

For visualization purpose, the sum of all detector data456

and the sum of all fits are shown for the 2p1s transition457

TABLE V: Extracted muonic isotope shifts (37Cl -
35Cl) for the studied np1s transitions. The reduced
chisquare (�2

⌫,av) is that of the weighted average
between the 19 detectors that were used.

Line Isotope shift (eV) �2
⌫,av

2p1s �144(12) 0.38
3p1s �102(17) 0.58
4p1s �120(30) 0.78

in Figure 7. The 2p1s transition in 37Cl was fitted in458

a slightly narrower range due to the proximity of the459

silver nf3d transitions. The presence of these peaks does460

not introduce additional systematics, as the contaminant461

lines are su�ciently far away. A more detailed discussion462

of the analysis methods used for this energy extraction463

is given in the supplementary material.464

IV. THEORY465

A. QED466

The theoretical estimation of the np1s transition ener-467

gies with n = 2 - 4 was performed using the state-of-the-468

art multiconfiguration Dirac Fock and general matrix el-469

ements (mcdfgme) code [40]. This code treats the bound470

muon as a relativistic Dirac particle interacting with the471

nucleus, governed by the Dirac equation:472

[↵ · p+ �mr + V (r)] | nmi = En| nmi, (2)

where | nmi and En are the muon Dirac wavefunc-473

tion and energy, respectively, for a level with quantum474

numbers n (principal),  (relativistic angular momen-475

tum), and m (magnetic), ↵ and � are the Dirac ma-476

trices, p is the muon momentum operator, and mr is the477

reduced mass of the system.478

The total potential V (r) used in the Dirac equation479

includes several contributions. The first contribution480

comes from the Coulomb interaction (VCoulomb) of the481

muon with the extended nuclear charge distribution. To482

approximate this, we follow the most commonly used483

method in the literature for spherical nuclei [14], which484

is to use a 2-parameter Fermi distribution485

⇢(r) =
⇢0

1 + exp
⇥
4 ln 3

�
r�c
t

�⇤ . (3)

Here, ⇢0, c and t are the normalization factor, nuclear486

radius at half density, and skin thickness (distance over487

which rho drops from 90% to 10% of its maximal value),488

respectively.489

In order to estimate the e↵ect of the nuclear radius490

on the transition energies, we performed calculations for491

a range of c values corresponding to a range of RMS492

radii rc. We set t = 2.3 fm, which is done because the493

sensitivity to the skin thickness in light to medium-mass494

systems is rather low, while the value is a reasonable495

choice in medium-mass nuclei. The model dependency496

coming from the choice of this simple distribution is dealt497

with separately by the Barret-moment recipe described498

in Section IVC.499

The next dominant contribution to the potential origi-500

nates from one-loop vacuum polarization (VP), with the501

leading term given by the Uehling potential of order502

↵(Z↵), as described in Ref. [41–43]. We include both503

Anything	heavier	than	lithium:		

numerical	solu.on	of	Dirac	eq.	with	“realis.c”	charge	distribu.on	(e.g.	2pF,	3pF,	…)	

Nuclear	polariza.on:	~effec.ve	poten.al	between	muon	Dirac	(or	Schrödinger)	WF		

But	uncorrelated	with	bound-state	QED	calcula.on	

36
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TABLE III: Breakdown of the experimental
uncertainties on the muonic transition energies and

isotope shifts.

Isotope Line �stat+cal �bias �lit �f �tot

(eV) (eV) (eV) (eV) (eV)
35Cl 2p1s 13.0 8.2 1.1 0.11 15.5

3p1s 06.6 8.2 1.1 0.13 10.6
4p1s 09.4 8.2 1.1 0.20 12.5

37Cl 2p1s 08.7 8.2 1.1 0.2 12.0
3p1s 15.4 8.2 1.1 0.2 17.5
4p1s 26.4 8.2 1.1 0.3 27.6

37Cl - 35Cl 2p1s 11.6 / / 0.11 11.6
3p1s 16.8 / / 0.07 16.8
4p1s 28.1 / / 0.09 28.2

TABLE IV: Extracted absolute np1s energies of
35, 37Cl. The reduced chisquare is given for the fits
(�2

⌫,fit) and for the weighted average between the 19

detectors that were used (�2
⌫,av).

Isotope Line Energy (keV) �2
⌫,fit �2

⌫,av
35Cl 2p1s 578.867(16) 1.31 2.53

3p1s 692.094(11) 0.55 1.36
4p1s 731.663(13) 0.54 1.23

37Cl 2p1s 578.734(12) 1.16 1.70
3p1s 691.997(18) 1.11 0.60
4p1s 731.55(3) 0.95 0.85

and �tot respectively correspond to the summed statisti-441

cal and calibration error after averaging, the systematic442

bias uncertainty induced by averaging over detectors, the443

uncertainty of the best calibration line, and the total un-444

certainty obtained by adding the errors in quadrature.445

The resulting absolute np1s energies and muonic isotope446

shifts are given in Table IV and Table V, respectively.447

It should be noted that 37Cl was measured longer than448

35Cl due to the limited target mass, which resulted in449

a better calibration uncertainty, while the statistical un-450

certainty on the np1s energies are larger in each detector.451

Given that the 2p1s transition of Cl lies at the edge of452

the calibration interval, this region benefits more from453

increased calibration statistics. As such, �stat+cal shows454

a non-standard behavior across the di↵erent transitions.455

For visualization purpose, the sum of all detector data456

and the sum of all fits are shown for the 2p1s transition457

TABLE V: Extracted muonic isotope shifts (37Cl -
35Cl) for the studied np1s transitions. The reduced
chisquare (�2

⌫,av) is that of the weighted average
between the 19 detectors that were used.

Line Isotope shift (eV) �2
⌫,av

2p1s �144(12) 0.38
3p1s �102(17) 0.58
4p1s �120(30) 0.78

in Figure 7. The 2p1s transition in 37Cl was fitted in458

a slightly narrower range due to the proximity of the459

silver nf3d transitions. The presence of these peaks does460

not introduce additional systematics, as the contaminant461

lines are su�ciently far away. A more detailed discussion462

of the analysis methods used for this energy extraction463

is given in the supplementary material.464

IV. THEORY465

A. QED466

The theoretical estimation of the np1s transition ener-467

gies with n = 2 - 4 was performed using the state-of-the-468

art multiconfiguration Dirac Fock and general matrix el-469

ements (mcdfgme) code [40]. This code treats the bound470

muon as a relativistic Dirac particle interacting with the471

nucleus, governed by the Dirac equation:472

[↵ · p+ �mr + V (r)] | nmi = En| nmi, (2)

where | nmi and En are the muon Dirac wavefunc-473

tion and energy, respectively, for a level with quantum474

numbers n (principal),  (relativistic angular momen-475

tum), and m (magnetic), ↵ and � are the Dirac ma-476

trices, p is the muon momentum operator, and mr is the477

reduced mass of the system.478

The total potential V (r) used in the Dirac equation479

includes several contributions. The first contribution480

comes from the Coulomb interaction (VCoulomb) of the481

muon with the extended nuclear charge distribution. To482

approximate this, we follow the most commonly used483

method in the literature for spherical nuclei [14], which484

is to use a 2-parameter Fermi distribution485

⇢(r) =
⇢0

1 + exp
⇥
4 ln 3

�
r�c
t

�⇤ . (3)

Here, ⇢0, c and t are the normalization factor, nuclear486

radius at half density, and skin thickness (distance over487

which rho drops from 90% to 10% of its maximal value),488

respectively.489

In order to estimate the e↵ect of the nuclear radius490

on the transition energies, we performed calculations for491

a range of c values corresponding to a range of RMS492

radii rc. We set t = 2.3 fm, which is done because the493

sensitivity to the skin thickness in light to medium-mass494

systems is rather low, while the value is a reasonable495

choice in medium-mass nuclei. The model dependency496

coming from the choice of this simple distribution is dealt497

with separately by the Barret-moment recipe described498

in Section IVC.499

The next dominant contribution to the potential origi-500

nates from one-loop vacuum polarization (VP), with the501

leading term given by the Uehling potential of order502

↵(Z↵), as described in Ref. [41–43]. We include both503

Anything	heavier	than	lithium:		

numerical	solu.on	of	Dirac	eq.	with	“realis.c”	charge	distribu.on	(e.g.	2pF,	3pF,	…)	

Nuclear	polariza.on:	~effec.ve	poten.al	between	muon	Dirac	(or	Schrödinger)	WF		

But	uncorrelated	with	bound-state	QED	calcula.on	

Light	(hydrogen	-	lithium):	 -expansion	

1.	Analy.cal	Schrödinger	WF	with	point	Coulomb	+	correc.ons	on	top	

2.	Npol:	part	of	two-photon	exchange	elas.c	+	inelas.c	

3.	Computed	systema.cally	via	 -expansion	(slow	convergence!)

Zα

η

Friar	1977	

Eides-Grotch	2000	

Pachucki	et	al.,	2212.13782
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TABLE III: Breakdown of the experimental
uncertainties on the muonic transition energies and

isotope shifts.

Isotope Line �stat+cal �bias �lit �f �tot

(eV) (eV) (eV) (eV) (eV)
35Cl 2p1s 13.0 8.2 1.1 0.11 15.5

3p1s 06.6 8.2 1.1 0.13 10.6
4p1s 09.4 8.2 1.1 0.20 12.5

37Cl 2p1s 08.7 8.2 1.1 0.2 12.0
3p1s 15.4 8.2 1.1 0.2 17.5
4p1s 26.4 8.2 1.1 0.3 27.6

37Cl - 35Cl 2p1s 11.6 / / 0.11 11.6
3p1s 16.8 / / 0.07 16.8
4p1s 28.1 / / 0.09 28.2

TABLE IV: Extracted absolute np1s energies of
35, 37Cl. The reduced chisquare is given for the fits
(�2

⌫,fit) and for the weighted average between the 19

detectors that were used (�2
⌫,av).

Isotope Line Energy (keV) �2
⌫,fit �2

⌫,av
35Cl 2p1s 578.867(16) 1.31 2.53

3p1s 692.094(11) 0.55 1.36
4p1s 731.663(13) 0.54 1.23

37Cl 2p1s 578.734(12) 1.16 1.70
3p1s 691.997(18) 1.11 0.60
4p1s 731.55(3) 0.95 0.85

and �tot respectively correspond to the summed statisti-441

cal and calibration error after averaging, the systematic442

bias uncertainty induced by averaging over detectors, the443

uncertainty of the best calibration line, and the total un-444

certainty obtained by adding the errors in quadrature.445

The resulting absolute np1s energies and muonic isotope446

shifts are given in Table IV and Table V, respectively.447

It should be noted that 37Cl was measured longer than448

35Cl due to the limited target mass, which resulted in449

a better calibration uncertainty, while the statistical un-450

certainty on the np1s energies are larger in each detector.451

Given that the 2p1s transition of Cl lies at the edge of452

the calibration interval, this region benefits more from453

increased calibration statistics. As such, �stat+cal shows454

a non-standard behavior across the di↵erent transitions.455

For visualization purpose, the sum of all detector data456

and the sum of all fits are shown for the 2p1s transition457

TABLE V: Extracted muonic isotope shifts (37Cl -
35Cl) for the studied np1s transitions. The reduced
chisquare (�2

⌫,av) is that of the weighted average
between the 19 detectors that were used.

Line Isotope shift (eV) �2
⌫,av

2p1s �144(12) 0.38
3p1s �102(17) 0.58
4p1s �120(30) 0.78
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Here r is the position of the muon relative to the center
of the nucleus, Ra denotes the coordinates of the a-th
proton relative to the nuclear center, ↵ is the fine struc-
ture constant and Z is the charge number of the nucleus.
Integrating over r allows Eq. (3) to be re-written in terms
of the muon matrix element W as
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with |�µ(0)|2 = (mrZ↵)3/8⇡ denoting the norm of the
muon 2S wave function. After carrying out the inte-
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As discussed in the introduction, this dimensionless pa-
rameter has been qualitatively argued to be of the orderq

mµ

mp
< 1 allowing W to be expanded in powers of ⌘.

This ⌘-expansion allows the non-relativistic expression
to be a sum of leading, subleading, etc., contributions
with respect to the associated powers of ⌘
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where ⇢
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is the ground state point-proton density and
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denotes the proton-proton correlation density. It is
important to note that the latter term exactly cancels
out the elastic contribution �
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, i.e., �AZ3
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in
Eq. (2). In the work of [3, 10–13, 20, 22], the ⌘-expansion
was carried out up to sub-sub-leading order. Higher order
terms in this expansion lead to non-analytic expressions
that are di�cult to calculate and have until now only
been estimated [3, 10].
The ⌘-expansion can be circumvented by introducing

the multipole expansion of exp(iq · R) into Eq. (8), in-
tegrating over the angles q̂ and plugging the result back
into Eq. (6). This results in the TPE correction
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and SL is the longitudinal nuclear response function de-
fined in the next section. The expression in Eq. (13)
provides a more systematic method to calculate the nu-
clear structure corrections, however, it is not apparent

that it contains the elastic term �
(1)

Z3
that cancels the cor-

responding term from the elastic diagram. Nonetheless,
as we shall demonstrate in Section IIC the extraction
of the elastic components of a general TPE diagram can
be readily accomplished by generalizing the formalism of
Refs. [1, 2] discussed in the next section.

B. ⌘-less formalism

FIG. 1. Two-photon exchange diagrams: direct, crossed and
seagull diagrams. The grey blob represents the excited states
of the nucleus.

Following the work in Refs. [1, 2], the contributions of
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Here r is the position of the muon relative to the center
of the nucleus, Ra denotes the coordinates of the a-th
proton relative to the nuclear center, ↵ is the fine struc-
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was carried out up to sub-sub-leading order. Higher order
terms in this expansion lead to non-analytic expressions
that are di�cult to calculate and have until now only
been estimated [3, 10].
The ⌘-expansion can be circumvented by introducing

the multipole expansion of exp(iq · R) into Eq. (8), in-
tegrating over the angles q̂ and plugging the result back
into Eq. (6). This results in the TPE correction
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and SL is the longitudinal nuclear response function de-
fined in the next section. The expression in Eq. (13)
provides a more systematic method to calculate the nu-
clear structure corrections, however, it is not apparent

that it contains the elastic term �
(1)

Z3
that cancels the cor-

responding term from the elastic diagram. Nonetheless,
as we shall demonstrate in Section IIC the extraction
of the elastic components of a general TPE diagram can
be readily accomplished by generalizing the formalism of
Refs. [1, 2] discussed in the next section.
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Here r is the position of the muon relative to the center
of the nucleus, Ra denotes the coordinates of the a-th
proton relative to the nuclear center, ↵ is the fine struc-
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and SL is the longitudinal nuclear response function de-
fined in the next section. The expression in Eq. (13)
provides a more systematic method to calculate the nu-
clear structure corrections, however, it is not apparent

that it contains the elastic term �
(1)

Z3
that cancels the cor-

responding term from the elastic diagram. Nonetheless,
as we shall demonstrate in Section IIC the extraction
of the elastic components of a general TPE diagram can
be readily accomplished by generalizing the formalism of
Refs. [1, 2] discussed in the next section.

B. ⌘-less formalism

FIG. 1. Two-photon exchange diagrams: direct, crossed and
seagull diagrams. The grey blob represents the excited states
of the nucleus.

Following the work in Refs. [1, 2], the contributions of
the TPE diagrams given by Fig. 1 are

�
A
pol

=� 8(Z↵)2|�µ(0)|2 Im

Z
d
4
p

(2⇡)4
D

µ⇢(p)D⌫⌧ (�p)

⇥ tµ⌫(p, k)T⇢⌧ (p,�p), (15)

3

where

�V (r,Ra) = �↵

✓
1

|r �Ra|
� 1

r

◆
. (5)

Here r is the position of the muon relative to the center
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Z

ZX

a

�(R�Ra)|N0i. (7)

The muon matrix element can be written as

W (R,R0
,!N ) =� Z

2|�µ(0)|2
Z

d
3
q

(2⇡)3

✓
4⇡↵

q2

◆2

⇥
�
1� e

iq·R� 1
q2

2mr
+ !N

⇣
1� e

�iq·R0
⌘
,

(8)

with |�µ(0)|2 = (mrZ↵)3/8⇡ denoting the norm of the
muon 2S wave function. After carrying out the inte-
gral over the momentum q of the virtual photon, W be-
comes a function of the dimensionless parameter ⌘ =p
2mr!N |R�R0|

W (R,R0
,!N ) =� ⇡

m2
r

(Z↵)2|�µ(0)|2
✓
2mr

!N

◆3/2

⇥ 1

⌘

✓
e
�⌘ � 1 + ⌘ � 1

2
⌘
2

◆
. (9)

As discussed in the introduction, this dimensionless pa-
rameter has been qualitatively argued to be of the orderq

mµ

mp
< 1 allowing W to be expanded in powers of ⌘.

This ⌘-expansion allows the non-relativistic expression
to be a sum of leading, subleading, etc., contributions
with respect to the associated powers of ⌘

�
NR

pol
= �

(0)

NR
+ �

(1)

NR
+ �

(2)

NR
+ ..., (10)

where �
(0)

NR
is dominated by the dipole correction �

(0)

D1
[3],

and the sub-leading term �
(1)

NR
is the sum of the elastic

contributions �(1)R3
and �

(1)

Z3
[3] with

�
(1)

R3
=� ⇡

3
mr(Z↵)2|�µ(0)|2

⇥
ZZ

d
3
Rd

3
R

0|R�R0|3⇢(pp)
0

(R,R0), (11)

and

�
(1)

Z3
=
⇡

3
mr(Z↵)2|�µ(0)|2

⇥
ZZ

d
3
Rd

3
R

0|R�R0|3⇢p
0
(R)⇢p

0
(R0), (12)

where ⇢
p
0
is the ground state point-proton density and

⇢
(pp)
0

denotes the proton-proton correlation density. It is
important to note that the latter term exactly cancels
out the elastic contribution �

A
Zem

, i.e., �AZ3
= ��

A
Zem

in
Eq. (2). In the work of [3, 10–13, 20, 22], the ⌘-expansion
was carried out up to sub-sub-leading order. Higher order
terms in this expansion lead to non-analytic expressions
that are di�cult to calculate and have until now only
been estimated [3, 10].
The ⌘-expansion can be circumvented by introducing

the multipole expansion of exp(iq · R) into Eq. (8), in-
tegrating over the angles q̂ and plugging the result back
into Eq. (6). This results in the TPE correction

�
NR

pol
= �8(Z↵)2|�µ(0)|2

1Z

0

dq

1Z

!th

d! KNR(q,!)SL(q,!),

(13)
where the non-relativistic Kernel is defined as

KNR(q,!) =
1

q2( q2

2mr
+ !)

, (14)

and SL is the longitudinal nuclear response function de-
fined in the next section. The expression in Eq. (13)
provides a more systematic method to calculate the nu-
clear structure corrections, however, it is not apparent

that it contains the elastic term �
(1)

Z3
that cancels the cor-

responding term from the elastic diagram. Nonetheless,
as we shall demonstrate in Section IIC the extraction
of the elastic components of a general TPE diagram can
be readily accomplished by generalizing the formalism of
Refs. [1, 2] discussed in the next section.

B. ⌘-less formalism

FIG. 1. Two-photon exchange diagrams: direct, crossed and
seagull diagrams. The grey blob represents the excited states
of the nucleus.

Following the work in Refs. [1, 2], the contributions of
the TPE diagrams given by Fig. 1 are

�
A
pol

=� 8(Z↵)2|�µ(0)|2 Im

Z
d
4
p

(2⇡)4
D

µ⇢(p)D⌫⌧ (�p)

⇥ tµ⌫(p, k)T⇢⌧ (p,�p), (15)

η = 2mrω | ⃗R − ⃗R ′ |

Point-Coulomb	extracted	at	step	1,	has	to	be	subtracted	—	cancella.ons	inherent	to	the	method

Hernandez	et	al,	1909.05717



Example of cancellation: μ 6,7Li2+

SciPost Physics Proceedings Submission

Figure 4: Graphical representation of preliminary nuclear structure corrections to µ-
6Li2+ and µ-7Li2+ atoms in meV.

Future work will be devoted to a complete and consistent evaluation of these terms using
realistic nucleon-nucleon and three body forces.
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	—	elas.c	piece	

	—	inelas.c	piece	

Alarming	95%	cancella.on!	

Maybe	OK	because	100%	correlated		

Intrinsic	approxima.ons	may	destroy	

this	correla.on	—	dangerous!

δA
Zem

δA
pol

Li	Muli	et	al,	1910.14370

Compare	with	my	simple	model	

																													 							 	

		23(2)	meV							24(2)	meV	

Factor	2	off	for	Li-6,	OK	for	Li-7	

Rela.vis.c	effects	expected	to	mawer	

for	lightest	systems

μ 6Li2+ μ 7Li2+

ΔENP
2P−2S =



Conclusions & Outlook

Presumable	quote	by	Wolfgang	Pauli:		

Nothing	is	worse	than	a	wrong	theory	describing	data	

But:	

How	about	agreement	between	two	wrong	calcula.ons?



Nuclear	charge	radii:	crucial	input	to	SM	tests	and	BSM	searches	at	low	energies	

Cabibbo	(CKM)	unitarity	and	Vud:	nuclear	correc.ons	current	bowleneck	-	use	Rch	as	input	

	Nuclear	polariza.on	crucial	to	extrac.on	of	Rch	from	atomic	transi.ons	

Are	uncertain.es	of	NP	firmly	under	control?		

NP	is	related	to	dispersion	correc.ons	in	e-scawering	and	to	NS	correc.on	in	 -decay	

Look	for	a	uniform	treatment	of	all	of	these	

Ab-ini.o	methods	are	hot	right	now:	(poten.ally)	very	accurate	and	systema.cally	

improvable	—	are	not	easy	to	understand	and	are	very	expensive	computa.onally;		

viable	recipe	for	nuclear	radii	tables?	—	no	single	ab-ini.o	method	covers	full	nuclear	chart	

Generally,	µ	atoms	difficult:		nuclear	and	atomic	scales	are	not	well	separated;		

full-blown	ab-ini.o	nuclear	calcula.on	per	se	is	not	enough	to	guarantee	precision	

Methods	used	in	light	and	heavy	µ-atoms	are	different	-	should	be	reconciled

β
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