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● A new class of composite dark matter 
models

● Using a concrete example

● Quite flexible – not yet quantitatively tuned

● Construction from an ultraviolet 
completion

● Develop an analytical toolset for 
calculations

● Use lattice simulations for confirmation
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What is going on?

● Weak coupling, BEH: Should this not just 
break SU(3)→SU(2), with three massless 
vectors?

● What is this about composite states at 
weak coupling?

● How can actually any of this be 
calculable? Does it not even contradict 
what is usually calculated?

● All of this will be answered

● More background: 1712.04721 (Review)
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Symmetries of the system

● Consider the Higgs sector of the standard model

● The Higgs sector is a gauge theory

● Local SU(2) gauge symmetry

● Global SU(2) Higgs custodial (flavor) symmetry

● Acts as (right-)transformation on the Higgs field only
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The origin of the problem

● Elementary fields are gauge-dependent

● Change under a gauge transformation

● Gauge transformations are a human choice...

● ...and gauge-symmetry breaking is not there

● Just a figure of speech

● Actually just ordinary gauge-fixing

● Physics has to be expressed in terms of manifestly 
gauge-invariant quantities

● And this includes non-perturbative aspects…

● ...even at weak coupling

[Fröhlich et al.'80,
 't Hooft'80,
 Bank et al.'79]
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Physical states

● Need physical, gauge-invariant particles

● Cannot be the elementary particles

● Non-Abelian nature is relevant

● Need more than one particle: Composite particles

● Higgs-Higgs, W-W, Higgs-Higgs-W etc.

● But the PDG! Why does perturbation theory work?

● Has nothing to do with weak coupling

● Think QED (hydrogen atom!)

● Can this matter?

Wh W WW WWh
h

h

[Fröhlich et al.'80,
 't Hooft'80,
 Bank et al.'79]
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1) Formulate gauge-invariant operator
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Mass relation - Higgs

● Higgsonium: 120 GeV, Higgs at tree-level: 120 GeV

● Scheme exists to shift Higgs mass always to 120 GeV

● Coincidence? No.

● Duality between elementary states and bound states 
[Fröhlich et al.'80]

● Same poles to leading order

● Fröhlich-Morchio-Strocchi (FMS) mechanism

● Deeply-bound relativistic state

● Mass defect~constituent mass

● Cannot describe with quantum mechanics

● Very different from QCD bound states

[Fröhlich et al.'80
 Maas'12, Maas & Mufti'13]

⟨(h + h)(x)(h + h)( y)⟩
h=v+η

≈ const .+⟨η + (x)η( y)⟩+O (η3)
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Mass relation - W

● Vector state: 80 GeV

● W at tree-level: 80 GeV

● W not scale or scheme dependent

● Same mechanism

● Same poles at leading order

● Remains true beyond leading order

● Exchanges a gauge for a custodial triplet

⟨(h + Dμ h)(x)(h + Dμ h)( y)⟩
h=v+η

≈
∂ v=0

const .+⟨W μ(x)W μ( y)⟩+O (η3)

[Fröhlich et al.'80
 Maas'12]
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● Quantitatively equivalent spectrum

● Special to this case? Standard model?

● Lattice also for SU(2)xU(1) [Shrock et al. 85-88]
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Status of the standard model

● Can be extended to the whole standard 
model

● Always works

● Physical states are bound states

● Observed in experiment

● Described using gauge-invariant perturbation 
theory based on the FMS mechanism

● Mostly the same as ordinary perturbation theory

● Is this generally true? No.

● Standard model structure is special

● Fluctuations can invalidate

[Fröhlich et al.’80,’81
 Maas'12,’17]
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Back to the dark sector

● Consider an SU(3) with a single fundamental Higgs

● Looks very similar to before

● Local SU(3) gauge symmetry

● Global U(1) Higgs custodial (flavor) symmetry

● Acts as (right-)transformation on the Higgs field only

W 
a W 

ab
a∂−g f bc

a W 
c b hihig ta

ij a h j

Wμ
a →W μ

a h→exp(ia)h

L=−1
4
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μ ν+(Dμ
ij h j) + Dik
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+ −v2)2
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a =∂μ W ν
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Predictions using GIPT

● JPC and custodial charge only quantum numbers

● Apply GIPT

● Formulate gauge-invariant composite operators

● Expand them with FMS

● Calculate with perturbation theory

● Check with lattice

● Lightest particle(s) with non-zero custodial charge 
are absolutely stable

● Applied to scalars and vectors with and without 
custodial charge

[Maas & Törek'16,’18
 Maas, Sondenheimer & Törek'17]
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● Qualitatively different spectrum

● Results in agreement with analytic predictions
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Beyond the spectrum

● GIPT can be applied to any matrix elements

● Recipe

● Formulate using gauge-invariant composite initial 
and final states

● Perform FMS expansion

● Perform perturbation theory

● Applicable to any theory with BEH effect in this 
sector

● Several checks more underway

● Experimental tests for subleading corrections in 
the standard model under development

● A class of analytically calculable composite models

[Maas’12,’17]
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Summary

● Models with BEH effect need rethinking

● Gauge invariance at core

● Can lead to qualitatively different physics than in 
perturbation theory 

● Analytical and numerical tools to analyze

● All available results in favor of this

● A new class of composite dark matter 
models...

● ...and a new arena of general BSM 
phenomenology

Review: 1712.04721

@axelmaas
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