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Small Scale Structure Problems 

<—> 

All the reasons why “CDM is not it”



How did we get here?

• We are gravitationally sensitive to something sourcing     
—> we are fairly certain that DM exists.


• An exception is MOND, which has issues of its own. 
However, the MOND community has been instrumental in 
pointing out some of the discrepancies with CDM.


• But how do we verify the picture?                                     
—> NBODY simulations (disclaimer: I have never run a 
serious body simulation)

Tµ⌫
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N-body Simulations
• Take N dark matter particles, 

optionally add baryon gas (which 
has to be treated differently 
because it is far from linear ) and 
numerically solve for their motion.


• This implies a limit in resolution 
(finite N), but we also have to 
regulate the IR singularities 
(softening). 


• The whole code has to be checked 
for convergence (changing 
unphysical parameters does not 
change physics on relevant scales)

2 Walter Dehnen, Justin I. Read: N -body simulations of gravitational dynamics

have reached over 106 particles [6], while collisionless calculations can now reach more than 109 particles [7–10]. This
disparity reflects the difference in complexity of these rather dissimilar N -body problems. The significant increase in
N in the last decade was driven by the usage of parallel computers.

Fig. 1. The increase in particle number over the past
50 years for selected collisional (red, [4–6, 11–16] taken
from [17]) and collisionless (blue, [3, 7–9, 18–24]) N-body
simulations. The line shows the scaling N =N02(year−y0)/2

expected from Moore’s law if the costs scale ∝ N .

In this review, we discuss the state-of-the art software algo-
rithms and hardware improvements that have driven this dra-
matic increase in N . We consider the very different challenges
posed by collisional (§2) versus collisionless (§3) systems, and
we attempt to give a fair critique of the methods employed,
pointing out where there is room for improvement, and dis-
cussing some interesting future research directions. Our focus
is primarily on gravity; we do not consider the important role
that the other fundamental forces play4. Since our goal is to
elucidate the numerics, we will only touch upon the many in-
teresting and important results that have come out of N -body
modelling over the past 50 years. We must therefore apologise
in advance for all that is missed out in this brief review. We do
not have space to discuss modelling gas physics and its many
complications. Nor will we discuss the art of setting up initial
conditions for N -body simulations.

There are already severalN -body reviews and books in the
literature. Aarseth [25] and Heggie & Hut [26] give excellent
reviews of the N -body problem, focusing mainly on collisional
N -body simulations. Hockney & Eastwood [27] cover many
aspects of particle-based simulations, focusing on collisionless
applications. Trenti & Hut [28] give a general overview of the
N -body problem, covering both the collisional and collision-
less regimes. Our review takes a somewhat different approach
to these previous works. We attempt to review numerical tech-
niques for both collisional and collisionless N -body simula-
tions, focusing on the very latest techniques, and with a view to assessing interesting future research directions. As
much as possible, we present the key equations and describe the methodology at a level where we hope the reader will
be able to obtain a relatively deep understanding of the algorithms and their hidden gremlins.

This paper is organised as follows. In §2, we review numerical methods for collisional N -body simulations: the
astrophysical (§2.1) and numerical foundations (§2.2) with special treatment of the time integration (§2.3), recent
hardware-driven developments (§2.4); and give a critique of the current state of the art (§2.5), summarise alternatives
to N -body methods (§2.6), as well as present a (brief and biased) overview over past and recent astrophysical results
with an outlook for the future (§2.7). In §3, we review numerical methods for collisionless simulations: the astrophysical
(§3.1) and numerical foundations (§3.2), the basis of cosmologicalN -body simulations (§3.3), force softening (§3.4) and
the various force solvers (§3.5), recent developments and challenges (§3.6), and a very brief overview of astrophysical
results (§3.7). §4 describes methods for validation of N -body simulations, and in §5 we present our conclusions and
outlook for the future of the field.

2 N-body methods for collisional systems

Collisional systems are dynamically old such that tdyn is short compared to their age. This applies mainly to massive
star clusters, and for this reason we will mostly refer to the N -body particles in this section as stars within a star
cluster. Such clusters typically orbit deep within the potential of a host galaxy – like our own Milky Way – such that
their dynamics is affected by the tidal field of their host.

Over many dynamical times, the accumulated effect of many small encounters between stars significantly affects
the evolution of collisional systems. Relaxation-driven equipartition of energy causes heavier stars to sink towards the
centre, while low-mass stars are pushed to the outskirts, where they are susceptible to being skimmed off by Galactic

4 Many stellar systems contain significant amounts of gas, which in addition to gravity also interact electromagnetically. This
gives rise to a large number of complicated effects from radiative cooling and the formation of stars (inside of which the strong
and weak interactions become important, too), to active galactic nuclei and outflows driven by radiative heating. While for
most gravitational systems these non-gravitational effects play an important role only for brief periods of their lifetime, their
understanding and appropriate modelling is at the forefront of many contemporary challenges in astrophysics. This is, however,
beyond the scope of this paper.

[1105.1082]



Subgrid Physics
• Some physics is not known from first principles. Such as: star formation 

details, supernova feedback parameters.


• Or if it is known at certain scale (at the level of the molecular clouds), but 
the simulation cannot reach a resolution that can probe those scales.


• These processes can still have a important role and need to be included.


• Resolution: do it by hand. Ff a particular region reaches a low enough 
temperature and high enough density the code inserts stars by hand. If a 
star is old enough, the code turns into supernova and deposits some 
amount energy into the surrounding gas.


• This subgrid physics has to be validated: you sacrifice some output (such 
as stellar mass distribution), in order to set the unknown parameters 
correctly.



Possible small scale 
discrepancies

• Missing Satellites


• Too-big-to-fail


• Cores in Dwarf galaxies


• Diversity of Rotation Curves


• Planes of galaxy satellites

Probably not a problem 
Maybe a problem 

a problem



Missing Satellites and Too-
big-to-fail

• Pure LCDM simulations made 
predictions on number of satellites as a 
function of their DM mass.


• This number does not match the 
observed number of satellites (in the 
observational footprint).


• However, once the baryons were 
included, this is significantly improved.


• Tidal stripping is also likely responsible 
[1707.03898]


• However, see [1807.07093]

APOSTLE [1511.01098] 
                  [1611.00005]The APOSTLE simulations 7

from each of the two main galaxies per volume (labelled
“primary” and “secondary” in order of halo mass), as well
as within 2 Mpc from the LG barycentre, which includes
both central and satellite galaxies.

The primary and secondary galaxies have 20+10

�6
and

18+8

�5
satellites more massive than M⇤ = 105M� inside 300

kpc, respectively, where the errors indicate the scatter equiv-
alent to 1� about the median values. This is in good agree-
ment with the observed number of MW and M31 satellites.
Within 2 Mpc of the LG barycentre, there are ⇠ 60 galaxies
with M⇤ > 105M� presently known; our simulations pro-

duce 90+20

�15
. The modest number of luminous galaxies is in

stark contrast to the very large number of dark matter halos
found within the same volume, indicated by the grey shaded
area in Fig. 3. While feedback from supernovae and stellar
winds regulates star formation in those halos where a dwarf
galaxy has formed, reionisation has left most of the low mass
halos completely dark. The observed stellar mass function of
the LG and those of the MW and M31 satellites are within
the 1 � scatter of the average stellar mass function in our
resimulations over most of the stellar mass range. The rela-
tive scatter is larger for the satellite galaxies, reflecting the
larger relative sampling error, and the fact that the relative
variation in single-halo mass among the di↵erent Apostle

volumes is larger than that of the total LG mass.
Excluding substructures, the stellar masses of the Milky

Way and M31 analogues in our simulations lie in the range
1.5� 5.5⇥ 1010M�, on the low end compared to the obser-
vational estimates for the Milky Way (5 ⇥ 1010M� (Flynn
et al. 2006; Bovy & Rix 2013)) but lower than those for M31
(1011M� (Tamm et al. 2012)). As noted by Schaye et al.
(2015), the subgrid physics used in the Reference model
of the Eagle code, which we have adopted in this work,
generally results in slightly low stellar masses in halos of
around 1012M� compared to abundance matching expecta-
tions (Guo et al. 2010, e.g.), while the Milky Way and M31
both appear to lie above the average stellar-to-halo mass re-
lation. While the predicted abundance of satellites and dwarf
galaxies within the Local Group depends on its total mass,
as discussed in Section 2.2, and in more detail by Fattahi
et al. (2015), we have selected our Local Group analogues
based on their dynamical properties in a pure dark matter
simulation, and independently of the stellar mass in the pri-
maries, which may be a↵ected by the limitations of subgrid
physics model.

That the simulations reproduce the stellar mass func-
tion of galaxies and satellites in the LG over all resolved
mass scales is remarkable, given that these simulations use
the very same Eagle model that matches the shape and
normalisation of the galaxy stellar mass function in large
cosmological volumes. Not only are our simulations free of
the “missing satellites” problem, but they indicate that the
observed stellar mass functions of the LG volume and of the
MW and M31 satellites are entirely consistent with ⇤CDM.

3.4 The Baryon Bailout

We next consider the “too-big-to-fail” problem (Boylan-
Kolchin et al. 2011; Parry et al. 2012). As demonstrated
by Strigari et al. (2010) using the Aquarius dark matter

Figure 4. Cumulative number of halos as a function of maximum

circular velocity, vmax, averaged over 12 Apostle volumes at res-

olution level L2. The four bottom curves correspond to satellite

halos within 300 kpc of each of the two main galaxies; the top

two curves to all systems within 2 Mpc from the LG barycentre.

Grey/black curves are from dark matter only (DMO) simulations.

Coloured curves are for systems that contain luminous galax-

ies in the hydrodynamic runs. Red circles show measurements

of the most massive MW satellites by Peñarrubia et al. (2008).

For guidance, the dashed line denotes a vmax value of 30km/s.

The abundance of satellites with vmax > 30km/s is halved in the

hydrodynamic simulations and matches the Milky Way observa-

tions. At lower values of vmax, the drop in the abundance relative

to the DMO case increases as fewer and fewer subhalos host an

observable galaxy. See Fig. A1 for numerical convergence.

only (DMO) simulations (Springel et al. 2008), a Milky Way
mass halo in ⇤CDM typically contains at least one satellite
substructure that matches the velocity dispersion profiles
measured for each of the five Milky Way dwarf spheroidal
satellites for which high-quality kinematic data are avail-
able. However, that work addressed neither the question of
whether those halos which match the kinematics of a partic-
ular satellite would actually host a comparable galaxy, nor
whether an observed satellite galaxy can be found to match
each of the many predicted satellite halos. Indeed, the identi-
fication in the same simulations of an excess of massive sub-
structures with no observable counterparts, and the impli-
cation that the brightest satellites of the Milky Way appear
to shun the most massive CDM substructures, constitutes
the “too big-to-fail” problem (Boylan-Kolchin et al. 2011;
Parry et al. 2012). A simple characterisation of the too-big-
to-fail problem is given by the number of satellite halos with

maximum circular velocities, vmax = max
⇣p

GM(< r)/r
⌘
,

above ⇠ 30 km/s, where all satellite halos are expected to
be luminous (Okamoto et al. 2008; Sawala et al. 2014). Only
three MW satellites are consistent with halos more massive
than this limit (the two Magellanic Clouds and the Sagittar-
ius dwarf), whereas dark matter only (DMO) ⇤CDM simu-

c� 2015 RAS, MNRAS 000, 1–15



Cores-Cusp

• Started by Moore B., 1994, Nature, 370, 629, there were 
observations that show rotation curve that indicated that 
the central density profile was flat.


• This was in tension with the pure CDM simulations

DDO 154
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FIG. 4: Left: Observed rotation curve of dwarf galaxy DDO 154 (black data points) [167] compared to
models with an NFW profile (dotted blue) and cored profile (solid red). Stellar (gas) contributions indicated
by pink (dot-)dashed lines. Right: Corresponding DM density profiles adopted in the fits. NFW halo
parameters are rs ⇡ 3.4 kpc and ⇢s ⇡ 1.5 ⇥ 107 M�/kpc3, while the cored density profile is generated
using an analytical SIDM halo model developed in [116, 118].

Recent high-resolution surveys of nearby dwarf galaxies have given further weight to this dis-
crepancy. The HI Near Galaxy Survey (THINGS) presented rotation curves for seven nearby
dwarfs, finding a mean inner slope ↵ = �0.29 ± 0.07 [96], while a similar analysis by LITTLE
THINGS for 26 dwarfs found ↵ = �0.32 ± 0.24 [167]. These results stand in contrast to ↵ ⇠ �1
predicted for CDM.

However, this discrepancy may simply highlight the inadequacy of DM-only simulations to
infer the properties of real galaxies containing both DM and baryons. One proposal along these
lines is that supernova-driven outflows can potentially impact the DM halo gravitationally, soft-
ening cusps [78, 168], which we discuss in further detail in §II E. Alternatively, the inner mass
density in dwarf galaxies may be systematically underestimated if gas pressure—due to turbulence
in the interstellar medium—provides radial support to the disk [169, 170]. In this case, the ob-
served circular velocity will be smaller than needed to balance the gravitational acceleration, as
per Eq. (5), and purported cores may simply be an observational artifact.

In light of these uncertainties, LSB galaxies have become an attractive testing ground for DM
halo structure. A variety of observables—low metallicities and star formation rates, high gas
fractions and mass-to-light ratios, young stellar populations—all point to these galaxies being
highly DM-dominated and having had a quiescent evolution [171]. Moreover, LSBs typically
have larger circular velocities and therefore deeper potential wells compared to dwarfs. Hence,
the effects of baryon feedback and pressure support are expected to be less pronounced.

Rotation curve studies find that cored DM profiles are a better fit for LSBs compared to cuspy
profiles [54, 58, 59, 63, 64]. In some cases, NFW profiles can give reasonable fits, but the required
halo concentrations are systematically lower than the mean value predicted cosmologically. Al-
though early HI and long-slit H↵ observations carried concerns that systematic effects—limited
resolution (beam-smearing), slit misalignment, halo triaxiality and noncircular motions—may cre-
ate cores artificially, these issues have largely been put to rest with the advent of high-resolution HI
and optical velocity fields (see Ref. [148] and references therein). Whether or not baryonic feed-
back can provide the solution remains actively debated [67, 172, 173, 174]. Cored DM profiles
have been further inferred for more luminous spiral galaxies as well [65, 175, 176].

14



Core-Cusp: Extraction
• When a galaxy contains gas, the rotation curve is accessible. However, really small galaxies 

do not contain much gas.


• Otherwise we need to use the dispersion velocity of the stars as a probe of the local 
gravitational potential.


• We only know one of the three components of the velocity: this degeneracy vastly 
complicates the problem

16

FIG. 9.— Results for the Carina, Fornax and Sculptor dSphs. Panels display posterior PDFs for model parameters, obtained from applying the two stellar subcomponent models
introduced in Section 3. Table 2 lists median values and 68% (95%) confidence intervals derived from these PDFs.

FIG. 10.— Left, center: Constraints on halflight radii and masses enclosed therein, for two independent stellar subcomponents in the Fornax and Sculptor dSphs. Plotted points
come directly from our final MCMC chains, and color indicates relative likelihood (normalized by the maximum-likelihood value). Overplotted are straight lines indicating the central
(and therefore maximum) slopes of cored (limr→0 d logM/d log r] = 3) and cusped (limr→0 d logM/d log r] = 2) dark matter halos. Right: Posterior PDFs for the slope Γ obtained for
Fornax and Sculptor. The vertical dotted line marks the maximum (i.e., central) value of an NFW profile (i.e., cusp with γDM = 1, limr→0[d logM/d log r] = 2). These measurements
rule out NFW and/or steeper cusps (γDM ≥ 1) with significance s! 96% (Fornax) and s! 99% (Sculptor).

sufficiently near the dSph to be observed and counted as
bound members (e.g., Piatek & Pryor 1995; Oh et al. 1995;
Read et al. 2006; Klimentowski et al. 2007; Peñarrubia et al.
2008b, 2009). Both phenomena affect the outer more than
the inner parts of a satellite—thus tidal heating is the only
process we identify that may cause our method to return an
over-estimate of Γ.
However, measurements of their systemic distances and ve-

locities imply that neither Fornax (D∼ 138 kpc, Mateo 1998)
nor Sculptor (D ∼ 79 kpc) experience strong tidal encoun-
ters with the Milky Way. Fornax’s line-of-sight velocity and
proper motion (Piatek et al. 2007, supported by this work)
imply a pericenter distance of rp = 118+19−52 kpc (Piatek et al.
2007, error bars give 95% confidence intervals), and Sculp-
tor’s imply rp ∼ 65 kpc (with 95% confidence intervals al-

lowing values as low as ∼ 30 kpc) for either of the two astro-
metric proper motion measurements (Schweitzer et al. 1995;
Piatek et al. 2006). N-body simulations by Peñarrubia et al.
(2009) and Peñarrubia et al. (2010) demonstrate that for satel-
lite halos that follow the generic density profile given by
Equation 16, the instantaneous tidal radius at pericenter is
rt ≈ rp[Mdsph(≤ rt )/(3MMW(≤ rp)]1/3, where Mdsph(rt) is the
dSph mass enclosed within the tidal radius and MMW(≤ rp)
is the enclosed mass of the Milky Way within the peri-
centric distance. Watkins et al. (2010) have recently used
a sample of tracers (halo stars, globular clusters and satel-
lite galaxies) in the outer Galactic halo to estimate a mass
of MMW(≤ 300kpc) = 0.9± 0.3× 1012M⊙. We obtain con-
servative lower limits for the pericentric tidal radii of For-
nax and Sculptor by considering only the stellar mass of

[1108.2404] 
[1210.3157]

The core size of the Fornax dwarf 3

Figure 2. Left panel: estimates of the total enclosed mass M(r) as obtained from each of the three stellar subpopulations; color-coding
is the same as in Fig. 1. Right panel: probability distributions of the logarithmic slope Γ obtained by pairing the mass estimates in the
left panel (colors are paired accordingly).

In a purely statistical sense, the exclusion of an NFW
cusp we obtain from this analysis is not as strong as the
one obtained in WP11: the tails of the probability distribu-
tions of both ΓMR,MP and ΓMR,IM suggest that the proba-
bility of a density profile as steep or steeper than an NFW
is p ! 22%. Nonetheless, it is worth noticing that such a
cusped density profile would be unrealistic for different rea-
sons. For instance, the dashed curve in the first panel of
Fig. 2 represents the best fitting NFW halo with scale ra-
dius r0 = 3 kpc. The agreement with the mass estimates
is marginal and it is in fact impossible to obtain a better
agreement for any NFW density profile with a smaller scale
radius (hence even smaller ⟨Γ⟩ at the same radii). Different
studies of Fornax (Irwin & Hatzidimitriou 1995; Cole et al.
2012, WP11) suggest that its tidal radius is likely to be
smaller than 3 kpc, hence presenting an evident incompati-
bility with the required scale radius. Furthermore, even an
NFW halo with a scale radius of ‘only’ r0 > 2 kpc would al-
ready have a concentration c < 9, well below the expectation
of CDM models (e.g. Macciò et al. 2007). As a comparison,
the full line in the left panel of Fig. 1 represents a Burkert
profile (Burkert 1995)

ρBur(r) =
ρ0

(

1 + r
r0

)

[

1 +
(

r
r0

)2
] (5)

with a core-size of r0 ≈ 1.4kpc, which provides excellent
agreement with the mass estimates, being consistent with
all three stellar populations well within 1-sigma.

3 PROJECTED VIRIAL THEOREM

We can gain a more systematic insight by making use of the
PVT

2Klos +Wlos = 0 , (6)

where, in the usual notation, Klos and Wlos are the projected
components of the pressure and potential energy tensors –
explicit formule are recorded in AE12. The PVT provides a
fundamental means of exploring the energetics of a system
with multiple stellar subpopulations. As in AE12, we assume
that the photometry of the different subpopulations is well

represented by a Plummer profile; we have performed the
same analysis using exponential profiles and find consistent
results.

In the ideal case of no observational uncertainties, use
of the PVT proceeds as follows. For an assigned dark matter
density profile, once the surface brightness of a stellar sub-
population µ(r) and its velocity dispersion profile σlos(r)
are given, the PVT yields the characteristic density ρ0 that
needs to be coupled with the scale radius r0 in order to have
an equilibrium configuration. In our application, we use a
Monte Carlo procedure to propagate any observational un-
certainties in the half-light radius of the photometry from
eqn. (2) as well as in the kinematics (see Fig. 1), and con-
struct a complete probability distribution for the character-
istic density ρ0 at any fixed characteristic radius r0.

The left panel of Fig. 3 shows the one-sigma virial
stripes that we obtain when each subpopulation in embed-
ded in an NFW dark matter profile (eqn. (1)); the right panel
illustrates the case of a Burkert halo (eqn (5)). In the NFW
case, the one-sigma regions related to the IM and MP sub-
populations overlap before r0 = 1 kpc. This is in agreement
with the previous Section, since we found ⟨ΓMR,IM⟩ = 2.0 at
large radii. However, at smaller radii the MR subpopulation
does not fit into this picture. Any NFW halo that is compat-
ible at the one-sigma level with all three subpopulations has
r0 " 2kpc, with the difficulties mentioned earlier. On the
other hand, for a constant density core, the three one-sigma
stripes show a consistent overlap region.

Use of a single subpopulation does not allow any infer-
ence on the scale radius of the core if taken by itself. It is
by multiplying the probability distributions defined by the
three virial stripes that we can constrain the core size. Fig. 4
displays the one- and two-sigma confidence regions associ-
ated with the joint likelihood, together with the marginal-
ized probability distributions for the characteristic density
ρ0 and core size r0. All full lines are associated with a Burk-
ert dark matter profile (eqn. (5)), but we find that the data
do not show any significant preference for other functional
prescriptions of the core. For example, we have explored the
density profile used by AE12

ρcNFW(r) =
ρ0

[

1 +
(

r
r0

)2
]3/2

(7)

c⃝ 0000 RAS, MNRAS 000, 1–??



Core-Cusp: Warning 
Matter of perspective 9

Figure 6. Logarithmic mass slopes for our four illustrative examples. The dots show measured projected half-mass radii and associated
contained mass inferred from the Walker et al. (2009) estimator of equation (2) for each of the 1000 bootstrap resamplings of each galaxy;
each galaxy is seen from 100 di↵erent directions. The points are coloured according to the viewing angle measured from the major axis
of the metal-poor subpopulation. The black dashed and dash-dotted lines show the minimum and maximum slopes obtained from all 100
lines of sight, respectively. For reference, the black solid and dotted lines show the slopes of an NFW cusp and a core. The black crosses
denote the true projected 3D half-mass radii and the masses within them, taken directly from the simulation. The labels above each panel
give the sphericity and value of rot for each subpopulation. A large scatter in projected half-mass radius can be seen in subpopulations
that are strongly aspherical (s < 1).

In order to quantify the e↵ect of both the misalignment
of the principal axes and the di↵erences in sphericity of the
two subpopulations on the scatter in the estimated logarith-
mic mass slopes, we define the following alignment statistic.
We model the two subpopulations as concentric ellipsoids of
unit volume, with axis ratios equal to those measured for
each subpopulation and an o↵set angle equal the angle be-
tween the major axes of the two subpopulations. We then
compute the fraction of volume within the intersection of
the two ellipsoids. Subpopulations with similar axis ratios
and spatial orientation would therefore have an alignment
close to 1. In Fig. 8 we show the relative upper error (the
di↵erence between the 84th and 50th percentiles divided by

the median value) on the slope accuracy, �, as a function
of the value of the alignment statistic. It is clear that mea-
surements for galaxies with more misaligned subpopulations
tend to return higher values of �, corresponding to shallower
inner density slopes.

The non-trivial radial variation of the velocity
anistropy, �, which is generally di↵erent for the two metal-
licity subpopulations (see Fig. 4), also plays a role. This can
be seen in Fig. 9, where we plot ↵, the error in the estimate
of the mass for each of the two subpopulations in our sam-
ple, as a function of the average anisotropy parameter h�i,
when each subpopulation is viewed from directions aligned
with the three principal axes. For directions along the minor
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Globular Clusters

• In a cuspy (1/r) dark matter 
halo, we expect to see some 
globular clusters to spiral-in 
towards the centre due to 
dynamical friction.


• Since we see a couple GCs 
in Fornax that have not 
spiralled-in yet, we can take 
this as a (rough) evidence for 
core in the Fornax

Fornax by Hubble Telescope



Core-Cusp: resolution?
• Baryonic feedback seems to solve part of the problem: once a galaxy is 

big enough, the star formation inject energy into the gas. This leads to 
fluctuation of the gravitational potential and transfers energy to the dark 
matter, removing it from the central potential. These results are somewhat 
group dependent (depend on the burstiness of the star formation). There 
is a cutoff below which this mechanism does not work (10^5 M_sun). 

Forged in FIRE 3

Figure 1. From left to right, visualizations of the gas density, gas temperature and gas metallicity for the Dwarf early run at z = 2.3. All panels show the
same thin slice along the z-axis centered at the main halo. The signatures of a recent stellar burst episode are clear in all of them.

initial conditions with multiple levels of refinements for cosmo-
logical “zoom” simulations (MUSIC Hahn & Abel 2011) and we
followed the method outlined in Oñorbe et al. (2014). To select
our dwarf candidates we first run a medium-resolution dark-matter
only cosmological simulation using GADGET-2 (Springel 2005)
with a cubic volume of 7 Mpc on a side with particle mass mp =
9.7 ⇥ 104M� and Plummer equivalent force softening length of
176 pc. To be able to study the main statistical properties of dwarf
galaxy halos we also run a bigger dark-matter only simulation of 35
Mpc on a side with particle mass mp = 1.2⇥107M� and Plummer
equivalent force softening length of 563 pc. In this work we present
simulations of two dwarf galaxy halos, one with a virial mass of
Mvir = 3.2⇥ 109M� and the other with Mvir = 9.2⇥ 109M�

1.
Based on our analysis of the 35 Mpc simulation, we have chosen
our dwarf candidates to lie as close as possible to the mean values
of spin, concentration and halo formation time for its mass while
still having a small Lagrangian volume (see Oñorbe et al. 2014).
The specific values of these parameters for our two halos can be
found in Table 1. We point to Appendix A for a more detailed de-
scription of these parameters and how they compare with a sample
of halos in the same mass bin.

To check the convergence of our results we have run two
resolution levels for our simulations: in our low-resolution hy-
drodynamical testing runs we use a dark matter particle mass of
1.01 ⇥ 104 M� and a particle gas mass of 2.04 ⇥ 103 M� (the
mass resolution for the collisionless run is therefore 1.22 ⇥ 104

M�). The high resolution runs used a dark matter particle mass of
1.26⇥103 M� and a gas particle mass of 254M� (the particle res-
olution for the collisionless run is therefore 1.5 ⇥ 103 M�). None
of the high resolution regions of the simulations presented in this
work are contaminated by low resolution particles at any redshift
within 1.6 virial radii.

The simulations presented in this paper use GIZMO2 (Hop-
kins 2014), run in P-SPH mode which include physical models
for star formation and stellar feedback presented in Hopkins et al.
(2014). Two of the runs presented here Ultrafaint and Dwarf early
were also presented in Hopkins et al. (2014) (m09 and m10 respec-
tively). We summarize their properties below, but readers interested
in further details (including resolution studies and a range of tests

1 Unless otherwise stated, in this paper we define the virial overdensity
using the spherical top hat collapse approximation by Bryan & Norman
(1998).
2 http://www.tapir.caltech.edu/ phopkins/Site/GIZMO

of the specific numerical methodology) should see Hopkins et al.
(2012, 2013, 2014).

For the halo identification in the simulation we have used the
public code Amiga Halo Finder (AHF Knollmann & Knebe 2009),
an MPI parallel code for finding gravitationally bound structures in
simulations of cosmic structure. Results presented in this work use
a highest density peak+sigma-clipping method to find the center.
We have also tested different centering algorithms to confirm that
our results do not depend on which method was used3.

2.1 Numerical Methods

The P-SPH method adopts the Lagrangian “pressure-entropy” for-
mulation of the SPH equations developed in (Hopkins 2013); this
eliminates the major differences between SPH, moving mesh, and
grid (adaptive mesh) codes, and resolves the well-known issues
with fluid mixing instabilities in previously-used forms of SPH
(e.g. Agertz et al. 2007; Sijacki et al. 2012). P-SPH also manifestly
conserves momentum, energy, angular momentum, and entropy.
The gravity solver is a heavily modified version of the GADGET-
3 (Springel 2005) hybrid tree-particle mesh (Tree-PM) method; but
GIZMO also includes substantial improvements in the artificial vis-
cosity, entropy diffusion, adaptive timestepping, smoothing kernel,
and gravitational softening algorithm, as compared to the “previous
generation” of SPH codes. These are all described in detail in Hop-
kins et al. (2014); Hopkins (2014). In particular, in “traditional”
GADGET, softenings are not adaptive, and pairwise interactions
are simply smoothed by the larger of the two particle softenings.
We have also modified the softening kernel as described therein to
represent the exact solution for the potential of the SPH smoothing
kernel. Therefore our “standard” simulations use adaptive gravita-
tional softening lengths for gas which minimum is a factor ⇠ 10
smaller than the fixed dark matter gravitational softening lengths.
In order to test this approach we have also run the same initial con-
ditions using identical softenings for both the baryonic and dark
matter particles (close to the higher dark matter default value). We
labeled these runs according to the late star formation history of the
high resolution runs (see Table 1 and the discussion below for more
details).

In our simulations, gas follows an ionized+atomic+molecular

3 A simple center-of-mass algorithm was the only method that we found
not able to track the center of our systems with the accuracy required for
this work.
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Core-Cusp: resolution?

• SIDM seems to do the job 
well [1412.1477]


• There is a variety of fun 
physics associated with 
this scenario: 
gravothermal collapse, 
strongly coupled systems 
become poor heat 
conductors, etc.

FIG. 9: Left: Density profiles for halo with mass ⇠ 1010 M� (dubbed “Pippin”) from DM-only simulations
with varying values of �/m. Right: Rotation curves for Pippin halo with �/m & 0.5 cm2/g are broadly
consistent with measured stellar velocities (evaluated at their half-light radii) for field dwarf galaxies of the
Local Group. Reprinted from Ref. [111].

50 cm2
/g, leads to an increasing central density, indicating this halo has entered core collapse.

Nevertheless, core collapse is mild. Density profiles with �/m = 0.5 � 50 cm2
/g, spanning

two orders of magnitude, vary in their central densities by only a factor of ⇠ 3. Comparing with
data for field dwarfs in the Local Group, Fig. 9 (right) shows that predicted SIDM rotation curves
for 0.5 � 50 cm2

/g are consistent with the velocities and half-light radii inferred from several
observed galaxies. This illustrates not only how SIDM affects both the core-cusp and TBTF
problems simultaneously, but that �/m need not be fine-tuned to address these issues.

The conclusion from these studies is that �/m & 0.5 cm2
/g can produce O(kpc) cores needed

to resolve dwarf-scale anomalies [111]. However, the upper limit on �/m at these scales—due to
core collapse producing a too-cuspy profile—remains unknown.

Cluster scales: Next, we turn to clusters (Mhalo ⇠ 1014�1015 M�). The first cosmological sim-
ulations at these scales were performed by Yoshida et al. [101], which studied a single 1015 M�
halo for �/m = 0.1, 1, and 10 cm2

/g. More recently, Rocha et al. [94] performed simulations
targeting similar scales, but over much larger cosmological volume, for �/m = 0.1 and 1 cm2

/g.
The best-resolved halos in their volume span 1012�1014 M�. For 1 cm2

/g, the central density pro-
files are clearly resolved for the Yoshida halo and for ⇠ 50 Rocha halos. On cluster scales, SIDM
halos have O(100 � 200 kpc) radius cores and central densities ⇢0 ⇠ few ⇥ 10�3 M�/pc3. For
�/m = 0.1 cm2

/g, the simulations lack sufficient resolution to fully resolve the cored inner halo,
though O(30 kpc) radius cores seem a reasonable estimate. For �/m = 10 cm2

/g, the Yoshida
halo has a similar density profile compared to 1 cm2

/g, although the former is considerably more
spherical (ellipticity is discussed below).

It is important to note that SIDM halos exhibit variability in their structure. Within the Rocha
et al. [94] halo sample, SIDM halos, with fixed �/m = 1 cm2

/g and fixed Vmax, show an order-of-
magnitude scatter in their central densities. The dwarf halo samples from Davé et al. [102] show a

28



Diversity of Rotation Curves
8 K. A. Oman et al.

Figure 5. Rotation curves of four dwarf irregular galaxies of approximately the same maximum rotation speed (⇠ 80–100 km s�1) and galaxy mass,
chosen to illustrate the diversity of rotation curve shape at given Vmax. As in previous figures, coloured solid curves and shaded areas correspond to
the median (and 10

th–90th percentile) circular velocity curve of simulated galaxies matching (within 10 per cent) the maximum circular velocity of
each galaxy. Note that the observed rotation curves exhibit a much wider diversity than seen in the EAGLE and LOCAL GROUPS simulations, from
galaxies like UGC 5721, which are consistent with our simulations, to galaxies like IC 2574, which show a much more slowly rising rotation curve
compared with simulations, either hydrodynamical (coloured lines) or dark matter-only (black lines).

Available simulation data are sparse but suggest that the scatter
in structural properties at fixed halo mass is no larger for alterna-
tive dark matter models than for ⇤CDM (e.g. Rocha et al. 2013;
Lovell et al. 2014, for SIDM and WDM respectively). This is in
disagreement with rotation curve data and suggests that a mech-
anism unrelated to the nature of the dark matter must be invoked
to explain the rotation curve shapes.

4.6 The “inner mass deficit” problem

The prevalence of the “inner mass deficit” problem discussed
above may be characterized by comparing the inner circular
velocities of observed galaxies with those of ⇤CDM galaxies
of matching Vmax. We show this in Fig. 6, where we use our
⇤CDM simulations, as well as the compiled rotation curve data,
to plot the circular velocity at 2 kpc against the maximum mea-
sured rotation speed, Vmax. Where data do not exist at exactly
2 kpc, we interpolate linearly between nearby data points. We
choose a fixed physical radius of 2 kpc to characterize the in-
ner mass profile because it is the minimum radius that is well
resolved in all of our simulations for systems in the mass range

of interest here. It is also a radius that is well resolved in all
observed galaxies included in our compilation.

The grey symbols in the top left panel of Fig. 6 show the
results of our DMO simulations. The tight correlation between
these quantities in the DMO case is a direct consequence of the
nearly self-similar nature of ⇤CDM haloes: once the cosmo-
logical parameters are specified, the circular velocity at 2 kpc
may be used to predict Vmax, and vice versa. Variations in en-
vironment, shape and formation history result in some scatter,
but overall this is quite small. For given Vmax, the circular ve-
locity at 2 kpc has a standard deviation of only ⇠ 0.1 dex.
Our results are in good agreement with earlier DMO simula-
tion work. The solid black line (and shaded region) in the figure
indicates the expected correlation (plus 1-� scatter) for NFW
haloes with the mass-concentration relation corresponding to
the cosmological parameters adopted in our simulations (Lud-
low et al. 2014). Note that the simulated data approach the 1:1
line for Vmax < 30 km/s: this is because those halos are intrinsi-
cally small; the radius where circular velocity profiles peak de-
creases steadily with decreasing circular velocity, from 4.6 kpc
to 1.9 kpc when Vmax decreases from 30 to 15 km/s.

The inclusion of baryons modifies these correlations, as

c� 0000 RAS, MNRAS 000, 000–000
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Figure 6. Circular velocity at r = 2 kpc vs the maximum circular velocity, Vmax, for observed and simulated galaxies. For observed galaxies we use
the maximum rotation speed as an estimate of Vmax, and the rotation speed measured at 2 kpc for Vcirc(2 kpc). We show only simulated systems for
which the convergence radius is less than 2 kpc, and observed galaxies for which the nominal angular resolution of the data is better than the angle
subtended by 2 kpc at the galaxy’s distance. Top-left: Results for dark matter-only simulations (grey points), together with the correlation expected for
NFW haloes of average concentration (solid black line). The thick gray line traces the mean Vcirc(2 kpc) as a function of Vmax, whereas the shaded
areas show the standard deviation. Top-right: As the top-left panel, but for simulated galaxies in the LOCAL GROUPS and EAGLE cosmological
hydrodynamical simulations (red symbols). See the legend for details about each symbol type. The grey line and grey shaded region repeat the DMO
correlation in the top-left panel, the red line and shaded region are analogous for the hydrodynamical simulations. Bottom-left: Observed galaxies (small
text labels identify individual objects). The different symbols show the different tracers observed (H I, H ↵, other features in the optical) and whether
the observations are in 1 dimension (1D, e.g. long slit spectroscopy) or 2 dimensions (2D, e.g. radio interferometry, integral field spectroscopy). Solid
lines and shaded regions are as in the top right panel. Note the large variation in Vcirc(2 kpc) at fixed Vmax compared with the simulation results.
The dotted, dashed and dot-dashed lines indicate the changes in Vcirc(2 kpc) induced by removing a fixed amount of mass from the inner 2 kpc of
⇤CDM haloes, as labelled. The blue-shaded region highlights systems with an inner 2 kpc mass deficit exceeding 5⇥ 10

8M�. Bottom-right: Results
of recent simulations that report the formation of cores in the dark matter profiles of ⇤CDM haloes. These cores lead to a slight reduction in the value
of Vcirc(2 kpc) relative to those in our simulations, but the changes are insufficient to explain the full range of values spanned by the observational
data. The dotted lines and dashed lines are as in the bottom-left panel, for ease of comparison.

shown by the red symbols in the top-right panel of Fig. 6,
which show results for our hydrodynamical simulations. The
main result of including baryons is to shift the expected cor-
relation toward higher values of Vcirc(2 kpc) for galaxies with
Vmax >⇠ 60 km s�1. This is not surprising: the assembly of the
luminous galaxy adds mass to the central few kiloparsecs and
raises the circular velocity there. A tight relation between Vmax

and Vcirc(2 kpc) remains, however: the scatter increases only
slightly, to at most ⇠ 0.15 dex (standard deviation).

Observed galaxies are shown in the bottom-left panel of
Fig. 6. The diversity of rotation curves alluded to above is
clearly seen here. At Vmax ⇠ 70 km s�1, for example, the
rotation speed at 2 kpc of observed galaxies spans more than

a factor of ⇠ 4, or about a factor of ⇠ 16 in enclosed mass.
Some of those galaxies, like DDO 168 have rotation speeds
at 2 kpc comparable to the maximum (Vmax ⇠ 62 km s�1,
Vcirc(2 kpc) ⇠ 58 km s�1), which indicates an enclosed mass
of ⇠ 2.3 ⇥ 109 M�, or about twice as much as the total bary-
onic mass of the galaxy, according to the baryonic Tully-Fisher
relation; Mbar/M� = 102.3 (Vmax/ km s�1)3.82 (McGaugh
2012). At the other extreme, galaxies like UGC 5750 (Vmax >⇠
73 km s�1) 5 have rotation speeds at 2 kpc of just ⇠ 20 km s�1,

5 A rightward arrow is used in the bottom left panel of Fig. 6 to indi-
cate cases where the rotation curve is still rising at the outermost radius
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Solutions to the Diversity of 
Rotation Curve Problem

• [1601.05821] suggest deprojection: when we look at the 
galaxy, we might mis-measure rotational velocity due to 
the inclination 


• SIDM provides a nice solution: the Baryons and the DM 
are strongly linked through their gravitational interactions 
because of the isothermally of SIDM. [1808.05695]



Planes of Satellite Galaxies

February 9, 2018 1:17 WSPC/INSTRUCTION FILE review

4 Marcel S. Pawlowski

Fig. 1. The three most prominent known planes of satellite galaxies in approximately edge-on
orientations. Panel 1: the VPOS of the MW as seen from a position in which both the Galaxy
(black line) and the satellite plane are seen edge-on. Panel 2: the GPoA around M31 (black ellipse)
as seen from the Sun. Panel 3: the satellite structure around CentaurusA (grey circle) as seen from
the Sun. The orientations and widths of the best-fit satellite planes in these views are indicated
with dashed and dotted lines, respectively. Satellite galaxies with measured velocities are color-
coded according to whether they are approaching (blue, downward triangles) or receding (red,
upward triangles) relative to their host in these views, indicating coherent kinematics consistent
with satellites co-orbiting in the planes. Satellites for which no proper motions (MW) or line-of-
sight velocities (CenA) are known are plotted as crosses, M31 satellites that are not part of the
GPoA are plotted as open triangles whose orientation indicates the line-of-sight velocity direction.
The grey areas denote regions with substantial observational limitations: the region ±12� from the
MW disk plane that is considered obscured by Galactic foreground5 (panel 1), the region outside
of the PAndAS survey around M316 (panel 2), and the region outside of the DEC survey around
CentaurusA7 (panel 3).

[1802.02579]

• The three large galaxies in 
the local neighbourhood 
seem to each have a 
planar subset of satellites 
galaxies. This is somewhat 
unlikely.



Self Interacting DM4 Peter et al.

Figure 2. Surface density profiles for the same halo shown in Fig. 1, now projected along the intermediate axis. Deviations from axisymmetry are highest
along this projection.

Figure 3. Host halo shapes in shells of radius scaled by the virial radius in three virial-mass bins as indicated. The black solid lines denote the 20th percentile
(lowest), median (middle), and 80th percentile (highest) value of c/a at fixed r/rvir for CDM. The blue dashed lines show the median and 20th/80th percentile
ranges for �/m = 1 cm2/g, and the green dotted lines show the same for �/m = 0.1 cm2/g. There are 440, 65, and 50 halos in each mass bin (lowest mass
bin to highest).

3 SIMULATED HALO SHAPES

3.1 Preliminary Illustration

Before presenting a statistical comparison of CDM and SIDM halo
populations, we provide a pictorial illustration of how an individ-
ual halo changes shape as we vary the cross section. The columns

of Figs. 1 and 2 show surface density maps for the same halo sim-
ulated in CDM, SIDM0.1, and SIDM1 from left to right. In Fig.
1, we project the halo along the major axis, which is the orienta-
tion that maximizes the strong-lensing cross section (van de Ven,
Mandelbaum & Keeton 2009; Mandelbaum, van de Ven & Kee-
ton 2009). In Fig. 2, we project the halo along the intermediate

c� 0000 RAS, MNRAS 000, 000–000
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Constraints: Shapes

• NGC 720: As observed by Chandra 
Telescope [astro-ph/0205469]


• It shows an elliptical gravitational 
potential


• This indicates that the DM has a 
triaxial distribution.


• This implies an upper bound on the 
scattering cross-section:

4

Fig. 1.— (Left) False-color ACIS-S3 image of NGC 720 in the 0.3-3 keV band. The image has been adaptively smoothed using the ciao task
csmooth with default parameters. No exposure-map correction or background subtraction has been applied. Contours are spaced according
to the square root of the intensity. (Right) Same image except the point sources have been removed. The contour levels are the same as the
original image. Each image is oriented so that celestial N is up and E is to the left.

because the area of the source becomes increasingly more
significant relative to r2. It is likely that at such small
radii the approach of simply filling in the source region
with a spatially uniform count distribution does not faith-
fully (enough) represent the shape the local diffuse emis-
sion. We defer consideration of more sophisticated source-
replacement algorithms to a future study. In our analyses
below we treat the region r ! 30′′ with caution.
As should be expected, residual source-replacement ef-

fects in these inner regions are much less important for the
radial profile. We shall therefore use the whole image for
construction and analysis of the radial profile.

3.2. ϵx and PA

3.2.1. Method

The flattening of the X-ray isophotes is of central im-
portance to our study of the flattening and concentration
of the total gravitating matter in NGC 720. The standard
parameter used to denote the flattening of an individual
isophote is the ellipticity, 1−b/a, where a is the semi-major
axis and b is the semi-minor axis. However, fitting perfect
ellipses to the X-ray isophotes is not necessarily justified
since the isopotential surfaces generated by an elliptical
mass distribution are not perfect ellipsoids. In addition,
over most of the X-ray image the surface brightness of the
diffuse gas is ! 1 counts per pixel. This condition requires
that relatively large areas (in excess of a single-pixel width
isophote) must be averaged over to obtain interesting con-
straints on the image flattening.
We quantify the image flattening using the method de-

scribed by Carter & Metcalfe (1980) and implemented in
our previous study of the ROSAT image of NGC 720 (e.g.
Buote & Canizares 1994). This iterative method is equiv-
alent to computing the (two-dimensional) principal mo-
ments of inertia within an elliptical region. The ellipticity,
ϵx, is defined by the square root of the ratio of the princi-
pal moments, and the position angle, PA, is defined by the
orientation of the larger principal moment. If these mo-
ments are computed within an elliptical region where the
image is perfectly elliptical with constant ellipticity and

orientation, then ϵx represents a true ellipticity and PA is
the true orientation of the major axis. If the image is not
perfectly elliptical within this region, then ϵx and PA are
average values weighted heavily toward the edge of the re-
gion; i.e., ϵx provides a useful measure of image flattening
which does not assume the image to be perfectly elliptical.
Following our previous studies we compute ϵx(a) using

all image pixels interior to the ellipse defined at a (obtained
via iteration). We did investigate using elliptical annuli to
provide a more direct measurement of the variation of ϵx
with a. Unfortunately, because of the low counts per pixel
noted above the radial fluctuations of ϵx, PA, and centroid
were considerably larger when using elliptical annuli.
We estimate uncertainties on ϵx and PA using a Monte

Carlo procedure. The counts in each pixel are randomized
assuming poisson statistics. Then ϵx and PA are computed
precisely as done for the original image. After performing
100 such realizations and corresponding “measurements”
of the image we compute the standard deviations of ϵx and
PA at each a for the 100 runs. We take these standard de-
viations to be the 1σ errors.
We have computed ϵx and PA out to a = 185′′ from

the Chandra image such that the background-subtracted
counts in each aperture increase by ≈ 500 for each a. (The
edge of the S3 chip corresponds to r ≈ 215′′.) Because we
use all image pixels interior to a to compute ϵx and PA,
their values computed for a given a are correlated with
values computed at adjacent inner a. This means that the
error bars on ϵx and PA for adjacent a are not fully inde-
pendent. But we emphasize that these quantities, being
derived from second moments of the image, are weighted
heavily by the pixels near a.

3.2.2. Results

In Figure 2 we show ϵx and PA computed from the Chan-
dra image before and after removing the point sources.
(Note the error bars for values computed from the image
with sources are not shown for clarity but are of similar
magnitude to those obtained from the source-free image.)
For the image with point sources, within a ! 80′′ ϵx varies
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Fig. 2.— (Left panel) ϵx as a function of semi-major axis computed from the Chandra image with point source removed (circles and error
bars; blue). The (red) boxes are the values of ϵx obtained from the image which includes the point sources. The (green) dotted error bars
are the values obtained with the ROSAT HRI (Buote & Canizares 1996a) (Right panel) PA as a function of a computed from the Chandra
image with point sources removed (circles and error bars; blue). The (red) boxes are the values of ϵx obtained from the image which includes
the point sources. Note that because we use all image pixels interior to a to compute ϵx and PA, the values and the error bars for adjacent a
are not independent. We express a in kpc on the top axis.

Fig. 3.— (Left panel) ϵx as a function of semi-major axis computed from the source-free Chandra image (circles and error bars; blue). The
optical B-band ellipticity is indicated by the (green) dashed line (see §4.2). The values of ϵx expected for a model where the gravitating mass
follows the optical light is shown by the (red) squares; i.e., the oblate M ∝ L⋆ model mentioned in the text. (Right panel) PA as a function
of a computed from the source-free Chandra image (circles and error bars; blue). The optical B-band value (green) is also shown. We express
a in kpc on the top axis.

wildy with a then setlles down to ϵx ≈ 0.2 until it declines
for a ! 150′′. This erratic behavior is a stark constrast to
the slowly varying values of ϵx computed from the source-
free image. We interpret this result as a strong affirmation
of our success at removing and replacing the point sources
over this range in a for the purpose of computing ϵx.
The PA generally does not exhibit such dramatic varia-

tions with a in either case, though the PA values computed
from the image with sources (for the most part) systemati-
cally exceed those computed from the source-free image by
∼ 10◦. This relative similarity between the PAs computed
from the raw and source-free images coupled with the lack
of strong fluctuations with a suggest that PA is less sensi-
tive than is ϵx to contaminating point sources. However,
with the present data we cannot rule out the possibility
that PA is more sensitive than ϵx to contaminating point

sources and is therefore only slightly affected by our at-
tempt to exclude and replace the sources. Since the values
of ϵx and PA are necessarily interwined, and we are confi-
dent of the success in computing ϵx, we do not believe the
PA values computed from the source-free image are still
substantially affected by embedded point sources. Never-
theless, to be conservative we shall address below the need
for dark matter in NGC 720 using ϵx and PA separately.
Let us focus on the source-free image (Figure 3). As ex-

plained above in §3.1 the best-fitting values of ϵx and PA
computed within a " 30′′ must be considered tentative be-
cause of residual source-replacement errors. Nevertheless,
certain trends in these data appear to be robust. First,
for small a we have, ϵx ≈ 0.2 − 0.3, consistent with the
optical isophotes in this region within the relatively large
estimated errors. Second, the position angle is consistent

h�vi/m < 0.1cm2/g
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Merging Clusters

• During the merger, SIDM would 
under go collision and heat up 
as well as slow down.

FIG. 17: Optical (left) and X-ray (right) observations of the Bullet Cluster showing the distribution of
galaxies and hot gas, respectively. Projected mass density reconstructed from weak lensing is superimposed
on both panels (green contours); thin white lines indicate locations of the density peaks for the Bullet
and main cluster (at 68.3%, 95.5%, and 99.7% CL), separated by 720 kpc. White bar indicates 200 kpc.
Reprinted from Ref. [299].

After the Bullet Cluster’s discovery [296], several other dissociative cluster mergers have
been found. Those for which direct constraints on self-interactions have been quoted include
DLSCL J0916.2+2951 (Musket Ball Cluster) [316, 317], MACS J0025.4-1222 (Baby Bul-
let) [318], CIZA J2242.8+5301 (Sausage Cluster) [319, 320, 321], and ACT-CL J0102-4915 (El
Gordo) [322, 323, 324], Abell 520 (Train Wreck Cluster) [325, 326], and Abell 2744 (Pandora’s
Cluster) [327, 328, 329]. Among substructure mergers, Abell 3827 has received considerable
attention for its implications for SIDM [127, 330, 331, 332].

Musket Ball Cluster: This system is a binary merger between roughly equal mass subclusters
(2 � 3 ⇥ 1014 M�) along a collision axis inclined ⇠ 45� to the plane of the sky [303, 316]. A
feature of this merger is the large physical separation ⇠ 1.3 Mpc between the subclusters, which
implies that this system has evolved post-collision 2�5 times longer than the Bullet Cluster [316].
Unfortunately this does not directly translate into an enhanced sensitivity to self-interactions since,
according to SIDM simulations, galaxy-DM offsets do not continue to grow with time after halo
passage [129, 306, 307]. One subcluster in this system appears to have an offset ⇠ 130 kpc
between the weak lensing mass peak and its corresponding galactic centroid, with the former
trailing the latter along the merger axis [317]. However, the statistical significance of this offset is
not high (less than 2�) and does not exclude collisionless CDM [316, 317].

Baby Bullet Cluster: Two subclusters with equal mass (2.5 ⇥ 1014 M�) have undergone a
merger oriented in the plane of the sky. The mass lensing peaks for both subclusters are con-
cident with their respective galactic luminosity centroids, implying that DM appears collisionless,
while the peak of the gas density is offset from both subclusters and is located between them [318].

Sausage Cluster: This system is dominated by two massive subclusters (1015 M�) that have
undergone a merger in the plane of the sky, as evidenced by the high polarization fraction of the
prominent radio relics that trace the shock fronts [319, 320, 321]. Weak lensing observations reveal
two distinct mass peaks separated by ⇠ 1 Mpc, while the X-ray emission region is mainly located
between the mass peaks and is highly elongated along the merger axis [320, 321]. Interestingly,
the mass peaks for both subclusters lag behind their respective galactic luminosity centroids by
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Cluster �/m Method used Ref.

Bullet Cluster < 3 cm2/g Scattering depth (⌃dm ⇡ 0.3 cm2/g) [298]
(1E 0657-558) < 0.7 cm2/g Mass loss < 23% [106]

< 1.25 cm2/g DM-galaxy offset 25 ± 29 kpc [106]
Abell 520 3.8 ± 1.1 cm2/g Scattering depth (⌃dm ⇡ 0.07 cm2/g) [326]

0.94 ± 0.06 cm2/g Scattering depth (⌃dm ⇡ 0.14 cm2/g) [128]
Abell 2744 < 1.28 cm2/g Offset [340]

< 3 cm2/g Scattering depth (⌃dm ⇡ 0.3 cm2/g) [329]
Musket Ball Cluster < 7 cm2/g Scattering depth (⌃dm ⇡ 0.15 cm2/g) [316]
(DLSCL J0916.2+2951)
Baby Bullet < 4 cm2/g Scattering depth (⌃dm ⇡ 0.25 cm2/g) [318]
(MACS J0025.4-1222)
Abell 3827 ⇠ 1.5 cm2/g Offset [127]

TABLE II: Summary of merging cluster constraints on SIDM. All values for �/m are upper limits except
for Abell 520 and 3827. For Abell 520, two quoted values of �/m are obtained under different assumptions
in which ⌧ = ⌃dm�/m ⇡ 0.25 [326] or 0.13 [128].

ing images near these substructures allows for a detailed reconstruction of the mass sub-peaks.
Interestingly, the best resolved sub-peak shows a significant offset from its stellar counterpart, per-
haps explained by drag due to self-interactions [331, 332, 342]. The size of the offset, 1.6 ± 0.5
kpc [332], is inconsistent with offsets seen in hydrodynamical simulations for collisionless CDM
at > 99% C.L (statistics only) [343].20

B. Self-interactions in merging clusters

To place constraints on self-interactions, merger studies have relied on three approaches: scat-
tering depth, mass loss, and offsets. For clarity, we focus our discussion on the Bullet Cluster, to
which all three methods have been applied. Table II summarizes constraints on self-interactions
for all mergers quoted in the literature. However, as we now discuss, not all limits are equally
robust.

The first (and most conservative) approach is based on the optical depth argument. For the
Bullet Cluster, self-interactions must not be optically thick since the Bullet halo has survived the
merger. The scattering depth ⌧ must satisfy

⌧ = ⌃dm�/m < 1 . (17)

Here, ⌃dm ⇡ 0.3 g/cm2 is the peak projected mass density along the line-of-sight, which is
assumed to be the same as the column density of the larger main halo along the trajectory of the
Bullet [298]. For ⌧ > 1, the Bullet halo would have interacted more like a fluid, experiencing
similar drag and stripping as the gas, which implies �/m . 3 cm2

/g.

20 After this report was completed, a new study was released for Abell 3827 that erased this discrepancy with
CDM [344]. Improvements in foreground subtraction and image identification allow for an improved lensing mass
map. The position of the sub-peak is now only 0.54+0.22

�0.23 kpc offset from its stellar density.
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Figure 5. Two-dimensional distribution (i.e. surface density) of
DM after the sub-cluster has passed through the main cluster for
System A (representative of Abell 520) and System B (represen-
tative of the Bullet Cluster) for the case of contact interactions.
The black solid contours indicate lines of constant surface density,
starting at 108 M� kpc�2 at the outermost contour and increas-
ing by a factor of 2 with each contour towards the centre. For
example, the dark purple region (outermost for both systems)
has a surface density of ⌃ = (1–2) ⇥ 108 M� kpc�2, the light
yellow region (innermost for System B) has a surface density of
⌃ > 6.4⇥109 M� kpc�2. The green dashed contour indicates the
iso-density contour containing 68% of the total halo mass, which
is used for the calculation of the centroid (see § 2.2).

scattered particles will no longer be bound to the DM halo.
As they leave the system, they will slow down in the gravi-
tational potential of the DM halo thus transferring some of
their momentum to the surroundings. In other words, the
tail of scattered DM particles will exert a gravitational pull
on the DM halo, which will slow down the entire system.

One might be tempted to conclude that rare self-

interactions therefore lead to a drag on the DM halo similar
to the one we found for the case of frequent self-interactions.
However, the origin of this drag are gravitational interac-

tions alone. Consequently, this drag force will necessarily
a↵ect the DM halo and the galaxies and stars within it in
exactly the same way.7 Our central observation is therefore
that a DM particle that does not directly experience any
collisions will behave exactly like a collisionless galaxy.

A possible exception would be if a DM particle, after
having scattered, scatters again as it leaves the DM halo.
If such secondary scatterings were to occur frequently, DM
particles would transfer their momentum preferentially to
the DM halo rather than to stars and galaxies. However,
observational constraints on evaporation rates and, in fact,
halo shapes imply that the probability for a DM particle
to scatter within one orbit has to be very small. In other
words, most particles that scatter from DM particles in the
main cluster will typically not scatter again as they leave
the sub-cluster.

We conclude that rare DM self-interactions do not lead
to an e↵ective drag force that can separate DM halo and
galaxies. DM particles which have not undergone any col-
lisions will always remain coincident with the equally colli-
sionless galaxies. However, those particles which have had
collisions will preferentially travel towards the back of the
halo. Ultimately, these particles will end up far away from
their original system, but shortly after the collision they still
appear to be a part of the DM halo. Consequently, as they
leave the system, these particles will shift the centroid of
mass of the DM halo in the direction opposite to the di-
rection of motion thus leading to an apparent separation
between DM and galaxies shortly after the collision.

A similar argument applies to particles that have scat-
tered but remain bound to the DM halo. These particles will
typically have elliptical orbits. Since the relaxation time for
DM particles is very large, we expect them to retain these
orbits for a long time. For a short time after the collision
(i.e. before they complete half an orbit) these particles will
therefore preferentially be found towards the back of the sys-
tem. Again, particles that have scattered very recently can
induce an apparent separation between DM and galaxies.

We have identified a key di↵erence between rare and
frequent DM self-interactions. For rare self-interactions, a
separation between DM halo and galaxies is caused by DM
particles leaving the gravitational potential in the direction
opposite to the direction of motion. This is in contrast to
the case of frequent self-interactions, where the separation
arises from galaxies moving ahead and leaving the gravita-
tional potential in the direction of motion. Consequently, the
two scenarios are distinguishable if the shape of the stellar
distribution can be measured with su�cient accuracy (and
the initial distribution is known).

To check our expectations, we have extended the nu-
merical simulation introduced above to include contact in-
teractions between individual DM particles. The details of
our code are presented in Appendix C. Fig. 5 shows the re-
sulting shapes of the DM haloes after the cluster collision

7 As discussed in § 2.2 scattering between individual DM particles
with large momentum transfer via gravitational interactions is
completely negligible.
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• As dwarf galaxies move in the halos of their 
host galaxies, the dark matter self interaction 
tends to strip and reshape the satellites halo.


• The constraints are derived from requiring that 
existing satellites such as Fornax do not 
disappear.


• However, this bound is subheading to triaxiality 
bound. 


• Moreover, the literature does not quite treat this 
bound correctly: internal interactions are crucial


• N-body simulations do include this effect 
naturally.



Warning!
• Most of the simulation community has focused on contact interactions.


• There are exceptions where 1/v^4 cross-sections were simulated. (But without the 
angular dependence)


• The following constraints are relevant for point like interactions. There are 
situations when “long-range” interactions lead to different results. [I am happy to 
talk about that]
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Figure 4: Constraints on the darkly-charged dark matter parameter space in the mX �↵D

plane. Note that the constraints aside from relic abundance have the caveats discussed in the
text and should not be taken as strict bounds on the parameter space. The ellipticity con-
straints (discussed in section 3.1) are presented as two curves: the original Ref. [8] calculation
[dashed yellow], and the more complete (though still uncertain) calculation that includes the
radius dependent constraints on ellipticity from figure 3 [red]. We also show the constraint
from evaporation of Milky Way dwarf galaxies from Ref. [54] and discussed in section 3.2
[dot-dashed blue]. We also display the Bullet cluster bound adopted from Ref. [50] and dis-
cussed in section 3.3 [purple]. Finally, we show the mX � ↵D curve for which the freeze-out
mechanism discussed in section 2.1 produces the correct relic density for darkly-charged dark
matter [green], which includes the e↵ects of Sommerfeld enhancement.

but stronger than that from the Bullet Cluster, for example. Again, they found that numerous
soft scatterings dominated over a single hard scattering. As presented in Ref. [54], the
constraint reads

↵
2
D

m
3
X

< 10�11GeV�3
. (3.25)

We believe this constraint is also somewhat overstated, both for technical reasons that
reduce the bound slightly and for other reasons that could be very interesting, but require
a more careful analysis that we delay to a future publication. We do not present the full
calculation but rely on the calculation for ellipticity as presented above. The technical
disagreements are as follows:

• The same consideration about the cuto↵ in the infrared logarithm applies here. Putting
in the inter-particle spacing rather than the Debye wavelength weakens the numerical
value of the bound in eq. (3.25) by about a factor of 2/3.
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Figure 1: Time evolution of the ellipticity as modeled by our simplified system in sec-
tion 3.1.2 starting from an ellipticity of order unity. The solid orange line shows the approxi-
mate linear evolution, similar to the expansion performed in eq. (3.24). The solid blue curve
illustrates the exact solution given in eq. (3.23). The dashed vertical lines illustrate the time
to reach an ellipticity of 0.1 in both cases. The saturation e↵ect of the rate of isotropization
as the halo becomes more isotropic is clearly visible in the exact solution.

We will neglect the backreaction on the bath, v̇h. Using rotation invariance, we can perform
the angular v2 integral and the �

0 integral. Hence,

�
3v̇c
v4c

=
32⇡3p

⇡↵
2
D

m
2
Xnc

Z
dv2

v2

dx

(1� x)2

⇣
f(0)f(v2)� f(v2

p
(1� x)/2)f(v2

p
(1 + x)/2)

⌘
.

(3.18)

Rather than do the exact integral, we focus instead on the ✓ ! 0 (x ! 1) limit, which
dominates the behavior. After some algebra (see appendix B) the Boltzmann equation reads

v̇c = �
8
p
⇡↵

2
Dnh

3m2
Xv

5
hvc

�
v
2
c � v

2
h

�2
Z cos�1 ✓min

0

dx

(1� x)
. (3.19)

As before, we use the inter-particle spacing to cut o↵ the infrared divergence above. The
result is a first order di↵erential equation for vc

vcv̇c = �
8
p
⇡↵

2
Dnh

3m2
Xv

5
h

�
v
2
c � v

2
h

�2
log⇤, (3.20)

where ⇤ is the same as in eq. (3.9), with v0 replaced by vh. The solution takes the form

v
2
c (t) = v

2
h �

v
2
h

t
⌧ +

v2h
v2h�v2c,0

, (3.21)

where vc,0 is the initial velocity dispersion of the cold population, and where we have defined
an e↵ective timescale to isotropize the velocity distribution:

⌧ =
3m2

Xv
3
h

16
p
⇡↵

2
Dnh log⇤

. (3.22)
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FIG. 13: Left: Velocity-weighted self-interaction cross section per unit mass as a function of average relative
particle velocity in a halo. Data points from astrophysical observations correspond to THINGS dwarf
galaxies (red), LSB galaxies (blue), and clusters (green). Diagonal lines show constant values of �/m.
Gray points are fits to mock data from SIDM simulations, with fixed �/m = 1 cm2/g, as a test of the Jeans
method to reproduce the input cross section. Reprinted from Ref. [116]; see therein for further details.
Right: Comparison of DM density profiles for simulated SIDM-only halo (green dots) to SIDM halo with
baryons (dashed curves), either with (black) or without (red) adiabatic contraction from stellar disk, where
�/m ⇡ 0.5 cm2/g. The SIDM profile with baryons is virtually identical to the collisionless DM profile
(NFW) except for the innermost ⇠ 0.5 kpc. Reprinted from Ref. [117].

section per unit mass, statistically averaged over velocity, while the ⇢dm(r1) on right-hand side
is obtained by fitting Eq. (14) to astrophysical data for each system. Since more massive halos
correlate with higher average relative velocities hvreli for DM particles, the range of halos provides
an important probe of the velocity-dependence of self-interactions. Analogous to tuning the beam
energy in a particle collider, the energy-dependence of scattering is crucially important for probing
the underlying particle physics of SIDM.

To illustrate the Jeans method, Fig. 12 shows results for two clusters from Ref. [116]. The
full SIDM profile has been fit to the stellar velocity dispersions for the brightest central galaxy
at small radii (. 10 kpc) and strong and weak lensing data at larger radii (& 10 kpc). These
data prefer cluster profiles with cores. A cuspy (NFW) profile fit only from lensing data does not
agree with stellar data in the central halo (see inset). By matching the collisional and collisionless
regions of the halo together to determine r1, the preferred cross section for these clusters is �/m ⇡

0.1 cm2
/g. These conclusions may be weakened if stellar anisotropies are far more significant that

assumed [202] or if AGN feedback is relevant [200], in which case �/m . 0.1 cm2
/g.

Jointly analyzing both galaxies and clusters, Fig. 13 (left) illustrates how h�vreli/m depends
on the average collision velocity hvreli, assuming self-interactions are responsible for the observed
cores in these systems. While galaxy-scale observations favor �/m ⇡ 2 cm2

/g, data from clus-
ters prefers a much smaller cross section, �/m ⇡ 0.1 cm2

/g [116]. Taken at face value, these
data imply that SIDM can provide a consistent solution to the core-cusp problem, provided self-
interactions are relatively suppressed in clusters compared to dwarf galaxies. Such a behavior
is well-motivated from a particle physics perspective, as discussed below. The data given here
may be fit by a massive dark photon model (dashed orange curve in Fig. 13). Lastly, to verify
the validity of the Jeans approach, Ref. [116] analyzed mock rotation curves produced from eight
SIDM halos in a similar mass range from N-body simulations [94, 111], reproducing the input
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FIG. 13: Left: Velocity-weighted self-interaction cross section per unit mass as a function of average relative
particle velocity in a halo. Data points from astrophysical observations correspond to THINGS dwarf
galaxies (red), LSB galaxies (blue), and clusters (green). Diagonal lines show constant values of �/m.
Gray points are fits to mock data from SIDM simulations, with fixed �/m = 1 cm2/g, as a test of the Jeans
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Right: Comparison of DM density profiles for simulated SIDM-only halo (green dots) to SIDM halo with
baryons (dashed curves), either with (black) or without (red) adiabatic contraction from stellar disk, where
�/m ⇡ 0.5 cm2/g. The SIDM profile with baryons is virtually identical to the collisionless DM profile
(NFW) except for the innermost ⇠ 0.5 kpc. Reprinted from Ref. [117].
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correlate with higher average relative velocities hvreli for DM particles, the range of halos provides
an important probe of the velocity-dependence of self-interactions. Analogous to tuning the beam
energy in a particle collider, the energy-dependence of scattering is crucially important for probing
the underlying particle physics of SIDM.

To illustrate the Jeans method, Fig. 12 shows results for two clusters from Ref. [116]. The
full SIDM profile has been fit to the stellar velocity dispersions for the brightest central galaxy
at small radii (. 10 kpc) and strong and weak lensing data at larger radii (& 10 kpc). These
data prefer cluster profiles with cores. A cuspy (NFW) profile fit only from lensing data does not
agree with stellar data in the central halo (see inset). By matching the collisional and collisionless
regions of the halo together to determine r1, the preferred cross section for these clusters is �/m ⇡

0.1 cm2
/g. These conclusions may be weakened if stellar anisotropies are far more significant that

assumed [202] or if AGN feedback is relevant [200], in which case �/m . 0.1 cm2
/g.

Jointly analyzing both galaxies and clusters, Fig. 13 (left) illustrates how h�vreli/m depends
on the average collision velocity hvreli, assuming self-interactions are responsible for the observed
cores in these systems. While galaxy-scale observations favor �/m ⇡ 2 cm2

/g, data from clus-
ters prefers a much smaller cross section, �/m ⇡ 0.1 cm2

/g [116]. Taken at face value, these
data imply that SIDM can provide a consistent solution to the core-cusp problem, provided self-
interactions are relatively suppressed in clusters compared to dwarf galaxies. Such a behavior
is well-motivated from a particle physics perspective, as discussed below. The data given here
may be fit by a massive dark photon model (dashed orange curve in Fig. 13). Lastly, to verify
the validity of the Jeans approach, Ref. [116] analyzed mock rotation curves produced from eight
SIDM halos in a similar mass range from N-body simulations [94, 111], reproducing the input
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The model is described by the following interaction

Lint =

⇢
g��̄�

µ
��µ (vector mediator)

g��̄�� (scalar mediator) ,
(23)

where � is the DM particle (assumed to be a fermion), � is the mediator, and g� is the coupling
constant. In the non-relativistic limit, self-interactions are described by the Yukawa potential

V (r) = ±
↵�

r
e
�m�r. (24)

The model parameters are the dark fine structure constant ↵� ⌘ g
2

�
/4⇡, the mediator mass m�,

and the DM mass m�. For a vector mediator, the potential is attractive (�) for ��̄ scattering
and repulsive (+) for �� and �̄�̄ scattering, while for a scalar mediator, the potential is purely
attractive. More detailed models [366, 367, 368, 369, 370, 371, 372, 373], as well as potentials
arising from other types of mediators [374], have been considered as well.

In general, this framework admits a rich cosmological phenomenology, similar to electromag-
netism in the visible sector. If the mediator is sufficiently light, bound state formation and dark re-
combination [375, 376, 377, 378, 379], delayed kinetic decoupling [141, 380, 381, 382, 383, 384],
dark acoustic oscillations [141, 382, 385, 386], and dissipation could be relevant [387, 388].

Here, we follow Refs. [120, 144] and restrict our attention to the effect of elastic DM self-
scattering. In the perturbative limit (↵�m�/m� ⌧ 1), the Born differential cross section is

d�

d⌦
=

↵
2

�
m

2

�⇥
m2

�
v
2

rel
(1 � cos ✓)/2 + m

2

�

⇤2 . (25)

In the limit of m� � m�vrel, scattering is a contact interaction and the cross section is independent
of vrel, as given in Eq. (3). In the opposite limit when m� ⌧ m�vrel, it scales as 1/v4

rel
à la

Rutherford scattering [140, 141, 389]. Neither limit provides the mildly velocity-dependent cross
section favored by observations if self-interactions are to solve small scale structure issues on
galactic and cluster scales [116]. However, a small but finite mediator mass can provide the right
velocity dependence. This requires the transition between contact and Rutherford limits to occur
around vrel ⇠ 300 km/s (between dwarf and cluster scales), implying m�/m� ⇠ vrel/c ⇠ 10�3.
For instance, for DM with 10 GeV mass, the required mediator mass is m� ⇠ 10 MeV and the
corresponding range of the force is ⇠ 20 fm. It is remarkable that a dark force with femtoscale
range can affect the dynamics of galaxies.

Exploring the full parameter space of this model requires calculating d�/d⌦ beyond the per-
tubative limit, where multiple scattering—ladder diagrams in Feynman diagramatic language—
become important. Buckley & Fox [142] and Tulin, Yu & Zurek [120, 144] developed a numerical
procedure using a nonrelativistic partial wave analysis to study the nonperturbative regime. In
some regimes, analytical expressions are also available. Feng, Kaplinghat & Yu [119] introduced
formulae for the transfer cross section in the Born regime and also in the classical regime, the latter
based on an empirical formula originally developed for plasma collisions [390, 391].26 Ref. [120]

26 In the plasma medium, the photon obtains an effective mass due to the Debye screening effect and ion-ion (electron-
ion) interactions can be modeled with a repulsive (attractive) Yukawa potential. Feng, Kaplinghat & Yu [119] first
applied the semi-analytical fitting formula from [390] to study DM self-interactions. Vogelsberger et al. [109] per-
formed the first Yukawa SIDM simulations, based on the plasma formula introduced in [119] and its reparametrized
form suggested by Loeb & Weiner [143].
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FIG. 18: Left: Velocity-dependence of the DM self-scattering transfer cross section with an attractive
Yukawa potential. Parameters are chosen to illustrate the dependence in different regimes, including weakly-
coupled Born limit (blue), strongly-coupled classical limit (green), s-wave quantum resonance (red solid),
p-wave resonance (red dot-dashed), and s-wave antiresonance (red dashed). Reprinted from Ref. [144].
Right: Parameter space for repulsive Yukawa model of DM self-interactions (↵� ⇡ 1/137), preferred by
dwarf galaxies (red), LSB galaxies (blue), and galaxy clusters (green), at 95% CL. Combined region at
95% (99%) CL is shown by the solid (dashed) contours. The estimated exclusion regions from the Bullet
Cluster (dot-dashed) and the ensemble of merging clusters (long dashed) are also shown. Reprinted from
Ref. [116].

also found an analytical expression for s-wave scattering, valid in the nonperturbative regime, us-
ing the Hulthén potential as an approximation, while Braaten & Hammer [392] studied s-wave
resonant scattering on more general grounds. See Ref. [120] for a map of the full parameter space
and summary of numerical methods and analytical formulae.

Even this simple SIDM model exhibits many possible velocity dependencies for the scattering
cross section. Fig. 18 (left) shows the transfer cross section �T/m, as a function of relative veloc-
ity. Each curve represents a different choice of parameters (↵�, m�, m�) for an attractive Yukawa
potential. In these cases, �T is suppressed on clusters scales and larger (vrel & 1500 km/s), corre-
sponding to the Rutherford limit. However, the dependence becomes much more complicated on
galactic scales with the potential for quantum mechanical resonances (and anti-resonances). For
example, for ↵�m�/m� ⇡ 1.6 n

2 where n is a positive integer, scattering has an s-wave resonance
and �T/m� becomes enhanced at low velocity.

Since the velocity dependence of �T/m is quite sensitive to the choice of the particle physics
parameters, astrophysical observations on different scales can constrain or even discover these
parameters. Kaplinghat, Tulin & Yu [116] showed that SIDM with a repulsive Yukawa interaction
could yield a suitable cross section inferred from both galaxy and cluster data; see Fig. 13 (left).
Fig. 18 (right) illustrates the favored range of (m�, m�) for fixed coupling, chosen to be ↵� ⇡

1/137. Colored bands denote the regions preferred by dwarf galaxies (red), LSB galaxies (blue),
and galaxy clusters (green). Remarkably, there exists a closed common region (black contours)
that points to DM mass of ⇠ 15 GeV and mediator mass of ⇠ 17 MeV. The result is independent
of whether the dark and visible sectors are coupled via interactions beyond gravity.

An interesting question is whether the mediator � can be massless [140, 141, 389]. In the ab-
sence of recombination into bound states, scattering is described by the Coulomb potential. Since
the scattering cross section scales as 1/v4

rel
, fixing 0.1 cm2

/g in galaxy clusters [116] leads to an
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Strongly Coupled DM
• From the previous slide it is apparent we prefer two scales


• This suggests a simple strongly coupled model won’t fly. 


• Solutions:


• Make some fermions become heavier than the strong scale, we are 
back in business.


• Use glueballs and glueballinos


• …

enormous cross section ⇠ 106 cm2
/g on dwarf scales. Such large cross sections are expected

to lead to gravothermal collapse of a dwarf halo. However, Agrawal et al. [389] argue that core
formation and collapse are inhibited for large cross sections since heat conduction is suppressed
by the small mean free path, suggesting an approximate duality between strongly and weakly self-
interacting regimes. Ref. [393] predicted that a large cross section value �/m ⇠ 104 cm2

/g leads
to similar cored profiles as a smaller cross section �/m ⇠ 1 cm2

/g. On the other hand, cosmo-
logical simulations that had been performed in the fluid limit for SIDM yield singular isothermal
halos that are steeper than CDM halos [97, 98], disfavoring this picture. Nevertheless, further
simulations are required to make these statements more quantitative. Lastly, another complication
is that collective plasma effects due to dark electromagnetic fields may be important in affecting
the halo [130, 140, 394].

In the early Universe, light mediator states can play an important role in setting the DM
relic abundance through ��̄ ! �� annihilation. For symmetric DM, the required annihila-
tion cross section is h�annvreli ⇡ 5 ⇥ 10�26 cm3

/s assuming the dark and SM sectors are
thermalized. For asymmetric DM, the relic density is determined by a primordial DM asym-
metry and the annihilation cross section has to be larger than this value to deplete the sym-
metric density (see Refs. [395, 396, 397] and references therein). These considerations imply
↵� & 4 ⇥ 10�5 (m�/GeV) for the vector mediator case. On the other hand, smaller couplings are
viable if the two sectors are thermally decoupled and the SM has a higher temperature [364]. In ad-
dition, the SIDM abundance could also be set by non-thermal production mechanisms [398, 399].

D. Strongly interacting dark matter

SIDM may be a composite state of a confining non-Abelian gauge theory in the dark sec-
tor [132, 366, 400, 401, 402, 403, 404, 405, 406, 407]. Since such theories are already known to
exist in nature—namely, quantum chromodynamics (QCD)—it is appealing that similar physics
may exist for DM. QCD enforces that the proton is long-lived (due to an accidental symmetry)
and accounts for most of the mass of visible matter in the Universe. Similarly, DM may be a
dark hadron whose mass arises through nonperturbative physics and whose stability is imposed
automatically by symmetry. Proposed candidates typically fall into the categories of dark baryons,
dark mesons, or dark glueballs. However, the gauge group and properties of the dark quarks (num-
ber of flavors, masses, representations) are unknown a priori and many possible theories exist (see
Ref. [408] for a review).

Due to the nonperturbative nature of the theory, it is nontrivial to compute the self-interaction
cross section and mass spectrum. In the low-energy limit, the self-interaction cross section can be
expressed as � = 4⇡a

2 where a is the scattering length. On dimensional grounds, one estimates
a ⇠ ⇤�1

DM
, where ⇤DM is the dark confinement scale (in analogy with ⇤QCD ⇡ 300 MeV). The

DM mass m depends in some detail on the nature of the DM state. For instance, for SU(N) gauge
theory, dark baryons have mass m ⇠ N⇤DM if composed of effectively massless constituents
(nucleon-like), while m can be larger if one or more constituents are massive (like a heavy flavor
baryon). If DM is a meson-like state, m is somewhat arbitrary and DM can be lighter than ⇤DM

(pion-like) or heavier (like a heavy flavor meson). For dark glueballs, the mass of the lightest state
typically scales as m ⇠ few ⇥ ⇤DM [409].

The cross section per unit mass for self-interactions can be expressed as follows:

�/m ⇠ 3 cm2
/g ⇥

✓
⇤DM

m

◆✓
⇤DM

a�1

◆2 ✓100 MeV

⇤DM

◆3

. (26)
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Conclusion
• Some small scale structure problems have gone away once baryons are 

included in the simulations (missing satellites, too-big-to-fail)


• Other problems arise (Diversity of rotation curves)


• And some are partially resolved, but not fully: Core-Cusp


• Some we are not so sure what they are: Planes of satellites


• However, one could take some of the anomalies as hints as to the nature of 
DM: Self Interacting


• Furthermore, if you like skating on thin ice, you could motivate some 
choices of your SIDM interaction parameters.


• If in doubt start consulting [1705.02358]


