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The Strong CP Problem

Quantum chromodynamics (QCD) decribes the strong interactions remarkably well down to

the smallest scales probed so far. Yet it faces a problem. The theory allows for a CP-violating

term Sθ in the action,

S = SQCD + Sθ

the so-called θ term. In Euclidean space-time Sθ reads

Sθ = i θ Q , Q =

∫

d
4
x q(x) ∈ Z

where Q is the topological charge with charge density

q(x) = −
1

64π2
ǫµνρσ F

a
µν(x)F

a
ρσ(x)

In this formulation θ enters as an arbitrary phase with values θ ∈ [0, 2π). The problem is that

no CP violation has been observed in the strong interactions.



A nonvanishing value of the vacuum angle θ would result in an electric dipole moment dn of

the neutron

Nucleon EM current

〈p
′
, s

′
|Jµ|p, s〉 = ū(~p

′
, s

′
)Jµ u(~p, s)

CP violating

↓

Jµ = γµ F1(q
2
) + σµν qν

F2(q
2)

2mN

+ (γq qµ − γµ q
2
) γ5 FA(q

2
) + σµν qν γ5

F3(q
2)

2mN

anapole dipole

Dipole moment

dn =
e F3(0)

2mN

∝ eq ℓ



Experiment Lattice
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Current experimental limits on |dn|, paired with lattice calculations, lead to the upper bound

|θ| . 7.4 × 10
−11

. This anomalously small number is referred to as the strong CP problem,

which is one of the most intriguing problems in particle physics.



The Case for Axions

In the Peccei-Quinn theory the CP violating action Sθ is augmented by the axion interaction

Sθ → Sθ + SAxion =

∫

d
4
x

[
1

2

(
∂µφa(x)

)2
+ i

(

θ +
φa(x)

fa

)

q(x)

]

︸ ︷︷ ︸

dimension five !

Under a UPQ(1) transformation the axion field translates to

φa(x) → φa(x) + δfa

which leaves the classical action invariant and is called shift symmetry. Transforming φa(x) to

φa(x) − θfa cancels the CP violating term in the action. This leaves us with the action

S = SQCD + SAxion , SAxion =

∫

d
4
x

[
1

2

(
∂µφa(x)

)2
+ i

φa(x)

fa
q(x)

]

It is expected that QCD induces an effective potential for φa, Ueff(φa), whose minimum is at

φa = 0, thus restoring CP symmetry.



A necessary condition for the Peccei-Quinn theory to solve the strong CP problem is that QCD

allows basically all values of φa/fa to exist

This appears not to be the case. Writing

φ̄a =
1

V

∫

d
4
xφa(x)

the range of allowed φa values can be estimated from the effective theory with Gaussian

distributed topological charge Q, described by the partition function

Z =
1

√
2π〈Q2〉

∫

dQdφ̄a exp
{
−Q

2
/2〈Q

2
〉 − i (φ̄a/fa)Q− (m

2
a/2) φ̄

2

a V
}

including a hypothetical mass term. This predicts

〈φ̄
2

a〉 ∝
1

(χt/f2
a +m2

a)V
, χt = 〈Q

2
〉/V

stating that φa is expected to assume small values only, which decrease with the inverse power

of the volume

✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤
shift symmetry



Axion Phenomenology: The Common Lore

If the shift symmetry, φa → φa + δfa, were exact, the axion would be exactly massless,

ma = 0, and any value of φ̄a would be equally acceptable from the energetic point of view

The basic assumption is that the shift symmetry gets spontaneously broken by the vacuum

energy Ueff

Z(φ̄a) =
1

√
2π〈Q2〉

∫

dQ exp
{
−Q

2
/2〈Q

2
〉−i (φ̄a/fa)Q

}
= exp

{
−V Ueff(φ̄a)

}

which leads to

Ueff(φ̄a) = χt
[
1 − cos(φ̄a/fa)

]
≈ (χt/2f

2
a) φ̄

2

a

generating a mass for the axion

m
2
a =

∂2

∂φ̄
2

a

Ueff(φ̄a)
∣
∣
φ̄a=0

=
χt

f2
a

No local interaction with QCD !

Accordingly, the QCD axion is interpreted as the Goldstone boson of the broken UPQ(1)

symmetry



Axion mass

T = 0

m
2
a =

χt

f2
a

≈
1.2 · 10−3 GeV4

f2
a

Tc > T > 0

m2
a(T )

m2
a

=
χt(T )

χt
= 1 −

3T 2

2f2
π

J1

(

m2
π

T 2

)

Gasser & Leutwyler

T ≫ Tc

m2
a(T )

m2
a

=
χt(T )

χt
≈ 1.8

(
Tc

T

)3

T . 1GeV fa ≈ 1 · 10
12

GeV Bonati et al.

[Borsanyi et al.]
↑

Axions begin

to oscillate

↑

Axions only source

of dark matter



In the following we will treat the axion field as a

dynamical degree of freedom with the purpose

to solve the strong CP problem, whether it arises

from the spontaneously broken UPQ(1) Peccei-

Quinn symmetry or from a more fundamental

theory, and focus on QCD interactions

Cut-off ≈
π

a
= 8 GeV



The QCD Axion on the Lattice

In Euclidean quantum field theory the axion mass ma is given by the large-time decay of the

correlation function

∫

d
3
~x 〈φa(~x, t)π(0)〉 ≃ A e

−mat π : any pseudoscalar source

with the equation of motion Peskin & Schroeder

∂2

∂t2

∫

d
3
~x 〈φa(~x, t)π(0)〉 =

i

fa

∫

d
3
~x 〈q(~x, t)π(0)〉 , t > 0

Taking π = q and employing the axial anomaly, this leads to

ma = − lim
t→∞

1

t
log

∫

d
3
~x 〈q(~x, t) q(0)〉 = − lim

t→∞

1

t
log

∫

d
3
~x 〈P (~x, t)P (0)〉

with P = (ūγ5u + d̄γ5d + · · · ). Thus, the axion will strongly mix with the pseudoscalar

meson sector



Action

At finite lattice spacing a the field-theoretic topological charge Q is ill defined. The topological

interaction term can be rotated into the quark mass matrix using the axial anomaly, which

preserves the shift symmetry. Neglecting operators of dimension six and higher:

SAxion = a
4
∑

x

[ 1

2

(
∂µφa(x)

)2
− i

φa(x)

3fa
m̂
(
ū(x)γ5u(x) + d̄(x)γ5d(x)

+ s̄(x)γ5s(x)
)]

with m̂−1 =
(
m−1
u +m−1

d +m−1
s

)
/3. SAxion is complex, but lends itself to numerical

simulations for imaginary values of the axion decay constant f∗
a = ifa. As 〈φ̄

2

a〉 ∝ 1/V , the

result can be analytically continued to real numbers of fa for sufficiently large volumes. This

leaves us with

SAxion = a
4
∑

x

[ 1

2

(
∂µφa(x)

)2
+
m̂

3

φa(x)

f∗
a

(
ū(x)γ5u(x) + d̄(x)γ5d(x)

+ s̄(x)γ5s(x)
)]

PQWW/DFSZ action



By a redefinition of the quark fields ψf(x)

ψf(x) → exp

{

−iγ5
φa(x)

fa

cf

2

}

ψf(x) , cf =
m̂

3mf

the topological interaction term

φa(x)

fa
q(x)

in SAxion is eliminated and moved into the quark mass matrix

mu ū(x) exp

{

−iγ5 cu
φa(x)

fa

}

u(x) +md d̄(x) exp

{

−iγ5 cd
φa(x)

fa

}

d(x)

+ms s̄(x) exp

{

−iγ5 cs
φa(x)

fa

}

s(x)

S. Weinberg, ‘The Quantum Theory of Fields’, Vol. 2



Simulation parameters

We use nonperturbatively O(a) improved Wilson fermions. As a first step, we focus on the

SU(3) flavor symmetric point

mu = md = ms mq = 1/2κ− 1/2κc , κc = 0.12110

with

m
2
π = m

2
K = m

2
η =

(
m

2 phys
π + 2m

2 phys
K

)
/3 ≈ [420MeV]

2

Lattices

# a−4V κ 1/af∗
a

1 123 × 24 0.12090 0.01825

2 123 × 24 0.12090 0.1825

3 123 × 24 0.12090 1.825

4 243 × 48 0.12090 0.01825

5 243 × 48 0.12090 0.1825

6 243 × 48 0.12090 1.825

7 323 × 64 0.12090 0.1825

a = 0.074(2) fermi



Remnant (shift) symmetry?
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To solve the strong CP problem, the axion field φa would have to cover the full range

0 ≤ |φa/fa| ≤ π

Effective potential Local interaction with QCD now included !
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Isosurfaces of positive (red) and negative (green) topological charge density of a single

time slice for |q(x)|/|qmax| > 0, 0.2 and 0.3

arXiv:0912.2281

The quantum axion field φa(x) follows the fluctuations of the topological charge

density q(x) of QCD

For configurations with total charge Q = 0 even !



The QCD Axion Mass

The axion massma is obtained from the correlation functionC(t) = a2
∑

~x 〈φa(~x, t)φa(0)〉,

which we parameterize as

C(t) = A cosh
(
−maτ

)
+ B cosh

(
−mη′τ

)
, τ = t− T/2

T is the temporal extent of the periodic lattice

Correlation function
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Small, but visible coupling to η′ meson

Effective mass
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All
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The theory undergoes spontaneous

symmetry breaking as a result of

quantum fluctuations, known as

Coleman-Weinberg mechanism



Present results

# a−4V 1/f∗
a [GeV

−1] χ
1/4
t [MeV] ma [MeV] mη′ [MeV]

1 123 × 24 0.0068 119 ± 4 62 ± 2

2 123 × 24 0.068 121 ± 6 73 ± 8

3 123 × 24 0.68 108 ± 8 66 ± 4

4 243 × 48 0.0068 153 ±11 230 ±13 700 ± 110

5 243 × 48 0.068 148 ± 9 221 ±13 660 + 50
− 350

6 243 × 48 0.68 151 ± 8 238 ±11 670 ± 120

7 323 × 64 0.068 152 ± 9 293 ±55

V → ∞ : ma shows strong upward tendency
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Continuation to real values of fa (1/f2
f > 0)
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How is it possible that ma ≈ constant and ma = O(ΛQCD) ?

- Topological charge density q(x) largely independent of 1/fa

- φa(x) follows fluctuations of q(x) Coleman-Weinberg

- Kinetic term
(
∂µφa(x)

)2
in SAxion does not wipe out fluctuations of φa(x)



Conclusions

• The axion is a hypothetical particle postulated by the Peccei-Quinn theory to resolve the

strong CP problem in QCD. If axions exist and have low mass, they are a candidate for

dark matter as well

• So far our knowledge of the properties of axions rested on semi-classical arguments and

effective theory. In this work we have subjected the theory to a quantum mechanical test

on the lattice for the first time

• Our results on the axion mass, ma = O(ΛQCD), are found to be in conflict with current

axion phenomenology and experiment. They suggest that the mass is largely generated by

quantum fluctuations through a Coleman-Weinberg type mechanism, rather than by the

vacuum energy

• A further striking result is that QCD allows only small values of φa(x)/fa to exist, so that

the θ term, (φa(x)/fa + θ) q(x), will not be able to relax to zero, which thwarts the

Peccei-Quinn solution of the strong CP problem

• This questions the validity and use of the Peccei Quinn theory, and the existence of a very

light axion, which would qualify as a dark matter candidate


