Strong Dynamics and Dark Matter

(a model-builder perspective)

Luca Vecchi

ECT*: Interdisciplinary approach to QCD-like composite dark matter (1/10/2018)

Outline

* Strong Dynamics & Dark Matter

- Main candidates (baryons, pions, glueballs, axions)
- Density, Detection, Pros and Cons

* Strong Dynamics, Dark Matter, and...

- Solutions of the Hierarchy problem
- Solutions of the Flavor problem
- Solutions of the Strong CP problem
- Solutions of the Baryogenesis problem

Strong Dynamics and Dark Matter

(Ex: Baryons)

$$\sigma v \sim \frac{4\pi}{\Lambda^2} \qquad \text{Annihilation into lighter} \\ \text{(non-dark matter...) composite states}$$

$$\sigma v = \sigma v|_{\text{WIMP}} \implies \Lambda \sim 50 \text{ TeV}$$

Asymmetry relevant if $\sigma v > \sigma v|_{\mathrm{WIMP}}$

$$\Lambda \sim 5 \frac{\eta_b}{\eta} m_b < 50 \text{ TeV}$$

Direct and Indirect detection:

- typically too heavy (Ex: 50 TeV and dim-6 int $\sigma_n \lesssim \frac{\mu^2}{\Lambda^4} \sim 10^{-46} \text{ cm}^2$)
- some chance if couple to SM (ex: EDM)

(Ex: Pions)

Light Thermal

$$\sigma v \sim rac{g^4}{4\pi m^2}$$

$$100~{
m MeV} \lesssim m \sim 10g^2~{
m TeV} \quad {\it m} = \epsilon \Lambda, \ {\it g} = 4\pi \epsilon \implies \Lambda = 10^3 \epsilon ~{
m TeV} \ll 10^3 ~{
m TeV}$$

Annihilation into

- SM
- lighter exotic states

Asymmetry relevant if
$$\sigma v > \sigma v|_{\rm WIMP}$$

$$100~{\rm MeV} < m < 10g^2~{\rm TeV}$$

Direct and Indirect detection: optimal, colliders?

(Ex: Pions, Glueballs)

Lighter **Thermal**

$$\pi\pi\pi \to \pi\pi$$
 Depletion "do-it-yourself" (watch the entropy...)

$$\frac{n^3 \sigma \sim n H(m)}{\sigma \sim g^6/m^5} \implies m \sim g^2 \text{ GeV}$$

- Estimate ok for glueballs, not so for pions (selection rules)
 Possible implications in <u>Astrophysics</u> (bullet cluster, etc.)
 Direct and Indirect detection not likely (by construction)

(Ex: Axions)

\rightarrou\right\right\right\right\right\right\right\right\right\right

Assume no thermal component

(not even of constituents!)

$$\begin{cases}
f^2 m^2 \left(\frac{T_{\text{eq}}}{\sqrt{mM_{\text{Pl}}}}\right)^3 \sim T_{\text{eq}}^4 \\
m < f \\
\sqrt{mM_{\text{Pl}}} > T_{\text{eq}}
\end{cases} \implies 10^7 \text{ GeV} < f < 10^{17} \text{ GeV}$$

Super-Light Non-Thermal

Example:
$$\delta \mathcal{L} = \frac{\Psi \Psi \Psi \Psi}{M_{\rm Pl}^2} \implies m^2 \sim \frac{\Lambda^2 f^2}{M_{\rm Pl}^2}$$

$$\Lambda \sim 4\pi f \sim 10^{10}~{\rm GeV} > T_{\rm re-heat}$$

- Direct and Indirect detection not likely
- No obvious implications in Astrophysics (not the QCD axion!)

Detection:

Many opportunities: Direct/Indirect-detection, Colliders, Astrophysics, Cosmology. But:

- Some candidate is hard to see by construction:

 Axions are extremely weakly-coupled

 Baryons are heavy (small density)
- Regarding thermal candidates: the "WIMP miracle" works fine even with a decoupled dark sector... 2) (early decoupling plus small dark radiation)

Dark Matter from strong dynamics: Pros & Cons

Pros:

many compelling candidates

Cons:

many compelling candidates

What to do:

- hope for the best
- investigate all candidates and "portals"try adding more assumptions...

This is the dark matter business...

Strong Dynamics, Dark Matter, and...

$$\delta \mathcal{L} = \epsilon \Lambda_{\mathrm{UV}}^{4-d} \mathcal{O}$$

$$\Lambda \sim \Lambda_{\rm UV} \epsilon^{1/(d-4)} \ll \Lambda_{\rm UV}$$

Composite Higgs (Technicolor)

Spontaneous CP breaking: strong CP a la Nelson-Barr

Constraints:

$$heta \sim rac{g_{\Sigma}^2}{16\pi^2} < 10^{-10}~$$
 Fine, but still..

$$\theta \sim \frac{g_\Sigma^2}{16\pi^2} < 10^{-10} \quad \text{Fine, but still...}$$

$$\frac{g_s^2}{\Lambda_{\text{UV}}^2} \langle \Sigma \rangle^2 G\widetilde{G} \implies \langle \Sigma \rangle < 10^{-5} \Lambda_{\text{UV}} \quad \begin{array}{l} \text{Strong CP problem not solved} \\ \text{unless you address the hierarchy problem!} \end{array}$$

Spontaneous CP breaking: strong CP a la Nelson-Barr

- VEV/cutoff hierarchy naturally addressedSpontaneous CP violation via the VEV of "pions"

$$\delta \mathcal{L} = \frac{\chi \chi \Psi \Psi}{\Lambda_{\text{UV}}^2} + \frac{\chi' \chi' \Psi q}{\Lambda_{\text{UV}}^2} + \frac{\Psi \Psi H H}{\Lambda_{\text{UV}}} + \mathcal{O}\left(\frac{\chi^4, \chi'^4, q^4}{\Lambda_{\text{UV}}^2}\right)$$

$$\delta \mathcal{L} = m_{\Psi} \Psi \Psi + \langle \Sigma \rangle \Psi q + \cdots$$

Constraints easily satisfied!

$$\begin{split} g_{\Sigma} \sim \frac{\Lambda^2}{\Lambda_{\rm UV}^2} \sim \frac{m_{\Psi}}{\Lambda} < 10^{-5} \quad \text{(neutron EDM)} \\ \frac{g_s^2}{\Lambda_{\rm UV}^6} \langle \chi' \chi' \rangle^2 G \widetilde{G} \qquad \langle \chi' \chi' \rangle \ll \Lambda_{\rm UV}^3 \end{split}$$

$$\Lambda > 10^5 m_\Psi > 10^5 \text{ TeV}$$
 (colliders)

Solutions <u>alternative</u> to the QCD axion also favor an axion DM...

Baryogenesis

 $T > 10^{11} \text{ GeV}$

High scale mechanisms are active: Leptogenesis, Affleck-Dine

 $T < 10^{11} \text{ GeV}$

Realistic exotic sources of B and L breaking are out of equilibrium Require a low scale mechanisms: **EW Baryogenesis** (B+L≠0 <u>provided</u> B-L=0)

↓EW phase transition from a strong dynamics:Composite Higgs

Strong Dynamics and Dark Matter

EW Baryogenesis from a strong dynamics at Λ<10^11 GeV?

Non-abelian gauge theories have all necessary ingredients:

- 1) first order chiral phase transitions (truly second order is rare) \Longrightarrow departure from equilibrium
- 2) anomalous symmetries (when chiral symmetry is weakly-gauged) \Longrightarrow charge violation
- 3) C & CP violation

However:

However, more structure is clearly needed to reproduce the SM (ex: Randall-Sundrum), then Baryogenesis can be achieved: no serious challenges here.

The strong dynamics was in thermal equilibrium: axion DM is unlikely

EW Baryogenesis at Λ<10¹¹ GeV?

The only serious challenge is the usual one: <u>CP violation!</u>

$$d_e = e \frac{g_*^2}{8\pi^2} \frac{m_e}{m_*^2} < 8.7 \times 10^{-29} e \text{ cm}$$
 $m_* > g_* 40 \text{ TeV}$

In our case something like... $100~{\rm TeV} < \Lambda < 10^{11}~{\rm GeV}$

Genesis at Λ>100 TeV

Need light sector that prevents washout

$$\Gamma_{\rm sphaleron} = (\cdots) T e^{-\frac{4\pi}{g} \frac{v}{T}} \ll H(T)$$

Conclusions

- Strong dynamics makes very compelling Dark Matter candidates:
 - * Baryons: heavy WIMPs (harder to detect) for 100 MeV<Λ<50 TeV</p>
 - * Pions: WIMPs (DD, ID, colliders), otherwise astrophysics for 100 MeV<Λ<<1000 TeV
 - ★ Glueballs: constrained mostly by astrophysics and cosmology for 1 GeV<Λ<100 GeV
 </p>
 - * <u>Axions</u>: very light (hard to detect) for 10⁸ GeV<Λ<Planck (Λ>T_reheat)
 - ⇒ More on this in the other talks...
- Add more assumptions, possibilities reduce… good news: discrimination power!
 - * Models for the weak scale → prefer WIMPs ("WIMP miracle")

Exceptions always exist!

- * Models for flavor are not structurally constraining → all candidates on the table...
- * (Non-SUSY) Solutions of the Strong CP (including Nelson-Barr) live in the far UV → prefer axions
- * Strong sectors can realize EW Baryogenesis → prefer WIMPs (since Λ<T_reheat)
- **⇒** Observing Dark Matter might tell us more than we think...

Thank You