# Effective Theories of Dark Mesons © LHC

Graham Kribs
University of Oregon

1809.10183 with Adam Martin, Tom Tong
1809.10184 with Adam Martin, Bryan Ostdiek, Tom Tong

ECT Workshop, Trento, Italy 2018

## Outline

- 1) Motivation
- 2) Dark rhos -- kinetic mixing with SM
- 3) Dark pions -- resonant pair-production through dark rho
- 4) Dark pion decay -- "gaugephilic" versus "gaugephobic"
- 5) LHC signals, constraints, opportunities
- 6) Discussion

# Imagine ...

Pions of QCD had exact SU(2) isospin symmetry:

1) 
$$Q_u = -Q_d = \frac{1}{2}$$
 (electric charge commutes with t<sup>3</sup>)

2)  $m_u = m_d$  (up & down Yukawa couplings equal)

# Imagine ...

Pions of QCD had exact SU(2) isospin symmetry:

1) 
$$Q_u = -Q_d = \frac{1}{2}$$
 (electric charge commutes with t<sup>3</sup>)

2) 
$$m_u = m_d$$
 (up & down Yukawa couplings equal)

All contributions to axial anomaly vanish.

$$\operatorname{Tr} Q^2 t^3 = 0 \qquad \operatorname{Tr} M Q^2 t^3 = 0 \qquad \text{etc} .$$

# Imagine ...

Pions of QCD had exact SU(2) isospin symmetry:

- 1)  $Q_u = -Q_d = \frac{1}{2}$  (electric charge commutes with t<sup>3</sup>)
- 2)  $m_u = m_d$  (up & down Yukawa couplings equal)

All contributions to axial anomaly vanish.

$$\operatorname{Tr} Q^2 t^3 = 0 \qquad \operatorname{Tr} M Q^2 t^3 = 0 \qquad \text{etc} .$$

 $\pi^0$  (still) decays -- through mixing with the Goldstone (just like  $\pi^\pm$ )



(highly suppressed by  $y_e$  since open mode is  $\pi^0$  -> e+e-)

Weak decay  $\pi^+ o \pi^0 W^*$  possible, highly suppressed by phase space

## "QCD" Mesons



## "Dark" Mesons

SU(3)color

Exact SU(2) isospin symmetry

chiral fermion masses (above EW scale)

fermions transform under EW + QCD

2 flavors (u,d)

pions in triplet

 $\pi$  a/Ga mixing small (v<sup>2</sup>/f<sup>2</sup> small)



SU(N<sub>dark</sub>)

Exact SU(2) custodial symmetry

vector-like and/or chiral fermion masses

fermions transform under EW + "dark color"

2 (and 4) flavor theories

pions in triplet (or triplets + ...)

effective  $\pi^a/G^a$  mixing small ( $v^2/M^2$  small)

# Plenty of Motivation ...

"Dark" sectors that contain a new, strongly-coupled, confining force near the weak scale are well-motivated from a wide variety of perspectives:

- Theories with strongly-coupled composite dark matter, e.g.,
   Dark baryons (e.g., "Stealth Dark Matter")
   Dark mesons (e.g., Ectocolor DM; heavy chiral DM; etc.)
   SIDM/SIMP/etc.
- Theories that explain electroweak symmetry breaking, e.g., Bosonic technicolor / strongly-coupled induced EWSB Composite Higgs theories Relaxion with new (non-QCD) dark sector
- Theories that provide interesting / novel LHC phenomena, e.g., Hidden valleys Quirky theories and signals Vectorlike confinement

For this talk — focus is on LHC phenomena.

## Outline

- 1) Motivation
- 2) Dark rhos -- kinetic mixing with SM
- 3) Dark pions -- resonant pair-production through dark rho
- 4) Dark pion decay -- "gaugephilic" versus "gaugephobic"
- 5) LHC signals, constraints, opportunities
- 6) Discussion

# Dark $\rho$ — B/W Kinetic Mixing

[Kilic, Okui, Sundrum 0906.0577]

One of the critical observations is  $\rho$  <—> gauge boson kinetic mixing



Two types!

$$\begin{array}{ll} \epsilon W_{\mu\nu}^a F_\rho^{a,\mu\nu} & \text{SU(2)-like} \ \ \rho_D^{\pm,0} \\ \\ \epsilon' B_{\mu\nu} \delta^{3a} F_\rho^{a,\mu\nu} & \text{U(1)-like} \ (\rho^0 \ \text{only}) \\ \\ & \\ & \\ \epsilon^{(')} \sim g^{(')} \frac{\sqrt{N_{\rm dark}}}{4\pi} \end{array}$$

This provides a portal into the dark sector!

# Dark $\rho_D$ production



# $\rho_D$ Decay

## Two Qualitatively Different Scenarios



Decays to dark pions dominate (for N<sub>dark</sub> not too large)



Decays to SM dominate (especially  $ho_D^0 o \ell^+ \ell^-$ )

# Dilepton Resonances: Two Different Outcomes



[GK, Martin, Ostdiek, Tong 1809.10184]

## Outline

- 1) Motivation
- 2) Dark rhos -- kinetic mixing with SM
- 3) Dark pions -- resonant pair-production through dark rho
- 4) Dark pion decay -- "gaugephilic" versus "gaugephobic"
- 5) LHC signals, constraints, opportunities
- 6) Discussion

# Dark Pion Pair-Production through p

Provides main source of dark pion production





Cross section proportional to electroweak (coupling)<sup>2</sup> with a (substantial!)  $\rho$ -resonance enhancement.

## Outline

- 1) Motivation
- 2) Dark rhos -- kinetic mixing with SM
- 3) Dark pions -- resonant pair-production through dark rho
- 4) Dark pion decay -- "gaugephilic" versus "gaugephobic"
- 5) LHC signals, constraints, opportunities
- 6) Discussion

# How do dark pions decay?

Seek lowest dimension operator(s) preserving custodial SU(2). If the SM preserved custodial symmetry, two terms @ dim-4:



# How do dark pions decay?

Seek lowest dimension operator(s) preserving custodial SU(2). With SM custodial symmetry violation:

Effective coupling to 
$$\left(\frac{1}{v_{\pi}}\right)\sqrt{2}\left[\pi_{D}^{+}\bar{\psi}_{u}(m_{d}P_{R}-m_{u}P_{L})\psi_{d}+\pi_{D}^{-}\bar{\psi}_{d}(m_{d}P_{L}-m_{u}P_{R})\psi_{u}\right] + \frac{i}{\sqrt{2}}\pi_{D}^{0}(m_{u}\,\bar{\psi}_{u}\gamma_{5}\psi_{u}-m_{d}\,\bar{\psi}_{d}\gamma_{5}\psi_{d})\right]$$

 $\left(\pi_D^+,\pi_D^0,\pi_D^-\right)$  interaction with fermions

$$\left(\frac{\xi}{v_{\pi}}\right) m_{W} \left[ (W_{\mu}^{-} h \overleftrightarrow{\partial}^{\mu} \pi_{D}^{+}) + (W_{\mu}^{+} h \overleftrightarrow{\partial}^{\mu} \pi_{D}^{-}) + \frac{1}{\cos \theta_{W}} (Z_{\mu} h \overleftrightarrow{\partial}^{\mu} \pi_{D}^{0}) \right]$$

 $\left(\pi_D^+,\pi_D^0,\pi_D^-\right)$  interaction with gauge bosons

Effective Lagrangian for Custodially Symmetric Dark Pion Decay

# Ultraviolet Origin of Effective Theory

Bosonic technicolor / strongly-coupled induced EWSB

$$+4\pi f^3 y \operatorname{Tr} (\mathcal{H} \Sigma^{\dagger} + h.c.)$$

Stealth Dark Matter

$$+4\pi c_D f^3 \operatorname{Tr} \left( L \mathcal{M} R^{\dagger} \Sigma^{\dagger} + h.c. \right)$$

 $G^{\pm,0}\longleftrightarrow \pi^{\pm,0}$  mixing

Vector-like theories

$$c_{7f} \frac{4\pi f^3}{\Lambda^3} \left( \operatorname{Tr} \Sigma_L t_L^a \right) Q_L t_L^a \mathcal{H} Y_{ud} \hat{Q}_R$$
 Direct interactions through higher-D 
$$c_{9C} \frac{4\pi f^3}{\Lambda^5} \epsilon_{abc} \delta_{de} \operatorname{Tr} \left[ \Sigma_L t_L^a \right] \operatorname{Tr} \left[ (D_\mu \mathcal{H})^\dagger t_L^b (D^\mu \mathcal{H}) t_R^d \mathcal{H}^\dagger t_L^c \mathcal{H} t_R^e \right]$$
 operators

# Dark pion decay to $f\bar{f}^{(')}$

 $\left(\pi_D^+,\pi_D^0,\pi_D^-\right)$  decay to fermions proportional to Yukawa couplings



Just like as if QCD pions were scaled up in mass.

# Dark pion decay to $W^{\pm}h$ , Zh

For decays to  $W^{\pm}h$ , Zh:



There are TWO distinct classes of theories:





heavier state mixes with Higgs boson

## We've seen this before



$$\lambda \sim \frac{\xi M_{W,Z}}{v_{\pi}}$$

## Gaugephilic

## Gaugephobic

### Georgi-Machacek model

(replace  $\pi^{\pm,0} o H_3^{\pm,0}$  triplet)

$$\xi \sim s_H \sim \mathcal{O}(1)$$
 
$$\downarrow$$
 mixing angle

#### 2HDM

(replace  $\pi^{\pm,0} \to H^{\pm}, A^0$ )

$$\xi \sim \cos(\beta - \alpha) \sim \frac{m_h^2}{m_H^2 - m_h^2}$$

Suppressed!



heavier state mixes with Higgs boson

## It makes a difference!



## Outline

- 1) Motivation
- 2) Dark rhos -- kinetic mixing with SM
- 3) Dark pions -- resonant pair-production through dark rho
- 4) Dark pion decay -- "gaugephilic" versus "gaugephobic"
- 5) LHC signals, constraints, opportunities
- 6) Discussion

# LHC Sensitivity I



One can recast new physics searches involving final state tau's, e.g. EW gauginos @ ATLAS:



Charged dark pions less than about 130-180 GeV are ruled out.

# LHC Sensitivity II: Beyond Taus

Model-independent multilepton searches are generically sensitive to:

$$q\bar{q} \to \rho \to \pi^{+}\pi^{-} \to W^{+}hW^{-}h$$

$$q\bar{q} \to \rho \to \pi^{\pm}\pi^{0} \to W^{\pm}hZh$$

$$q\bar{q} \to \rho \to \pi^{\pm}\pi^{0} \to t\bar{b}Zh$$

$$q\bar{q} \to \rho \to \pi^{\pm}\pi^{0} \to t\bar{b}\tau^{+}\tau^{-}$$

Model-dependent multilepton searches (SUSY gauginos), however, are much less optimal due to large MET (or large Meff) requirements.

For gaugephobic models the hadronic modes can be challenging

$$q\bar{q} \to \rho \to \pi^{\pm}\pi^{0} \to t\bar{b}\,b\bar{b}$$

$$q\bar{q} \to \rho \to \pi^{+}\pi^{-} \to t\bar{b}\,\bar{t}b$$

$$q\bar{q} \to \rho \to \pi^{\pm}\pi^{0} \to t\bar{b}\,t\bar{t}$$

# Multilepton Constraints



#### 13 TeV Constraints



8 TeV Constraints Stronger Than 13 TeV!

# Limitations of 13 TeV Search Regions

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)





Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb<sup>-1</sup> of  $\sqrt{s} = 13$  TeV *pp* collision data with the ATLAS detector

The ATLAS Collaboration



|               |                                       |                    |                |                     |                      |              |                                  | ,                                                                            |
|---------------|---------------------------------------|--------------------|----------------|---------------------|----------------------|--------------|----------------------------------|------------------------------------------------------------------------------|
| Signal region | $N_{ m leptons}^{ m signal}$          | $N_{b	ext{-jets}}$ | $N_{\rm jets}$ | $p_{ m T}^{ m jet}$ | $E_{ m T}^{ m miss}$ | $m_{ m eff}$ | $E_{\rm T}^{ m miss}/m_{ m eff}$ | Other                                                                        |
|               |                                       |                    |                | [GeV]               | [GeV]                | [GeV]        |                                  |                                                                              |
| Rpc2L2bS      | ≥ 2SS                                 | ≥ 2                | ≥ 6            | > 25                | > 200                | > 600        | > 0.25                           | _                                                                            |
| Rpc2L2bH      | ≥ 2SS                                 | ≥ 2                | ≥ 6            | > 25                | _                    | > 1800       | > 0.15                           | _                                                                            |
| Rpc2Lsoft1b   | ≥ 2SS                                 | ≥ 1                | ≥ 6            | > 25                | > 100                | _            | > 0.3                            | $20,10 < p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2} < 100 \text{ GeV}$           |
| Rpc2Lsoft2b   | ≥ 2SS                                 | ≥ 2                | ≥ 6            | > 25                | > 200                | > 600        | > 0.25                           | $20,10 < p_{\mathrm{T}}^{\ell_1}, p_{\mathrm{T}}^{\ell_2} < 100 \text{ GeV}$ |
| Rpc2L0bS      | ≥ 2SS                                 | = 0                | ≥ 6            | > 25                | > 150                | _            | > 0.25                           | _                                                                            |
| Rpc2L0bH      | ≥ 2SS                                 | = 0                | ≥ 6            | > 40                | > 250                | > 900        | _                                | _                                                                            |
| Rpc3L0bS      | ≥ 3                                   | = 0                | ≥ 4            | > 40                | > 200                | > 600        | _                                | -                                                                            |
| Rpc3L0bH      | ≥ 3                                   | = 0                | ≥ 4            | > 40                | > 200                | > 1600       | _                                | _                                                                            |
| Rpc3L1bS      | ≥ 3                                   | ≥ 1                | ≥ 4            | > 40                | > 200                | > 600        | _                                | _                                                                            |
| Rpc3L1bH      | ≥ 3                                   | ≥ 1                | ≥ 4            | > 40                | > 200                | > 1600       | _                                | _                                                                            |
| Rpc2L1bS      | ≥ 2SS                                 | ≥ 1                | ≥ 6            | > 25                | > 150                | > 600        | > 0.25                           | -                                                                            |
| Rpc2L1bH      | ≥ 2SS                                 | ≥ 1                | ≥ 6            | > 25                | > 250                | _            | > 0.2                            | _                                                                            |
| Rpc3LSS1b     | $\geq \ell^{\pm}\ell^{\pm}\ell^{\pm}$ | ≥ 1                | _              | _                   | _                    | _            | _                                | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$                             |
| Rpv2L1bH      | ≥ 2SS                                 | ≥ 1                | ≥ 6            | > 50                | _                    | > 2200       | _                                | _                                                                            |
| Rpv2L0b       | = 2SS                                 | = 0                | ≥ 6            | > 40                | _                    | > 1800       | _                                | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$                             |
| Rpv2L2bH      | ≥ 2SS                                 | ≥ 2                | ≥ 6            | > 40                | _                    | > 2000       | _                                | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$                             |
| Rpv2L2bS      | $\geq \ell^-\ell^-$                   | ≥ 2                | ≥ 3            | > 50                | _                    | > 1200       | _                                | _                                                                            |
| Rpv2L1bS      | $\geq \ell^-\ell^-$                   | ≥ 1                | ≥ 4            | > 50                | _                    | > 1200       | _                                | _                                                                            |
| Rpv2L1bM      | $\geq \ell^-\ell^-$                   | ≥ 1                | ≥ 4            | > 50                | _                    | > 1800       | _                                | _                                                                            |

Only one signal region has no requirements on E<sub>T</sub>miss and m<sub>eff</sub>

## Current Bounds from LHC



# We examined MANY other searches...

| Search                                                               | $\sqrt{s}$ [TeV] | Comments                                                                                                                                                                    |
|----------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATLAS search for a CP-odd<br>Higgs boson decaying to Zh<br>[142]     | 8                | Veto events with more than 2 b-<br>tagged jets kills efficiency                                                                                                             |
| ATLAS search for $t\bar{t}$ resonances [143]                         | 8                | Must have exactly one lepton. We have too many jets, confuses search                                                                                                        |
| CMS Pair produced leptoquark [144]                                   | 8                | Looking for $b\bar{b}\tau^+\tau^-$ . Has minor sensitivity to overall rates, would do better with shape analysis but not enough data is provided to recast this.            |
| ATLAS search for SUSY in final states with multiple b-<br>jets [145] | 13               | Looking for heavy states, so demands large $E_T^{\text{miss}}$ and $m_{eff}$                                                                                                |
| CMS search for $Vh$ [146]                                            | 13               | Looking for single production.  Needs very boosted hard object.                                                                                                             |
| CMS Di-Higgs $\rightarrow \tau \tau b \bar{b}$ [147]                 | 13               | Neutral pions decay through mixing with the Higgs. Measurement uses BDTs and is not recastable.                                                                             |
| CMS Low mass vector resonances $\rightarrow q\bar{q}$ [148]          | 13               | Looks for a bump on the falling soft-drop jet mass spectrum. Not enough information to recast the designed decorrelated tagger. Only sensitive to $\sigma \gtrsim 10^3$ pb. |
| CMS Vector-like $T \rightarrow t h$ [149]                            | 13               | Looking for $th$ resonance, only very heavy and needs QCD production.                                                                                                       |

## Discussion

A new strongly coupled sector, near the weak scale, that preserves custodial SU(2), is possible, motivated, and yields interesting signals @ LHC.

Dark pions, in the context of this talk, are really just a set of scalar multiplets in various electroweak representations. Unlike 2HDM et al., searches, pair-production is dominant.

Some signals are already searched for (and set constraints). Many search strategies are, however, not well-optimized for signals with small MET and comparably small Meff.

Best constraints limit 
$$\sigma(pp \to \rho \to \pi\pi) \lesssim 0.5 - \text{few pb}$$

Theory space is interesting — gaugephilic/gaugephobic distinction reveals properties of underlying theory. Many "just a bunch of EW scalar" theories can be UV completed into pNGBs of a strongly-coupled theory.

# Extra

# Aside — single production of dark pions:



Very familiar from standard 2HDM ( $\pi^{\pm,0} \to H^{\pm}, A^0$ ), this can occur when  $\pi$ /G mixing is large, e.g., bosonic technicolor / induced EWSB.

Chang et al., have explored constraints (pretty tough). [Chang, Galloway, Luty, Salvioni, Tsai 1411.6023]

In dark sectors that are approximately vector-like (safe from S parameter; Higgs coupling constraints), single production modes are suppressed.

Bounds on  $\frac{1}{v_{\pi}}$  from single  $\pi_D$  productoin

