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What this talk is (isn’t) about
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Consider pair annihilation in the non-relativistic regime

e.g. • >∼ 10 TeV WIMPs interacting with Z0-exchange

• co-annihilation partners of WIMPs charged under QCD

• attractive interactions mediated by Higgs exchange

• massive dark sectors charged under extra U(1)

• quarkonium-like non-Abelian dark sectors

• bottom quarks generated in heavy ion collisions

⇒ Physics motivation: large mass naturally guarantees

experimental non-detection, Boltzmann-suppressed number

density, 1/M2-suppressed cross section, and chemical freeze-out.

⇒ Technical motivation: effective field theory methods (based

on πT ≪ M) make the problem theoretically tractable.
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Example of a concrete model with the required properties 3

χ = DM = Majorana fermion (∼ bino)

η = DM’ = “mediator” because couples to SM (∼ stop)
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H = SM Higgs, q = SM quark (e.g. the top quark)

0.01 <∼ λ3, |y|2 <∼ 1 = portal couplings

3
e.g. M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with

t-channel mediators, 1503.01500.
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Text-book WIMP is in trouble
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Lee-Weinberg equation4 (n=number density, H=Hubble rate)

(∂t + 3H)n = −〈σv rel〉 (n
2 − n

2
eq) .

DM

DM

Start from equilibrium at T >∼M ; linearize around equilibrium:

n = n eq + δn , n
2 − n

2
eq ≈ 2n eqδn .

Parametrize cross section:

〈σv rel〉 ≡ α2

M2
, M ≡ MDM .

4
B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses,

Phys. Rev. Lett. 39 (1977) 165.
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⇒ (∂t + 3H)n ≈ −
2α2n eq

M2
δn .

The equilibrium number density is a known function of T,M :

n eq ∝
∫

d3
p

(2π)3
1

e
√

p2+M2/T ± 1
≈

(
MT

2π

)3/2

e
−M/T

.

The differential equation has a “thermal fixed point” at n = n eq

but cannot keep close to it for α2n eq/M
2 ≪ H.
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Numerical solution shows a “freeze-out” (Y ≡ n/s):
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Final energy density (e ≡ Mn) compared with radiation ∼ T 4:
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WIMP miracle

overclosure

LHC etc push up M , so there is a danger “overclosure”.
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Could increased 〈σv
rel
〉 help?
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Much discussed:5 “Sommerfeld effect”6:

〈σv rel〉 −→ 〈σ tree v rel S(v rel)〉 .

For attractive Coulomb-like interaction,

S(v rel) ∼ α

v rel

for v rel
<∼α .

5
e.g. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative

effect on thermal relic abundance of dark matter, hep-ph/0610249; J.L. Feng, M. Kaplinghat
and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, 1005.4678.

6
L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, Third

Edition, §136; V. Fadin, V. Khoze and T. Sjöstrand, On the threshold behavior of heavy top

production, Z. Phys. C 48 (1990) 613.
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More recent:7 bound-state contribution

Mbound = 2M − ∆E ⇒ e
−Mbound/T > e

−2M/T
.

This is quantum mechanics in a statistical background.

(Typically the dark sector contains several species, DM and DM’,

and perhaps only one of them forms bound states.)

7
e.g. W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and

Indirect Detection, 1406.2276; B. von Harling and K. Petraki, Bound-state formation for

thermal relic dark matter and unitarity, 1407.7874; J. Ellis, F. Luo and K.A. Olive, Gluino

Coannihilation Revisited, 1503.07142; K. Petraki, M. Postma and M. Wiechers, Dark-matter

bound states from Feynman diagrams, 1505.00109.
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Some quantum statistical physics
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Particles in the initial state: most energy is carried by mass.

E rest ∼ 2M , Ekin ∼
k2

2M
∼ T .

Particles in the final state: all energy is carried by momentum.

Ekin ∼ 2k ∼ 2M ⇒ ∆x ∼ 1

k
∼ 1

M
≪ 1

T
.

DM

DM

Therefore the “hard” annihilation process is local.8

8
e.g. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive

annihilation and production of heavy quarkonium, hep-ph/9407339; L.S. Brown and
R.F. Sawyer, Nuclear reaction rates in a plasma, astro-ph/9610256.
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But before the annihilation there are “soft” initial-state effects:

. . .

soft hard

“Debye screening”, “Landau damping”, ...

In particular 2 → 2 scatterings, absent in vacuum computations

of bound-state dissociation, do play an important role.
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A “linear response” analysis shows that this “inclusive” rate

equals the thermal expectation value of the annihilation operator:

〈σv rel〉 ∼ α2

M2n2
eq

〈O†
(0)O(0)〉T

≡ α2

M2n2
eq

1

Z

∑

m,n

e
−Em/T〈m|φ†

φ
†

⇒1

︷ ︸︸ ︷
|n〉〈n|φφ|m〉 .

Here |m〉 are eigenstates containing a DM-DM pair,

and φφ annihilates the DM-DM pair.
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How to estimate 〈O†(0)O(0)〉T = 〈φ†φ†φφ〉T in practice?

(i) as it is, with lattice NRQCD (see later);

(ii) within perturbation theory, it is preferable to derive a “spectral

representation” for this local expectation value.
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The 2-body problem can be reduced to a 1-body problem:

Em =: E
′
+

[

2M +
k2

4M

]

︸ ︷︷ ︸

center-of-mass energy

.

Converting
∑

m into integrals over E′ and k and carrying out

the integral over k we are left with

〈O†
(0)O(0)〉T = e

−2M/T

(
MT

π

)3/2 ∫ ∞

−Λ

dE′

π
e
−E′/T

ρ(E
′
) .
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The “spectral function” ρ(E′) represents the solution of a

Schrödinger equation for a Green’s function.

[
HT − iΓT (r) − E

′]
G(E

′
; r, r

′
) = δ

(3)
(r − r

′
) ,

lim
r,r′→0

ImG(E
′
; r, r

′
) = ρ(E

′
) .

Here the Hamiltonian has a standard from

HT = −∇2
r

M
+ VT (r) , r = |r| ,

whereas −iΓT (r) accounts for real scatterings with the plasma.
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In practice we are doing rather simple computations.

VT (r) = − g2
sCF

4π

[

mD

︸ ︷︷ ︸

“Salpeter correction”

+
exp(−mDr)

r︸ ︷︷ ︸

“Debye screening”

]

,

ΓT (r) =
g2
sCF

T

2π

∫ ∞

0

dz z

(z2 + 1)2

[

1 − sin(zmDr)

zmDr

]

︸ ︷︷ ︸

“Landau damping”

.
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Relation to indirect non-detection
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Why is cosmology different from the present day?

Long ago: t ∼ 10−12 s, T ∼ 100 GeV.

DM annihilation:

DM

DM

DM’ annihilation:

DM′

DM′

DM ↔ DM’ is in thermal equilibrium ⇒ annihilation can proceed

through the heavier DM’ channel if this is more efficient.

22



Today: t ∼ 1017 s, T ≪ eV.

DM annihilation is active in

galactic centers, but with small

〈σv rel〉 (e.g. p-wave). DM

DM

DM’ decayed long ago, and plays no practical role in cosmology

(however it can be searched for at the LHC).

Denote ∆M ≡ MDM’ − M

⇒ ǫmin ≤ ∆M/M ≪ 1 leads to interesting effects.
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The DM’ bound-state spectrum is T -dependent.
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A nice relation to heavy ion collision experiments

S. Chatrchyan et al. [CMS Collaboration], Suppression of excited Υ states in PbPb collisions

at
√
sNN = 2.76 TeV, Phys. Rev. Lett. 107 (2011) 052302 [1105.4894].

This follows a general pattern predicted theoretically.9

9
e.g. F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys.

Lett. B 637 (2006) 75 [hep-ph/0512239].
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If ∆M/M is too small, late times become problematic.
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With small but not too small ∆M/M , large M is possible.
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Extensions
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The same can happen with weak interactions (2HDM)
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Effects are then on the 10% level
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〈O†(0)O(0)〉T can be measured with lattice NRQCD

⇒ denote by S̄i enhancement factor over pQCD in channel i,

Gθ = propagator, α, γ = colour indices, i, j = spin indices

P1 ≡ 1

2Nc

Re
〈
G

θ
αα;ii(β, 0; 0, 0)

〉
,

P2 ≡ 1

2Nc

〈
G

θ
αγ;ij(β, 0; 0, 0)G

θ†
γα;ji(β, 0; 0, 0)

〉
,

P3 ≡ 1

2N2
c

〈
G

θ
αα;ij(β, 0; 0, 0)G

θ†
γγ;ji(β, 0; 0, 0)

〉

⇒ S̄1 =
P2

P 2
1

, S̄8 =
N2

cP3 − P2

(N2
c − 1)P 2

1

.
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Large effect confirmed in the attractive “singlet” channel
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Summary

• Apart from model uncertainties, generic dark matter studies

contain theoretical uncertainties.

• Both quantum-mechanical effects (bound states, multiple

interactions) and statistical physics phenomena (Debye screening,

2 → 2 scatterings on plasma particles) may play a role.

• For instance, a strongly interacting DM’ may increase 〈σv rel〉.
The below-threshold (“bound-state”) contribution is typically at

least as large as the Sommerfeld effect.

• Model-specific studies are needed for definite conclusions.

33


