

LOW-MOMENTUM / LOW-MASS DILEPTONS IN HADES AND RESULTS ON PHOTON POLARIZATION FROM COARSE-GRAINING APPROACH

Florian Seck (TU Darmstadt)

THERMAL DILEPTON RADIATION AS MULTIMETER OF THE FIREBALL

- Lifetime via low-mass yield
 - → search for "extra radiation" due to latent heat around phase transition (& critical point?)
- Temperature via slope of invariant mass spectrum
 - \rightarrow flattening of caloric curve (T vs ε) sign for a phase transition
- Pressure anisotropies via dilepton flow
 - → access to EoS at high baryon density via multi-differential measurements
- Spin polarization allows to distinguish different sources of thermal dileptons
 - → access information on production mechanism
- Electric conductivity probed in the limit $p_{ee} = 0 \text{ MeV/}c$, $M_{ee} \rightarrow 0 \text{ MeV/}c^2$
 - → access to transport properties of QCD matter
- Access to exotic QCD phases
 - → yield enhancement in vicinity of color superconducting phase (?)

- H. Barz et al., Phys. Lett. B 254, 315 (1991)
- R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016)
- T. Galatvuk, JPS Conf. Proc. 32 (2020), 010079
- F. Seck *et al.*, Phys. Rev. C 106 (2022), 014904
- 1. Seck et al., 1 Hys. Nev. C 100 (2022), 01490
- O. Savchuk et al., J. Phys G 104537 R2 (2023)
- R. Chatterjee et al., Phys. Rev. C 75 (2007), 054909
- G. Vujanovic et al., Phys. Rev. C 89 (2014), 034904
- T. Reichert et al., Phys. Lett. B 841 (2023) 137947
- R. Hirayama, H. Elfner, arXiv:2408.16603
- G. Moore, J. Robert, arXiv:hep-ph/0607172 (2006)
- J. Atchison, R. Rapp, Nucl. Phys. A 1037 (2023) 122704
- S. Flörchinger et al., Phys. Lett. B 837 (2023) 137647
- R. Rapp, arXiv: 2406.14656
- E. Bratkovskaya *et al.*, Phys. Lett. B 376, 12 (1996)
- E. Speranza et al., Phys. Lett. B 782, 395 (2018)
- G. Baym et al., Phys. Rev. C 95, 044907 (2017)
- S. Hauksson, C. Gale, Phys. Rev. C 109, 034902 (2024)
- T. Nishimura et al., Eur. Phys. J. A 60, 82 (2024)

THERMAL DILEPTON RADIATION AS MULTIMETER OF THE FIREBALL

- Lifetime via low-mass yield
 - → search for "extra radiation" due to latent heat around phase transition (& critical point?)
- Temperature via slope of invariant mass spectrum
 - \rightarrow flattening of caloric curve (T vs ε) sign for a phase transition
- Pressure anisotropies via dilepton flow
 - → access to EoS at high baryon density via multi-differential measurements
- Spin polarization allows to distinguish different sources of thermal dileptons
 - → access information on production mechanism
- Electric conductivity probed in the limit $p_{ee} = 0 \text{ MeV/}c$, $M_{ee} \rightarrow 0 \text{ MeV/}c^2$
 - → access to transport properties of QCD matter
- Access to exotic QCD phases
 - → yield enhancement in vicinity of color superconducting phase (?)

Dileptons are rare probes → high-rate, high-efficiency detectors → HADES at GSI, CBM at FAIR, NA60+ at CERN

U. Heinz, K. Lee, Phys. Lett. B 259, 162 (1991)

H. Barz et al., Phys. Lett. B 254, 315 (1991)

R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016)

T. Galatyuk, JPS Conf. Proc. 32 (2020), 010079

F. Seck et al., Phys. Rev. C 106 (2022), 014904

O. Savchuk et al., J. Phys G 104537 R2 (2023)

R. Chatterjee *et al.*, Phys. Rev. C 75 (2007), 054909

G. Vujanovic et al., Phys. Rev. C 89 (2014), 034904

T. Reichert et al., Phys. Lett. B 841 (2023) 137947

R. Hirayama, H. Elfner, arXiv:2408.16603

G. Moore, J. Robert, arXiv:hep-ph/0607172 (2006)

J. Atchison, R. Rapp, Nucl. Phys. A 1037 (2023) 122704

S. Flörchinger *et al.*, Phys. Lett. B 837 (2023) 137647

R. Rapp, arXiv: 2406.14656

E. Bratkovskaya *et al.*, Phys. Lett. B 376, 12 (1996)

E. Speranza et al., Phys. Lett. B 782, 395 (2018)

G. Baym et al., Phys. Rev. C 95, 044907 (2017)

S. Hauksson, C. Gale, Phys. Rev. C 109, 034902 (2024)

T. Nishimura *et al.*, Eur. Phys. J. A 60, 82 (2024)

VIRTUAL PHOTON POLARIZATION: BASICS

Angular distribution of the decay leptons in the virtual photon rest frame

Information on the polarization states of the virtual photon

Information on the production mechanism

TECHNISCHE

DARMSTADT

VIRTUAL PHOTON POLARIZATION: BASICS

Angular distribution of the decay leptons in the virtual photon rest frame

Information on the polarization states of the virtual photon

Information on the production mechanism

Helicity frame, Collins-Soper frame, etc.

General angular distribution

$$\frac{dN}{d\cos\theta \, d\varphi} = \mathcal{N} \left(1 + \lambda_{\theta} \cos^2\theta + \lambda_{\varphi} \sin^2\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi \right)$$

$$\lambda_{ heta} = 0$$
 isotropic

VIRTUAL PHOTON POLARIZATION: BASICS

Angular distribution of the decay leptons in the virtual photon rest frame

Information on the polarization states of the virtual photon

Information on the production mechanism

- Different choices for polarization axis possible
 - Helicity frame, Collins-Soper frame, etc.

• General angular distribution
$$\frac{dN}{d\cos\theta \ d\varphi} = \mathcal{N} \left(1 + \lambda_{\theta} \cos^2\theta + \lambda_{\varphi} \sin^2\theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos\varphi\right)$$

- Different virtual photon production mechanisms imprint different anisotropy parameters λ
- Dalitz-decays of π^0 , η transverse polarized to real photon momentum direction

E. Speranza *et al.*, Phys. Lett. B 782, 395 (2018)
G. Baym *et al.*, Phys. Rev. C 95, 044907 (2017)
E. Bratkovskaya *et al.*, Phys. Lett. B 376, 12 (1996)

HADES, Phys. Rev. C 95, 065205 (2017)

VIRTUAL PHOTON POLARIZATION: STATIC THERMAL MEDIUM

- EM emissivity of thermal QCD matter determined by the correlator of the EM current $\Pi_{EM}^{\mu\nu}=\left\langle j_{EM}^{\mu}\,j_{EM}^{\nu}\right\rangle_{T}$
- · Dilepton emission rate given by

$$\frac{dN_{ll}}{d^4x \ d^4q} = \frac{\alpha^2 \ L(M)}{6 \ \pi^3 \ M^2} \ f^B(q_0; \ T) \ g_{\mu\nu} \ \rho_{EM}^{\mu\nu}(M, |\vec{q}|; \ T, \mu_B) \ \text{with} \ \rho_{EM}^{\mu\nu} = -2 \ \text{Im} \ \Pi_{EM}^{\mu\nu}$$

• Decomposition using standard 4D projectors for a spin-1 particle $P_{L,T}^{\mu
u}$

$$\rho_{EM}^{\mu\nu} = \rho_L P_L^{\mu\nu} + \rho_T P_T^{\mu\nu} \text{ with } g_{\mu\nu} \rho_{EM}^{\mu\nu} = \rho_L + 2\rho_T$$

- Rotational symmetry of the medium broken by finite $|\vec{q}|$
- λ coefficients related to difference between longitudinal and transverse spectral function components
 - \rightarrow for a static thermal medium in the helicity frame: $\lambda_{\theta} = \frac{\rho_T \rho_L}{\rho_T + \rho_L}$

E. Speranza *et al.*, Phys. Lett. B 782, 395 (2018) G. Bavm *et al.*, Phys. Rev. C 95, 044907 (2017)

- Anisotropy coefficients in different frames related via rotations
- For moving medium: transform local coefficients to global frame accessible in experiment → comparison to data

REALISTIC SPECTRAL FUNCTIONS

Employ in-medium spectral functions that give fair description of available dilepton data

- Hadronic emission with in-medium ρ-meson spectral function calculated from hadronic many-body theory based on effective Lagrangians
 R. Rapp, J. Wambach, Eur. Phys. J. A 6, 415 (1999) R. Rapp, G. Chanfray, J. Wambach, Nucl. Phys. A 617, 472 (1997)
- QGP emission based on perturbative $q\bar{q}$ annihilation with a low-energy transport peak constrained by IQCD data R. Rapp, Adv. High Energy Phys. 2013, 148253 (2013)

POLARIZATION IN STATIC THERMAL MEDIUM

- Strong dependence on mass, momentum and baryon density for hadronic medium
- Rather small polarization for QGP except for $M_{\rm ee}$ < 0.5 GeV/ c^2 approaching the photon point

POLARIZATION IN MOVING MEDIUM

- Helicity frames (HX') of individual local fluid cells misaligned
- Transform polarization coefficients from each cell into a global frame accessible to experiment: HX, CS, ...
- Integration over kinematic bins with weighted mean

center of mass frame of the collision "lab"

local medium restframe

POLARIZATION IN MOVING MEDIUM

- Helicity frames (HX') of individual local fluid cells misaligned
- Transform polarization coefficients from each cell into a global frame accessible to experiment: HX, CS, ...
- Integration over kinematic bins with weighted mean

POLARIZATION IN MOVING MEDIUM

- Helicity frames (HX') of individual local fluid cells misaligned
- Transform polarization coefficients from each cell into a global frame accessible to experiment: HX, CS, ...
- Integration over kinematic bins with weighted mean

COMPARISON TO HADES DATA

- HADES measured anisotropy coefficient λ_{θ} of excess radiation in Ar+KCl collisions at 1.76A GeV ($\sqrt{s_{NN}} = 2.62$ GeV)
- Space-time evolution via coarse-grained hadronic transport
- Polarization largely survives evolution of the expanding medium
- Best fit to data gives $\lambda_{\theta} = 0.51 \pm 0.17$ and $\lambda_{\theta} = 0.01 \pm 0.10$ in the two mass windows
- Calculation result gives $\lambda_{\theta} = 0.32$ and $\lambda_{\theta} = 0.01$ respectively

HADES, Phys. Rev. C 84, 014902 (2011)

T. Galatyuk *et al.*, Eur. Phys. J. A 52, 131 (2016)

FS et al., Phys. Lett. B 861, 139267 (2025)

COMPARISON TO NA60 DATA

- NA60 measured polarization coefficients λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ of excess radiation in the CS frame in In+In collisions at 158A GeV
- Space-time evolution via isentropic fireball model with transition from QGP to hadronic rates at T=170 MeV

NA60, Phys. Rev. Lett. 96, 162302 (2006) R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016)

- Good agreement between data and theory → size and trend
- Near absence of a net polarization not related to thermal isotropy arguments

data points: NA60, Phys. Rev. Lett. 102, 222301 (2009)

PROSPECT OF DISENTANGLING HADRONIC AND PARTONIC SOURCES

- Polarization plays important role in exploring the mechanisms underlying EM emission
 - ρ -a₁ chiral mixing vs. QGP around $M_{ee} \sim 1.1$ GeV (?)
 - Search for onset of QGP (?)
- Multi-differential measurements of the virtual photon polarization
 - Resolve mass, p_T , rapidity, lepton emission angles θ_l , $\phi_l \rightarrow large$ datasets needed \rightarrow CBM, NA60+, ALICE3

PREDICTIONS FOR AG+AG COLLISIONS & FUTURE EXPERIMENTS

- Predictions for λ_{θ} in Ag+Ag at $\sqrt{s_{NN}} = 2.55$ GeV
- Anisotropy coefficients integrated over p_T in several mass ranges

POLARIZATION: IMPACT ON MASS SPECTRA

- Polarization does not affect mass spectra in 4π , but:
- Leads to up to 20% difference in the HADES acceptance at low masses
 - Low-mass virtual photons are transversely polarized ($\lambda_{\theta} > 0$)
 - Emission of leptons predominantly along the virtual photon momentum direction
 - Lepton traveling against the virtual photon momentum gets rejected by low-momentum cut
 - Needs to be accounted for in the pairacceptance correction with thermal ρ
 - → Now included in the analysis procedure

LOW-MASS LOW-MOMENTUM DILEPTONS

- Color superconductivity could manifest itself in an enhanced yield of low-energy dileptons
- Thermal dileptons encode information on matter properties
 - Yield in $p_{ee} = 0 \text{ MeV/}c$, $M_{ee} \rightarrow 0 \text{ MeV/}c^2 \text{ limit}$ proportional to electrical conductivity
- Large theoretical uncertainty
 - → Experimental constraints are highly desirable
- Determines time evolution of electromagnetic fields generated by spectators
 - Important for effects related to the presence of strong magnetic fields

electrical conductivity

$$\sigma_{el}(T) = -e^2 \lim_{q_0 \to 0} \frac{\rho_{EM}(q_0, \vec{q} = 0, T, \mu_B)}{q_0}$$

T. Nishimura *et al.*, PTEP 2022 (2022) 9, 093D02 arXiv:2201.01963

T. Nishimura et al., Eur. Phys. J. A 60, 82 (2024)

thermal dilepton emission rate

$$\frac{d^8N}{d^4q \ d^4x} = \frac{-\alpha_{EM}^2}{\pi^3 M^2} \ f_B(q_0, T) \ \underbrace{Im \Pi_{EM}(M, q, T, \mu_B)}_{}$$

HADES EXPERIMENT AT GSI

TECHNISCHE UNIVERSITÄT DARMSTADT

- High-Acceptance Di-Electron Spectrometer
- Designed with a minimal material budget to reduce conversion
- Large angular coverage:
 - $15^{\circ} < \theta < 85^{\circ}$
 - $0^{\circ} < \phi < 360^{\circ}$
- Accepted trigger rate up to
 - 16 kHz for heavy-ion collisions
 - 50 kHz with proton/pion beam
- Dedicated components for e^+/e^- :
 - Time-of-Flight measurements
 - Ring-Imaging Cherenkov Detector
 - Electromagnetic Calorimeter

HADES allows for high efficiency and high purity electron sample

- Low momentum lepton tracks bent out of acceptance by magnetic field
 - 2019: short Ag+Ag test run with lower magnetic field → field reduced from 70% to 5% of max. field
 - Remove low-momentum cut for single leptons

• Lower momentum resolution, but still clean lepton identification possible down to $p_e \sim 10~{
m MeV}/c$

- Low momentum lepton tracks bent out of acceptance by magnetic field
 - 2019: short Ag+Ag test run with lower magnetic field → field reduced from 70% to 5% of max. field
 - Remove low-momentum cut for single leptons
- Excellent S/B ratio > 10 below $M_{\rm ee}$ = 0.1 GeV/ c^2
- Flat k-factor (accounting for charge asymmetry of reconstructed leptons)
- Region of interest for σ_{el} gets populated with statistics
- Photon conversion suppressed via opening angle cut
 - Study $\alpha_{ee} > 9^{\circ}$ vs. $\alpha_{ee} > 5^{\circ}$

C. Udrea , QM2025 poster

- Pair efficiency corrected spectra inside the HADES acceptance
- NN reference applied for $M_{\rm ee}$ > 0.13 GeV/ c^2 \rightarrow investigation of proper momentum smearing ongoing
- Next: Extraction of excess radiation & acceptance correction
 - Correction factor at low $M_{\rm ee}$ reduced from ~1000 to below 10
 - Physics background of π^0 and η mesons: Good signal to "physics background" ratio at HADES: ~ 10% of yield in π^0 region is excess radiation

- Pair efficiency corrected spectra inside the HADES acceptance
- NN reference applied for $M_{\rm ee}$ > 0.13 GeV/ c^2 \rightarrow investigation of proper momentum smearing ongoing
- Next: Extraction of excess radiation & acceptance correction
 - Correction factor at low $M_{\rm ee}$ reduced from ~1000 to below 10
 - Physics background of π^0 and η mesons: Good signal to "physics background" ratio at HADES: ~ 10% of yield in π^0 region is excess radiation

Many systematic cross-checks ongoing:

- PID
- Efficiency
- Acceptance (including polarization)
- Close pair rejection
- NN reference & cocktail contribution yields
- etc.

C. Udrea, QM2025 poster

PROSPECTS: AU+AU BEAM ENERGY SCAN AT HADES

- HADES Au+Au beam energy scan conducted in spring 2024 & 2025
 - Data collected at E_{kin} = 0.8, 0.6, 0.4, and 0.2A GeV ($\sqrt{s_{NN}}$ = 2.23, 2.14, 2.05, 1.96 GeV)
 - Lowest energy below π⁰ production threshold in elementary collisions → potentially no "physics background"
 - In addition, dedicated run at E_{kin} = 0.8A GeV with low magnetic field \rightarrow field reduced from 50% to 5% of max. field
 - Online dilepton raw spectra

QCD PHASE DIAGRAM PROBED WITH DILEPTONS

- Trajectories from coarse-grained UrQMD
- Measured average temperatures from HADES well above universal freeze-out region
- Transition lines from two-flavor NJL model in mean-field approximation
 - Transition of chiral symmetry breaking
 - Transition to the two-flavor color superconducting (CSC) phase
- Collisions at $\sqrt{s_{NN}}=2.2$ GeV (E_{kin} = 800A MeV) might show sensitivity to precursor phenomena for the CSC phase

SUMMARY

- Unique possibility of characterizing the properties of baryon-rich matter with multi-differential measurements
 of penetrating probes
 - Polarization as a tool to disentangle production sources
 - Fundamental transport coefficients accessible with soft virtual photons
- HADES provides high-quality data of the di-electron production in heavy-ion collisions at SIS energy regime
 - Au+Au at 1.23A GeV, Ag+Ag at 1.58 and 1.23A GeV
 - Energy scan: data for Au+Au at 0.2 0.4 0.6 0.8A MeV on tape
 - Including a dedicated run with low magnetic field
- Big discovery potential with high-rate experiments coming online in the near future

BACKUP

DESCRIPTION OF THE SPACE-TIME EVOLUTION

- Bulk observables are reasonably well described by simulations
 - Hydrodynamics at high collision energies
 - Microscopic transport model at low collision energies
- Pure transport simulations struggle to describe dilepton data
 - "shining" or time-integration method

- Simulate events with a transport model & take ensemble average to obtain smooth space-time distributions
- Divide space-time into 4-dim. cells
- Check if cell is thermalized (→ enough interactions)
- Extract baryon density ρ_B , medium velocity \vec{u} , and temperature $T (\rightarrow m_T$ spectra of pions)
- Calculate dilepton rates based on these inputs per cell
- Space-time integration via summation of the contributions from all cells

THERMAL DILEPTON PRODUCTION

Bose-Einstein distribution

electromagnetic spectral function

McLerran-Toimela formula

$$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2} f^B(q_0, T) Im \Pi_{EM}(M, q, T, \mu_B)$$

L. McLerran, T. Toimela, Phys. Rev. D 31 (1985) 545

- p-meson spectral function broadens
 - Additional contributions to the self-energy in the medium through coupling to (anti-)baryons and mesons

$$D_{\rho}(M, q; \mu_B, T) = \frac{1}{M^2 - m_{\rho}^2 - \Sigma_{\rho\pi\pi} - \Sigma_{\rho B} - \Sigma_{\rho M}}$$

• If $\frac{Im\Pi_{EM}}{M^2} \sim const.$ \rightarrow thermometer

vacuum

medium

R. Rapp, J. Wambach: Eur. Phys. J. A 6 (1999) 415

COMPARISON OF THERMAL EXCESS DATA WITH THEORY

Good agreement between experiment and theory for excess radiation

COSMIC MATTER IN THE LABORATORY

- Remarkable similarities between matter in neutron star mergers and HIC in the few GeV regime
- Laboratory studies of the matter properties (EoS) in compact stellar objects (neutron star mergers)

M. Hanauske *et al.*, Particles 2 (2019) no.1
L. Rezzolla *et al.*, Phys. Rev. Lett. 122 (2019) no. 6, 061101
E. Most et al., Phys. Rev. D 107 (2023) 4, 043034

 What are the measurable consequences of phase transition and critical point in the QCD phase diagram?

HADES, Nature Phys. 15 (2019) 1040

EXCITATION FUNCTION OF THE LIFETIME OF THE FIREBALL

Excess yield in LMR tracks fireball lifetime

$$au_{Life} \propto rac{N_{ll}}{N_{charged\ pions}}$$

R. Rapp & H. van Hees, Phys. Lett. B 753 (2016) 586-590

- Search for "extra radiation" due to latent heat around phase transition (& critical point?)
- 1st order phase transition could result in factor 2 larger yield
 - Detectable by current & future experiments

Galatyuk, JPS Conf. Proc. 32 (2020) 010079 Galatyuk, Rapp, et al., doi:10.1007/978-981-19-4441-3_4 (2022)

EXCITATION FUNCTION OF THE TEMPERATURE OF THE FIREBALL

 Invariant mass slope measures radiating source temperature (free from blue-shift effects)

$$\frac{dN_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp\left(-\frac{M}{T}\right)$$

R. Rapp & H. van Hees, Phys. Lett. B 753 (2016) 586-590

- Assumption: $\frac{Im\Pi_{EM}}{M^2}$ ~ constant
 - Generally justified in the IMR (M_{ee} > 1.5 GeV/c²)
 - Strong melting of ρ meson allows temperature extraction in the LMR (M_{ee} = 0.3-0.7 GeV/c²)

FS, T. Galatyuk et al., Eur. Phys. J. A 52 (2016) 5, 131

- T_{LMR} and T_{IMR} different:
 - T_{IMR} probes hottest regions
 - T_{LMR} probes average fireball temperature

→ evidence for a **phase transition**

NA60, AIP Conf. Proc. 1322 (2010) 1 HADES, Nature Phys. 15 (2019) 1040 Rapp and v. Hess, PLB 753 (2016) 586 TG *et al.*, EPJA 52 (2016) 131 https://github.com/tgalatyuk/QCD_caloric_curve

DILEPTON FLOW

Azimuthal anisotropies with respect to reaction plane

$$\frac{dN}{d\phi} \propto (1 + 2\sum_{n} v_n \cos(n\phi)), \text{ with } v_n = \langle \cos(n\phi) \rangle$$

Interplay between medium 4-velocity u and temperature T

$$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2} f^B(q \cdot u, T) Im \Pi_{EM}(M, q, T, \mu_B)$$

R. Chatterjee et. al, Phys. Rev. C 75 (2007) 054909 G. Vujanovic et al., Phys. Rev. C 89 (2014) 3, 034904

- Pressure anisotropies in underlying space-time evolution

 → collective velocities of medium cells
- Dileptons probe earlier times (high ρ_B , high T) compared to hadron flow

Possible sensitivity to the EoS at high density

T. Reichert et al., Phys.Lett.B 841 (2023) 137947

DILEPTON V2 IN AG+AG COLLISIONS

 $M_{\rm ee}$ < 0.12 GeV/ c^2 : inclusive yield dominated by π^0 decays

Dilepton v₂ consistent with charged pion v₂

 $M_{\rm ee} > 0.12 \; {\rm GeV}/c^2$: inclusive yield dominated by thermal radiation

Dilepton v₂ consistent with zero → early emission

STEPS TO ISOLATE THERMAL RADIATION

- RICH photodetector upgrade
 - Employing CBM at FAIR technology (CBM FAIR phase-0)
- Efficiency correction
- NN reference subtraction
- Freeze-out cocktail subtraction
 - Simulated using Pluto event generator with measured/estimated multiplicities

TECHNISCHE

UNIVERSITÄT DARMSTADT

HADES LEPTON IDENTIFICATION PERFORMANCE

- Reconstruction efficiency ~ 70%
- Purity above 90%
- Hadron suppression of $\sim 10^{-5}$
- Ag+Ag run in 2019
 - $N_{y*}^{rec} \approx 1.5 \cdot 10^6 \text{ for } \sqrt{s_{NN}} = 2.55 \text{ GeV } (28 \text{ days})$
 - $N_{v*}^{rec} \approx 1.5 \cdot \mathbf{10^5}$ for $\sqrt{s_{NN}} = 2.42$ GeV (3 days)

DILEPTON INVARIANT MASS SPECTRA FROM HADES

Clear excess visible above contributions from initial NN reference and freeze-out cocktail

measured NN reference

measured NN reference

simulated reference (GiBUU)

→ analysis of NN measurement at the same collision energy ongoing

MEASUREMENT OF NN REFERENCE IN HADES

- p+p and d+p collisions at $E_{kin} = 1.25 \text{ GeV}$
 - n+p reaction tagged by triggering on proton spectator

HADES, Phys. Lett. B 690 (2010) 118 A. Larionov et al., Phys. Rev. C 102 (2021), 064913

- Ongoing analysis of p+p at E_{kin} = 1.58 GeV and 4.5 GeV
 - Empty target run p+C/p/O as proxy for p+p/p+n

DILEPTON SIGNATURE OF A FIRST ORDER PHASE TRANSITION

- Ideal hydro simulations with and w/o first order nuclear matter – quark matter phase transition
- Chiral Mean Field model that matches lattice QCD at low μ_B and neutron-star constraints at high density

FS et al., Phys. Rev. C 106 (2022) 1, 014904

EXPERIMENTAL DIFFICULTIES

TECHNISCHE UNIVERSITÄT DARMSTADT

- Virtual photon polarization influences detection efficiency
- Efficiency + acceptance corrections need to be done carefully
- Wrong efficiency evaluation can lead to wrong sign of polarization

SEARCH FOR LANDMARKS IN THE QCD PHASE DIAGRAM

- Search for
 - Phase boundaries
 - Changes in microscopic degrees of freedom
 - Restoration of chiral symmetry
- Bulk observables and rare probes offer different tools to understand the nature of the matter created in HIC
- Electromagnetic radiation (γ, γ^*)
 - Reflects the whole history of a collision
 - No strong final state interaction
 - → leaves reaction volume undisturbed
 - Virtual photons reconstructed via their dilepton decay
 - → extra information: invariant mass

EXPERIMENTAL CHALLENGES

- Dileptons are rare probes
 - High interaction rates
 - Good signal-to-combinatorial background ratio (S/CB)
 - High acceptance (Mid-rapidity, low- $M_{\ell\ell}$, low- p_{T} coverage)
- Isolation of thermal radiation by subtraction of measured decay cocktail $(\pi^0, \eta, \omega, \varphi)$, Drell-Yan, $c\bar{c}$ $(b\bar{b})$

HEAVY-ION COLLISION

Thermal Contribution: Fireball

Vacuum Contribution: Glow Layer + Freeze-Out

J. Vogel, T. Galatyuk, FS, QM 2025 poster J. Vogel, master thesis (TU Darmstadt)

Coarse-Graining

Describes **thermal** dilepton production, by assuming local equilibrium and using **in-medium spectral function**

Dilepton spectra of short-lived sources with thermal & vacuum contributions

Shining

Only describes vacuum contributions, by using vacuum spectral function and neglecting some in-medium effects

- Divide fireball evolution into 4-dimensional space-time cells like in Coarse-Graining
- Calculate trajectory of each particle
- Check for each particle which boxes are crossed & at what time they are crossed
- Set up thermal map: Check if an individual cell is thermalized at the time it is crossed by the particle
- Calculate the fraction of time the particle spends in thermalized cells compared to its lifetime:

$$\mathbf{F} = \frac{\text{time particle spends in thermalized cells}}{\text{lifetime}}$$

• Transverse momentum and centrality dependence of the thermal fraction:

$F = \frac{time\ particle\ spends\ in\ thermalized\ cells}{lifetime}$

J. Vogel, T. Galatyuk, FS, QM 2025 poster J. Vogel, master thesis (TU Darmstadt)

Calculate dilepton rates with:

$$\frac{dN}{dM_{total}} = (\mathbf{1} - \mathbf{F}) \frac{dN}{dM_{Shining}}$$

Vacuum spectral function Vacuum contribution

J. Vogel, T. Galatyuk, FS, QM 2025 poster J. Vogel, master thesis (TU Darmstadt)

Calculate dilepton rates with:

$$\frac{dN}{dM_{total}} = (1 - F) \frac{dN}{dM_{Shining}} + \frac{dN}{dM_{CG}}$$

Vacuum spectral function
Vacuum contribution

In-medium spectral function
Thermal contribution

J. Vogel, T. Galatyuk, FS, QM 2025 poster J. Vogel, master thesis (TU Darmstadt)

DATA COMPARISON WITH SHINING

- Excess spectrum of HADES data
- Full dilepton spectrum according to standard shining
 - Contributions of different dilepton sources
- Overestimation around ρ/ω mass region

DATA COMPARISON WITH CG + CORRECTED SHINING

- Excess spectrum of HADES data
- Coarse-graining of in-medium ρ and ω
- Corrected shining and its contributions from different sources
 - Spectrum of merged approaches
- Coarse-graining gives good description apart from bump in ρ/ω mass region
- Description of bump given by corrected shining, coming from direct ρ/ω decay

