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Fluid dynamics

long distances, long times or strong enough interactions
quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T , µ)
shear + bulk viscosity η(T , µ), ζ(T , µ)
heat conductivity κ(T , µ), . . .
relaxation times, ...
electrical conductivity σ(T , µ)

fixed by microscopic properties encoded in Lagrangian LQCD
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p + πbulk)∆
µν + πµν

Nµ = n uµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T , µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply
equation for energy density ε

equation for fluid velocity uµ

equation for particle number density or charge density n

Need further evolution equations [e.g Israel & Stewart]
equation for shear stress πµν

equation for bulk viscous pressure πbulk

τbulk uµ∂µπbulk + . . .+πbulk = −ζ ∇µuµ

equation for diffusion current νµ

non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Electric current
quarks carry electric charge
electromagnetic current in fluid rest frame uµ = (1, 0, 0, 0)

Jµ = (n, J)

conservation law for electromagnetic current

∇µJµ =
∂

∂t n +∇ · J = 0

supplemented by evolution equation for diffusion current

J + τ
∂

∂t J = σE − D∇n

electric conductivity σ

diffusion coefficient D = σ/χ

charge susceptibility χ = (∂n/∂µ)|T
relaxation time τ constrained by causality

τ > D =
σ

χ
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Spectral function from fluid dynamics
retarded response

δJµ(x) =
∫

y
Gµν

R (x − y) δAν(y)

inverting equations of motion yields

G00
R (ω, p) = iσp2

ω − iτω2 + iDp2

G0j
R (ω, p) =Gj0

R (ω, p) = iσωpj

ω − iτω2 + iDp2

Gjk
R (ω, p) = iσωδjk

1 − iτω +
Dσωpjpk

[ω − iτω2 + iDp2][1 − iτω]

spectral function

ρ(ω, p) =ImGµ
R µ(ω, p)

=
σω(ω2 − p2)

(τω2 − Dp2)2 + ω2 + 2 σω

τ2ω2 + 1
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Photon production rate in local thermal equilibrium

photon production rate per unit volume and time

p0 dR
d3p =

1
(2π)3 nB(ω)ρ(ω),

electromagnetic spectral function ρ(ω)

frequency in the fluid rest frame

ω = −uµpµ

Bose-Einstein distribution factor

nB(ω) =
1

eω/T − 1
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Dilepton production rate in local thermal equilibrium

thermal dilepton production rate per unit volume and time

dR
d4p =

α

12π4
1

M 2 nB(ω) ρ(ω,M)

×
(

1 +
2m2

M 2

)√
1 − 4m2

M 2 Θ(M 2 − 4m2),

momentum of the dilepton pair pµ = pµ
1 + pµ

2

lepton mass m
electromagnetic fine structure constant α = e2/(4π)
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Electric conductivity

Kubo relation for electric conductivity

σ =
1
2 lim

ω→0

1
ω
ρ(ω, p)

∣∣
p2=ω2 =

1
3 lim

ω→0

1
ω
ρ(ω, p)

∣∣
p=0

small frequency limit either at p2 = ω2 or at p = 0
ratio ρ/ω has transport peak at small frequency
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Predictions of electrical conductivity
many predictions of electric conductivity in the literature
perturbative predictions [Arnold, Moore & Yaffe] 0.19 < σ/T < 2
lattice estimates vary
would be great to have some experimental constraints

7

running coupling at the momentum transfer of each mi-
croscopic interaction leads to an effective temperature
dependence of the coupling [42], and hence a qualita-
tively different temperature dependence of the electric
conductivity is obtained. The interaction strength de-
creases with increasing temperature, and accordingly the
effective cross section decreases. The filled dark red cir-
cles are results for the most realistic scenario. Here we
employ elastic 2 ↔ 2 and inelastic 2 ↔ 3 scatterings,
and the running coupling αs. The LPM effect is mod-
eled as described in Ref. [42], using the LPM parameter
XLPM = 0.3. The result is sensitive to the LPM cut-
off XLPM, but its value is fixed by comparing BAMPS
simulations of full heavy-ion collisions with experimental
data for the nuclear modification factor; see Sec. III. As
an example, changing XLPM = 0.3 to XLPM = 0.5 or
XLPM = 1.0 increases the electric conductivity by about
16% or 40%. We emphasise again that the scattering
rates of radiative processes are governed by the improved
Gunion-Bertsch matrix elements, which were developed
in Refs. [38, 42]. The inclusion of inelastic collisions ac-
counts for an overall higher effective cross section than in
the elastic scenarios. Therefore, the electric conductivity
decreases by about 40%, and the slope of log(σel/T )(T )
decreases slightly. Nevertheless, the temperature depen-
dence seems to be dominated by the running of αs.

This study allows us in a unique way to study the
overall effective scattering rates for a hot QCD plasma
microscopically, including all leading-order elastic and in-
elastic processes. The electric conductivity reflects in a
profound way the effect of inelastic pQCD scattering and
the running of αs. We believe that this is an important
result of pQCD, and comparisons with other theories are
reasonable.

In Fig. 6, we contrast the electric conductivity obtained
using BAMPS with recent lQCD results, the transport
model PHSD, a conformal, and a nonconformal holo-
graphic computation. Comparison with lQCD data has
to be taken with care. Obviously, published results from
lQCD for the electric conductivity differ greatly, and gen-
eral trends cannot be concluded, other than that most
results lie within 0.001 ≤ σel/T ≤ 0.1. The error bars
are mostly large, or not quoted. The presented results
from the BAMPS transport simulation lie between 0.04 ≤
σel/T ≤ 0.08 for temperatures 0.2 GeV ≤ T ≤ 0.6 GeV.
The main differences amongst the lQCD setups are the
QCD actions, different methods to handle the inversion
problem and different numbers of dynamical and valence
quarks. It has to be mentioned, that the temperature, at
which certain results are valid, is often quoted in units of
the critical temperature. The precise value of the critical
temperature requires, in turn, a lattice analysis. We omit
at this point a further detailed comparison amongst the
lQCD results, which can be found elsewhere [54]. The
most recent results from lQCD are given by the authors
of Ref. [20](open blue diamonds, dashed line to guide the
eye). They provide the largest set of data for different
temperatures so far, and use ensembles of 2+1 dynamical

 0.001

 0.01

 0.1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

σ
el

/T
 

T[GeV]

BAMPS, 2↔2 pQCD, fixed αs=0.3
BAMPS, 2↔2 pQCD, running αs

BAMPS, 2↔2+2↔3 pQCD, running αs
lattice A
lattice B
lattice C
lattice D
lattice E
lattice F
lattice G

PHSD
SYM

non-conformal holographic model

Figure 6. Numerical results for the electric conductivity
(filled symbols) compared to recent results from literature.
The open symbols represent results from lattice QCD. PHSD:
[21], SYM: [55], nonconformal holographic model: [24], lat-
tice A: [15], lattice B: [19], lattice C: [20], lattice D: [14],
lattice E: [16], lattice F: [18], lattice G: [17]. The elec-
tric charge is explicitly multiplied out, e2 = 4π/137. Around
T = 0.3 GeV, results from Ref. [29] (not shown), using a
Dyson-Schwinger approach, are consistent with the results
from Ref. [20].

flavors. Their temperature dependence for σel/T above
T ∼ 250 MeV is similar to the results from BAMPS with
running coupling. This qualitative agreement supports
the physical validity of the implemented inelastic scatter-
ing processes of BAMPS. However, the results of Ref. [20]
are a factor ∼ 4 smaller than ours. In addition, we show
in Fig. 6 results from the PHSD transport approach by
the black dashed line [21, 22]. One observes a signifi-
cantly different temperature dependence. The value ob-
tained in a conformal Super-Yang Mills plasma is shown
by the constant grey dashed line [55]. The authors of
Ref. [24] used a nonconformal, bottom-up holographic
model to compute the electric conductivity (cyan dotted
line). Their model adequately describes recent lattice
data for QCD thermodynamics at zero chemical poten-
tial.

VII. CONCLUSION AND OUTLOOK

In this work we extracted the electric conductivity co-
efficient for a dilute gas of massless and classical par-
ticles described by the relativistic Boltzmann equation.
For this purpose we employed the microscopic transport
model BAMPS in a static multipartonic system. We use
two independent methods to extract the transport co-
efficient, and see nice agreement between the two. We
present results using binary collisions and a constant
isotropic cross section. Here we find agreement with the
relativistic generalization of the Drude formula for the
electric conductivity in the functional dependence as well

[figure compiled by Greif et al. (2014)]
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Electric current spectral function
from equations of motion we find the spectral function

ρ(ω, p) = σω(ω2 − p2)

(τω2 − Dp2)2 + ω2 + 2 σω

τ2ω2 + 1 .

height of peak proportional to conductivity
decay governed by width ∼ 1/τ
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Fluid dynamics

integrate over the QGP fire ball using T(r , t) and u(r , t) from FluiduM
[Floerchinger, Grossi, Jeon (2019)]

Pb-Pb-collisions at √sNN = 5.02 TeV
centrality class 0-5%
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Freeze-out surface !.". B#$%& W$’( M)*(# & C))+(,-F,-( F,((.()/&

Figure 2.2: Exemplary spacetime evolution of temperature in the fireball of QGP. Lines
of constant temperature are drawn in regular intervals of !T = 0.02GeV. The freezeout
surface used in this thesis is the line T = 0.14GeV. Data from [Ver+23].

[JK15; Che+21], see also Figure 1 in [FB04].
The assumption of a freezeout at constant time is of course only an approximation that

can easily be improved upon making use of the hydrodynamic evolution codes at hand. In
general, the freezeout surface for boost and rotationally invariant systems is given by a curve
ω →↑ (ε(ω), r(ω)) defining a surface ”fo with an oriented surface normal d”µ, though we
postpone details of the geometry until Section 5.2. This curve is determined to yield a
surface of constant temperature T = Tfo. As the energy density of the QGP decreases
the system of quarks and gluons eventually hadronizes due to confinement. Inelastic
scatterings that change the hadronic composition of the medium cease below a chemical
freezeout temperature Tchem. At an even lower temperature Tkin the kinematic composition,
i.e. momentum distribution of particles, freezes out due to the lack of elastic scatterings
in the dilute medium. In this thesis we limit ourselves to a single-freezeout model, with a
freezeout temperature Tfo = 140MeV, explicitly labeled in Figure 2.2 amongst other lines
of constant temperature.

The translation from the set of fluid variables to particle spectra is done via the Cooper-
Frye freezeout prescription [CF74]

ϑωp
dN
d3p

=
1

(2ϖ)3

∫

!

f(↓uεp
ε)pµd”µ . (2.14)

It assumes that the phase space distribution function f(xµ, pε) of particles immediately after

13

kinetic freeze out surface: hypersurface after which particle momenta
don’t change any more
integrate photon and dielectorn production rate up to this freeze-out
surface
electromagnetic currents freeze in, no radiation afterwards
take here Tfo = 140 MeV
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Decay contributions

calculate also photons from resonance decays with FastReso
[Mazeliauskas, Floerchinger, Grossi, Teaney, EPJC 79, 284 (2019)]
Cooper-Frye with resonance decays

Ep
dNa

d3p
= −

1
(2π)3

∫
dΣµ gµa (x, p), gµb (x, p) =

∫
q

Da
b (p, q)fa(x, q)q

µ

decay map relates spectra before and after resonance decays

Ep
dNb
d3p

=

∫
q

Da
b (p, q) Eq

dNa

d3q

dielectron from resonances calculated with PYTHIA
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Photon spectrum

transverse momentum spectrum of photons
photons from hadronic resonance decays also shown

Decays
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Dielectron spectrum

transverse momentum spectrum of electron-positon pairs
dielectrons from hadronic resonance decays also shown
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Dielectron mass spectrum

invariant mass spectrum of electron-positon pairs
dielectrons from hadronic resonance decays also shown
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How to deal with resonance decays?

for dielectrons it helps to accept only pairs at M > 100 MeV to reduce the
decay background
for photons one could use Hanbury-Brown-Twiss interferometry to
disentangle contributions from resonance decays and thermal photons
could one use Hanbury-Brown-Twiss methods also for dielectrons?
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Conclusions 1

electric current spectral function at small frequencies and momenta
determined by fluid dynamics
electric conductivity can be constrained experimentally
background from resonance decays must be subtracted
(e. g. with Hanbury-Brown-Twiss method)
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Particle production at the Large Hadron Collider
[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP
06(2020)044]
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data are very precise now - high quality theory development needed
data show excess of pions at low momentum
also Xe-Xe and at RHsIC [Lu, Kavak, Dubla, Masciocchi, Selyuzhenkov (2025)] 18 / 25



Bose-Einstein condensation in cold atomic gases

[M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of
Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995)]
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Chiral condensate !.". L#$%&’ ω-M()%* &$) +,% C,#’&* C($)%$-&+%

(a) (b) (c)

Figure 3.2: Potential landscape and expectation value of the chiral condensate (red ball)
3.2a in the ordinary vacuum state, 3.2b shortly after a HIC and 3.2c during relaxation to
the original vacuum.

exponential amplification of low-momentum/long-wavelength modes where εp 2 < |m2
e!|

holds6. At late times no such type of amplification is present, since time evolution takes the
field to the true vacuum with →ϑ2↑ = v2 ↭ f 2

ω , recovering the ordinary (positive) vacuum
pion mass-squared parameter. This mechanism was discussed and numerically motivated
and supported in [RW93]. Even after the fields have rolled down into the valley of almost
degenerate vacua where →ϑ2↑ ↓ v2, it is argued that oscillations →ϑ2↑(t)↔ v2 ↗ cos(ϖt) in
the mean field persist, periodically driving the system with frequency ϖ ↗ mω in equation
(3.34) and amplifying resonant modes εp 2 +m2

ω ↗ ϖ2. This "parametric resonance" e!ect
[Mae01] was found to be less relevant than the formerly explained amplification mechanism.

It should be mentioned that there exist other studies investigating contributions from pion
condensates in HICs (e.g. [Orn+97; BF15]). These approaches build upon the assumption
of a local Bose-Einstein condensate (BEC) in each fluid element, i.e. a macroscopic number
of particles that are at rest in the local fluid frame at each point on the freezeout surface.
Their overall contribution to the spectrum is thus a sum of many local contributions. In
contrast to this ansatz, the present work assumes a classical field mode in the scenario
presented above, the induced spectrum of which can only be calculated from the knowledge
of the field over the whole freezeout surface and is thus a non-local object.

6In other words, low-momentum modes probe the potential in field space on short energy scales and are
less sensitive to the increase ↘ ω

4 in potential energy at large scales in field space.

29

QCD with (almost) massless quarks has (approximate) chiral symmetry

SU(Nf )L × SU(Nf )R × U(1)B

spontaneously broken to SU(Nf )V × U(1)B by vacuum expectation value

〈σ(x)〉 = fπ ≈ 93 MeV

chiral symmetry restoration at

T > Tc ≈ 155 MeV
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Coherent field
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Fig. 1 Before the collision, the chiral condensate is at its vacuum value � = f⇡ . At temperatures
above the chiral crossover, the effective potential is modified such that it has its minimum as vanishing
or very small �. When the fireball expands and cools down the vacuum form of the potential is
restored. If the cooling takes place quickly, the chiral condensate can lag behind and still deviate
from the vacuum expectation value at the moment of freeze-out. The difference has the physical
significance of a coherent field.

check factor 1/2)

Ep
dN

d3p
=

1

2

J(p)⇤J(p)

(2⇡)3
, (1)

where J(p) =
R
dtd3xJ(t,x)eiEpt�ipx is the Fourier-transformed source function

evaluated on-shell, with Ep =
p
p2 +m2. (there are no anti-particles here)

It seems difficult to construct the source function J(t,x) during the entire
spacetime history of a fireball – the physics is too complex. However, the relevant
information can also be given in terms of the field expectation value and its derivative
on a Cauchy hypersurface ⌃, positioned in the region where J(t,x) has ceased,

J(p) =

Z

⌃
d⌃µjµ(t,x,p), (2)

with the current

jµ(t,x,p) = [@µ�(t,x) + ipµ[�(t,x)� f⇡]] e
iEpt�ipx. (3)

Is the
 
@µ �

!
@µ-expression easier to understand? This current is conserved,

rµjµ(t,x,p) = 0, so that the position of the hypersurface ⌃ can be freely moved,
in the region where J(t,x) = 0. In particular, this allows us to calculate the particle
production from a coherent deviation of the chiral condensate from its vacuum value
at the moment of freeze-out. An identical formalism was already developed in the

5
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Figure 2.2: Exemplary spacetime evolution of temperature in the fireball of QGP. Lines
of constant temperature are drawn in regular intervals of !T = 0.02GeV. The freezeout
surface used in this thesis is the line T = 0.14GeV. Data from [Ver+23].

[JK15; Che+21], see also Figure 1 in [FB04].
The assumption of a freezeout at constant time is of course only an approximation that

can easily be improved upon making use of the hydrodynamic evolution codes at hand. In
general, the freezeout surface for boost and rotationally invariant systems is given by a curve
ω →↑ (ε(ω), r(ω)) defining a surface ”fo with an oriented surface normal d”µ, though we
postpone details of the geometry until Section 5.2. This curve is determined to yield a
surface of constant temperature T = Tfo. As the energy density of the QGP decreases
the system of quarks and gluons eventually hadronizes due to confinement. Inelastic
scatterings that change the hadronic composition of the medium cease below a chemical
freezeout temperature Tchem. At an even lower temperature Tkin the kinematic composition,
i.e. momentum distribution of particles, freezes out due to the lack of elastic scatterings
in the dilute medium. In this thesis we limit ourselves to a single-freezeout model, with a
freezeout temperature Tfo = 140MeV, explicitly labeled in Figure 2.2 amongst other lines
of constant temperature.

The translation from the set of fluid variables to particle spectra is done via the Cooper-
Frye freezeout prescription [CF74]

ϑωp
dN
d3p

=
1

(2ϖ)3

∫

!

f(↓uεp
ε)pµd”µ . (2.14)

It assumes that the phase space distribution function f(xµ, pε) of particles immediately after

13

chiral condensate σ could still be displaced from vacuum value at kinetic
freeze-out
displaced vacuum defines coherent state
here coherent state of σ/f0(500)
[Pelaez, From controversy to precision on the sigma meson: A review on the status of the
non-ordinary f0(500) resonance, Phys. Rep. 658, 1–111 (2016)]

different from disoriented chiral condensate
[A. A. Anselm (1989), J. D. Bjorken (1991), …]
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Coherent particle production
evolution of coherent field with local source

[(∂/∂t)2 −∇2 + m2][σ(t, x)− fπ] = J(t, x)

resulting momentum distribution

Ep
dN
d3p =

1
2

J(p)∗J(p)
(2π)3

fom Fourier-transformed source

J(p) =
∫

dtd3x J(t, x)eiEpt−ipx

can also be obtained from integral over freeze-out surface

J(p) =
∫
Σ

dΣµjµ(t, x, p)

with current

jµ(t, x, p) = [∂µσ(t, x) + ipµ[σ(t, x)− fπ]] eiEpt−ipx

need model for σ(t, x) on freeze-out surface
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Resonance decay

�

⇡+

⇡�

�
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Fig. 2 In a restframe of the heavier �-resonance we assume an isotropic distribution of the three-
momenta of the decay products, with the allowed momenta being limited by three-momentum
and energy conservation. In a frame where the resonance has non-vanishing three-momentum the
momentum distribution of the decay products is shifted accordingly. By this mechanism the final
momentum distribution of the decay products is a convolution of the momentum distribution of the
primary resonance.

Fig. 3 Left: Sill parametrization [47] of the spectral function of the f0(500) with mass pole
parameters p

sp = Mp � i�p/2 = 400 � i 200 MeV. Right: ⇡±-spectrum from fluid model FluiduM
[48] plus decay of �-condensate compared to ALICE data [49].

context of the color class condensate [42–44], a hypothesized state of macroscopically
occupied gluon modes.

Equation (1), together with (2) and (3) should be contrasted with the Cooper-Frye
freeze-out formula [45] commonly used to translate fluid fields to particle momentum
distributions. The Cooper-Frye integral expresses the final particle spectrum as a sum
of Fermi-Dirac- or Bose-Einstein-distributed spectra from each fluid cell on the freeze-
out surface. In contrast to that, the particle spectrum from a coherent state computed
here in terms of a generalized Fourier transform is non-local and contributions to
the particle distribution can not be uniquely associated to individual points on the
freeze-out surface.

The formalism presented above can in principle be used to study particle
production from all kind of coherent sources. For a displaced chiral condensate, or
coherent �/f0(500) field, a subsequent decay of the unstable �/f0(500)-resonances
into charged pions must be taken into account [46]. Here we need as an input the
�/f0(500) spectral function, which we take from [47].

In order to determine the influence of the function �(t,x) � f⇡ entering eq. (3)
on the freeze-out surface, we have performed an extensive study. Interestingly we find
that the detailed form of this function has only very little influence on the shape
of the resulting transverse momentum spectra, as long as the profile is relatively
smooth. Taking it for simplicity to be constant, �(x) = 0.25f⇡ (check number), leads
after resonance decays to an additional contribution to the charged pion transverse
momentum spectrum shown in fig. 3.

References
[1] Y. Nambu, G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on

an Analogy with Superconductivity. I. Physical Review 122(1), 345–358 (1961).

6

main decay channel σ/f0(500) → π+π−

take invariant mass distribution from spectral function
(Sill parametrization)
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Charged pion transverse momentum spectrum
!.". I#$%&’(’#) D’$*+

(a) Logarithmic scale. (b) Linear scale.

Figure 6.3: Comparison of ALICE data to fluid model plus contribution from the decay of
a ω-condensate for the spectral function in Figure 6.2.

(a) Spectral function. (b) Resulting decay spectra.

Figure 6.4: Comparison of ALICE data to fluid model plus contribution from the decay of
a ω-condensate (right) for varying spectral functions of the ω-meson (left) characterized by
the pole position (6.15).

78

[T. Bruschke, Master thesis, Uni Jena (2025)]

precise form of σ(x) on freeze-out surface not important
comparison to data shown for √sNN = 2.76 TeV PbPb collisions at LHC,
centrality class 0 . . . 5%
chiral condensate at freeze-out assumed to be σ ≈ 0.25 fπ
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Conclusions 2

chiral condensate could deviate from vacuum value on freeze-out surface
shows up as coherent σ/f0(500) field
decay to charged pions σ/f0(500) → π+π−

could explain low pT pion excess in experimental data
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