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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
@ needs macroscopic fluid properties

e thermodynamic equation of state p( 7T, u)
shear + bulk viscosity (T, 1), ¢(T, u)
heat conductivity (T, u), ...

relaxation times, ...

°
o
°
o electrical conductivity o (T, u)

fixed by microscopic properties encoded in Lagrangian Zqcp
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current
T = eu"u” + (p + mouk) A*Y + 7

N¥ = nu” + 0"

@ tensor decomposition using fluid velocity u*, A*” = ¢*” + v u”

@ thermodynamic equation of state p = p(T', i)

Covariant conservation laws V,T"” =0 and V,N* = 0 imply
@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density or charge density n

Need further evolution equations [e.g Israel & Stewart]
@ equation for shear stress "
@ equation for bulk viscous pressure Ty

w _ I
Toulk U OpToulk + . + Touk = —C Vyu

@ equation for diffusion current v*

@ non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Electric current

o quarks carry electric charge
o electromagnetic current in fluid rest frame u* = (1,0, 0,0)

J* = (n,J)

@ conservation law for electromagnetic current

0
V' = 2t V-3=0

o supplemented by evolution equation for diffusion current

J+T%J:UE7DV11

@ electric conductivity o
o diffusion coefficient D = o/x
e charge susceptibility x = (On/0u)|r
o relaxation time 7 constrained by causality
T>D= 7
X
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Spectral function from fluid dynamics

o retarded response

5" (z) = / GE (= y) 6 A (y)

@ inverting equations of motion yields

)
00 _ 1op
Gr'(w:p) " w — iTw? + iDp?
Vop) =GRw.p) = s
iowd* Dowp’p*

Gy =
7 (@.P) 1—itw  |w—iTw? + Dp?][1 — iTw]

@ spectral function

p(w,p) =ImG} , (w, p)
ow(w? — p?) P
(Tw? — Dp?)? + w? 202 + 1
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Photon production rate in local thermal equilibrium

@ photon production rate per unit volume and time
dR 1
0 _
d3p - (27r)3n3(w)p(w)v

electromagnetic spectral function p(w)

o frequency in the fluid rest frame

— Iz
W= —Uup

Bose-Einstein distribution factor

1

nB(w) = ew/T _ 1



Dilepton production rate in local thermal equilibrium

o thermal dilepton production rate per unit volume and time

dR a 1
Tip 1m0 a2 B Pl M)

e momentum of the dilepton pair p* = p{’ + pf
@ lepton mass m

o electromagnetic fine structure constant a = ¢*/(4)
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Electric conductivity

@ Kubo relation for electric conductivity

1. 1
g ngl}) ;p(w7 p)‘p:()

1
tim Lo, )]s =

1
o=~
2 w—0 w pP=w?

o small frequency limit either at p? = w? or at p =0

e ratio p/w has transport peak at small frequency
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Predictions of electrical conductivity
e many predictions of electric conductivity in the literature
@ perturbative predictions [Arnold, Moore & Yaffe] 0.19 < o/ T < 2
o lattice estimates vary
@ would be great to have some experimental constraints
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[figure compiled by Greif et al. (2014)]
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Electric current spectral function

e from equations of motion we find the spectral function

ow(w?® —p*)

(@,p) n ow
w,p) = .
plw, P (Tw? — Dp?)? + w? T2w2 + 1
o height of peak proportional to conductivity
@ decay governed by width ~ 1/7
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Fluid dynamics
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@ integrate over the QGP fire ball using T'(r, t) and u(r, t) from FluiduM
[Floerchinger, Grossi, Jeon (2019)]

@ Pb-Pb-collisions at /syny = 5.02 TeV

e centrality class 0-5%
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Freeze-out surface

T[fm]

r[fm]

o kinetic freeze out surface: hypersurface after which particle momenta
don’t change any more

@ integrate photon and dielectorn production rate up to this freeze-out
surface

@ electromagnetic currents freeze in, no radiation afterwards
o take here Ty, = 140 MeV
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Decay contributions

calculate also photons from resonance decays with FastReso
[Mazeliauskas, Floerchinger, Grossi, Teaney, EPJC 79, 284 (2019)]
Cooper-Frye with resonance decays

dN, 1

Ve =G | et d@n = [ Do ok oo

decay map relates spectra before and after resonance decays
Dy (p, N
/ (p,q d .

o dielectron from resonances calculated with PYTHIA
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Photon spectrum

@ transverse momentum spectrum of photons

@ photons from hadronic resonance decays also shown
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Dielectron spectrum

@ transverse momentum spectrum of electron-positon pairs

o dielectrons from hadronic resonance decays also shown
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Dielectron mass spectrum

@ invariant mass spectrum of electron-positon pairs

o dielectrons from hadronic resonance decays also shown

dNge/(MdMdnde) [GeV 2]

104

100

0.01
1074

1076

Decays

— o/T=2
| — am=1
| — a/T=0.1
— g/T=0.01
0.005 0.010 0.050 0.100 0500 1
M [GeV]

15/25



How to deal with resonance decays?

o for dielectrons it helps to accept only pairs at M > 100 MeV to reduce the
decay background

@ for photons one could use Hanbury-Brown-Twiss interferometry to
disentangle contributions from resonance decays and thermal photons

@ could one use Hanbury-Brown-Twiss methods also for dielectrons?
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Conclusions 1

@ electric current spectral function at small frequencies and momenta
determined by fluid dynamics

@ electric conductivity can be constrained experimentally

@ background from resonance decays must be subtracted
(e. g. with Hanbury-Brown-Twiss method)
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Particle production at the Large Hadron Collider

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP

06(2020)044]
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o data are very precise now - high quality theory development needed
o data show excess of pions at low momentum

@ also Xe-Xe and at RHsIC [Lu, Kavak, Dubla, Masciocchi, Selyuzhenkov (2025)]
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Bose-FEinstein condensation in cold atomic gases

o '," ‘
IA‘/ Y X
t:" " % "' ‘ “‘

[M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of
Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995)]
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Chiral condensate

e QCD with (almost) massless quarks has (approximate) chiral symmetry

SU(Nf)L X SU(Nf)R X U(l)B

@ spontaneously broken to SU(Ny)v x U(1)p by vacuum expectation value

(o(z)) = fr =93 MeV

@ chiral symmetry restoration at

T > T.~ 155 MeV
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Coherent field

V(o) T > Tenirar

E
T < Teniral =
1 [od
[ o

)

|

|

1 |

! |

— 14

Ocoherent

@ chiral condensate o could still be displaced from vacuum value at kinetic
freeze-out

@ displaced vacuum defines coherent state
o here coherent state of o/fy(500)

[Pelaez, From controversy to precision on the sigma meson: A review on the status of the

non-ordinary fo(500) resonance, Phys. Rep. 658, 1-111 (2016)]

o different from disoriented chiral condensate
[A. A. Anselm (1989), J. D. Bjorken (1991), ..]
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Coherent particle production

@ evolution of coherent field with local source

[(8/815)2 - V2 + mQ][U(tvx) - fTr] = ‘](t7 X)

@ resulting momentum distribution

dN 1 J(p)*J(p)

Yy 2 (2n)
fom Fourier-transformed source

J(p) :/dtd3zJ(t‘,x)e’Ep%ipX

@ can also be obtained from integral over freeze-out surface

I0) = [ d= it xp)
b
with current

Gu(t,%,9) = 040 (t,%) + ipulo(t, %) — fr]] P

@ need model for o(¢,x) on freeze-out surface
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Resonance decay

g

[ ]
2
S0.6
0.4
(]

0.0 0.5 15

1.0
u[GeV]
e main decay channel ¢ /f,(500) — 77~

o take invariant mass distribution from spectral function
(Sill parametrization)
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Charged pion transverse momentum spectrum
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[T. Bruschke, Master thesis, Uni Jena (2025)]
@ precise form of o(z) on freeze-out surface not important

@ comparison to data shown for \/syny = 2.76 TeV PbPb collisions at LHC,
centrality class 0...5%

o chiral condensate at freeze-out assumed to be o ~ 0.25 f;
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Conclusions 2

chiral condensate could deviate from vacuum value on freeze-out surface

@ shows up as coherent o/fy(500) field
o decay to charged pions o /fy(500) — m ™~

could explain low pr pion excess in experimental data



