Electric Conductivity of QCD matter

Stefan Floerchinger (Uni Jena)

based on Phys. Lett. B 837, 137647 (2023) with Charlotte Gebhardt and Klaus Reygers

and work in progress with Tobias Bruschke and Andreas Kirchner

Penetrating Probes of Hot High- μ_B Matter: Theory meets Experiment 24 July 2025, ECT* Trento,

Fluid dynamics

- long distances, long times or strong enough interactions
- quantum fields form a fluid!
- needs macroscopic fluid properties
 - thermodynamic equation of state $p(T, \mu)$
 - shear + bulk viscosity $\eta(T, \mu)$, $\zeta(T, \mu)$
 - heat conductivity $\kappa(T,\mu),\ldots$
 - relaxation times, ...
 - electrical conductivity $\sigma(T, \mu)$
- ullet fixed by microscopic properties encoded in Lagrangian $\mathscr{L}_{\sf QCD}$

Relativistic fluid dynamics

Energy-momentum tensor and conserved current

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + (p + \pi_{\text{bulk}}) \Delta^{\mu\nu} + \pi^{\mu\nu}$$
$$N^{\mu} = n u^{\mu} + \nu^{\mu}$$

- tensor decomposition using fluid velocity u^{μ} , $\Delta^{\mu\nu}=g^{\mu\nu}+u^{\mu}u^{\nu}$
- thermodynamic equation of state $p = p(T, \mu)$

Covariant conservation laws $\nabla_{\mu} T^{\mu\nu} = 0$ and $\nabla_{\mu} N^{\mu} = 0$ imply

- ullet equation for energy density ϵ
- ullet equation for fluid velocity u^{μ}
- \bullet equation for particle number density or charge density n

Need further evolution equations [e.g Israel & Stewart]

- ullet equation for shear stress $\pi^{\mu
 u}$
- ullet equation for bulk viscous pressure π_{bulk}

$$au_{\text{bulk}} u^{\mu} \partial_{\mu} \pi_{\text{bulk}} + \ldots + \pi_{\text{bulk}} = -\zeta \nabla_{\mu} u^{\mu}$$

- ullet equation for diffusion current u^{μ}
- non-hydrodynamic degrees of freedom are needed for relativistic causality!

Electric current

- quarks carry electric charge
- electromagnetic current in fluid rest frame $u^{\mu} = (1, 0, 0, 0)$

$$J^{\mu}=(n,\mathbf{J})$$

conservation law for electromagnetic current

$$\nabla_{\mu}J^{\mu} = \frac{\partial}{\partial t}n + \nabla \cdot \mathbf{J} = 0$$

supplemented by evolution equation for diffusion current

$$\mathbf{J} + \tau \frac{\partial}{\partial t} \mathbf{J} = \sigma \mathbf{E} - D \mathbf{\nabla} n$$

- ullet electric conductivity σ
- diffusion coefficient $D = \sigma/\chi$
- \bullet charge susceptibility $\chi = (\partial n/\partial \mu)|_T$
- ullet relaxation time au constrained by causality

$$\tau > D = \frac{\sigma}{\chi}$$

Spectral function from fluid dynamics

retarded response

$$\delta J^{\mu}(x) = \int_{y} G_{R}^{\mu\nu}(x-y) \, \delta A_{\nu}(y)$$

• inverting equations of motion yields

$$\begin{split} G_R^{00}(\omega,\mathbf{p}) &= \frac{i\sigma\mathbf{p}^2}{\omega - i\tau\omega^2 + iD\mathbf{p}^2} \\ G_R^{0j}(\omega,\mathbf{p}) &= G_R^{j0}(\omega,\mathbf{p}) = \frac{i\sigma\omega p^j}{\omega - i\tau\omega^2 + iD\mathbf{p}^2} \\ G_R^{jk}(\omega,\mathbf{p}) &= \frac{i\sigma\omega\delta^{jk}}{1 - i\tau\omega} + \frac{D\sigma\omega p^j p^k}{[\omega - i\tau\omega^2 + iD\mathbf{p}^2][1 - i\tau\omega]} \end{split}$$

spectral function

$$\begin{split} \rho(\omega,\mathbf{p}) = & \mathsf{Im}\,G^{\mu}_{R\,\mu}(\omega,\mathbf{p}) \\ = & \frac{\sigma\omega(\omega^2 - \mathbf{p}^2)}{(\tau\omega^2 - D\mathbf{p}^2)^2 + \omega^2} + 2\frac{\sigma\omega}{\tau^2\omega^2 + 1} \end{split}$$

Photon production rate in local thermal equilibrium

photon production rate per unit volume and time

$$p^{0}\frac{dR}{d^{3}p} = \frac{1}{(2\pi)^{3}}n_{\mathsf{B}}(\omega)\rho(\omega),$$

- electromagnetic spectral function $\rho(\omega)$
- · frequency in the fluid rest frame

$$\omega = -u_{\mu}p^{\mu}$$

Bose-Einstein distribution factor

$$n_{\rm B}(\omega) = \frac{1}{e^{\omega/T} - 1}$$

Dilepton production rate in local thermal equilibrium

• thermal dilepton production rate per unit volume and time

$$\begin{split} \frac{dR}{d^4p} = & \frac{\alpha}{12\pi^4} \frac{1}{M^2} n_{\rm B}(\omega) \, \rho(\omega,M) \\ & \times \left(1 + \frac{2m^2}{M^2}\right) \sqrt{1 - \frac{4m^2}{M^2}} \Theta(M^2 - 4m^2), \end{split} \label{eq:dR}$$

- \bullet momentum of the dilepton pair $p^\mu=p_1^\mu+p_2^\mu$
- lepton mass m
- \bullet electromagnetic fine structure constant $\alpha=e^2/(4\pi)$

Electric conductivity

• Kubo relation for electric conductivity

$$\sigma = \frac{1}{2} \lim_{\omega \to 0} \frac{1}{\omega} \rho(\omega, \mathbf{p}) \big|_{\mathbf{p}^2 = \omega^2} = \frac{1}{3} \lim_{\omega \to 0} \frac{1}{\omega} \rho(\omega, \mathbf{p}) \big|_{\mathbf{p} = 0}$$

- \bullet small frequency limit either at $\mathbf{p}^2=\omega^2$ or at $\mathbf{p}=0$
- \bullet ratio ρ/ω has transport peak at small frequency

Predictions of electrical conductivity

- many predictions of electric conductivity in the literature
- ullet perturbative predictions [Arnold, Moore & Yaffe] $0.19 < \sigma/T < 2$
- lattice estimates vary
- would be great to have some experimental constraints

[figure compiled by Greif et al. (2014)]

Electric current spectral function

• from equations of motion we find the spectral function

$$\rho(\omega, \mathbf{p}) = \frac{\sigma\omega(\omega^2 - \mathbf{p}^2)}{(\tau\omega^2 - D\mathbf{p}^2)^2 + \omega^2} + 2\frac{\sigma\omega}{\tau^2\omega^2 + 1}.$$

- height of peak proportional to conductivity
- ullet decay governed by width $\sim 1/ au$

$Fluid\ dynamics$

- \bullet integrate over the QGP fire ball using T(r,t) and u(r,t) from FluiduM [Floerchinger, Grossi, Jeon (2019)]
- \bullet Pb-Pb-collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$
- centrality class 0-5%

Freeze-out surface

- kinetic freeze out surface: hypersurface after which particle momenta don't change any more
- integrate photon and dielectorn production rate up to this freeze-out surface
- electromagnetic currents freeze in, no radiation afterwards
- take here $T_{\text{fo}} = 140 \text{ MeV}$

$Decay\ contributions$

- calculate also photons from resonance decays with FastReso [Mazeliauskas, Floerchinger, Grossi, Teaney, EPJC 79, 284 (2019)]
- Cooper-Frye with resonance decays

$$E_p \frac{dN_a}{d^3 p} = -\frac{1}{(2\pi)^3} \int d\Sigma_\mu g_a^\mu(x, p), \qquad g_b^\mu(x, p) = \int_q D_b^a(p, q) f_a(x, q) q^\mu$$

decay map relates spectra before and after resonance decays

$$E_p \frac{dN_b}{d^3 p} = \int_q D_b^a(p, q) E_q \frac{dN_a}{d^3 q}$$

dielectron from resonances calculated with PYTHIA

Photon spectrum

- transverse momentum spectrum of photons
- photons from hadronic resonance decays also shown

$Dielectron\ spectrum$

- transverse momentum spectrum of electron-positon pairs
- dielectrons from hadronic resonance decays also shown

Dielectron mass spectrum

- invariant mass spectrum of electron-positon pairs
- dielectrons from hadronic resonance decays also shown

How to deal with resonance decays?

- \bullet for dielectrons it helps to accept only pairs at $M>100~{\rm MeV}$ to reduce the decay background
- for photons one could use Hanbury-Brown-Twiss interferometry to disentangle contributions from resonance decays and thermal photons
- could one use Hanbury-Brown-Twiss methods also for dielectrons?

Conclusions 1

- electric current spectral function at small frequencies and momenta determined by fluid dynamics
- electric conductivity can be constrained experimentally
- background from resonance decays must be subtracted (e. g. with Hanbury-Brown-Twiss method)

Particle production at the Large Hadron Collider

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP 06(2020)044]

- data are very precise now high quality theory development needed
- data show excess of pions at low momentum
- also Xe-Xe and at RHsIC [Lu, Kavak, Dubla, Masciocchi, Selyuzhenkov (2025)]

Bose-Einstein condensation in cold atomic gases

[M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, *Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor*, Science 269, 198 (1995)]

Chiral condensate

QCD with (almost) massless quarks has (approximate) chiral symmetry

$$\mathsf{SU}(N_f)_L \times \mathsf{SU}(N_f)_R \times \mathsf{U}(1)_B$$

ullet spontaneously broken to $\mathsf{SU}(N_f)_V imes \mathsf{U}(1)_B$ by vacuum expectation value

$$\langle \sigma(x) \rangle = f_{\pi} \approx 93 \text{ MeV}$$

• chiral symmetry restoration at

$$T>T_c\approx 155~\text{MeV}$$

Coherent field

- \bullet chiral condensate σ could still be displaced from vacuum value at kinetic freeze-out
- displaced vacuum defines coherent state
- here coherent state of $\sigma/f_0(500)$ [Pelaez, From controversy to precision on the sigma meson: A review on the status of the non-ordinary $f_0(500)$ resonance, Phys. Rep. 658, 1–111 (2016)]
- different from disoriented chiral condensate
 [A. A. Anselm (1989), J. D. Bjorken (1991), ...]

Coherent particle production

evolution of coherent field with local source

$$[(\partial/\partial t)^2 - \nabla^2 + m^2][\sigma(t, \mathbf{x}) - f_{\pi}] = J(t, \mathbf{x})$$

• resulting momentum distribution

$$E_{\mathbf{p}} \frac{dN}{d^3 p} = \frac{1}{2} \frac{J(\mathbf{p})^* J(\mathbf{p})}{(2\pi)^3}$$

fom Fourier-transformed source

$$J(\mathbf{p}) = \int dt d^3x J(t, \mathbf{x}) e^{iE_{\mathbf{p}}t - i\mathbf{p}\mathbf{x}}$$

can also be obtained from integral over freeze-out surface

$$J(\mathbf{p}) = \int_{\Sigma} d\Sigma^{\mu} j_{\mu}(t, \mathbf{x}, \mathbf{p})$$

with current

$$j_{\mu}(t, \mathbf{x}, \mathbf{p}) = \left[\partial_{\mu} \sigma(t, \mathbf{x}) + i p_{\mu} [\sigma(t, \mathbf{x}) - f_{\pi}]\right] e^{i E_{\mathbf{p}} t - i \mathbf{p} \mathbf{x}}$$

ullet need model for $\sigma(t,\mathbf{x})$ on freeze-out surface

Resonance decay

- main decay channel $\sigma/f_0(500) \to \pi^+\pi^-$
- take invariant mass distribution from spectral function (Sill parametrization)

Charged pion transverse momentum spectrum

[T. Bruschke, Master thesis, Uni Jena (2025)]

- \bullet precise form of $\sigma(x)$ on freeze-out surface not important
- comparison to data shown for $\sqrt{s_{\rm NN}}=2.76$ TeV PbPb collisions at LHC, centrality class $0\dots5\%$
- ullet chiral condensate at freeze-out assumed to be $\sigma pprox 0.25\,f_\pi$

Conclusions 2

- chiral condensate could deviate from vacuum value on freeze-out surface
- shows up as coherent $\sigma/f_0(500)$ field
- decay to charged pions $\sigma/f_0(500) \to \pi^+\pi^-$
- \bullet could explain low p_T pion excess in experimental data