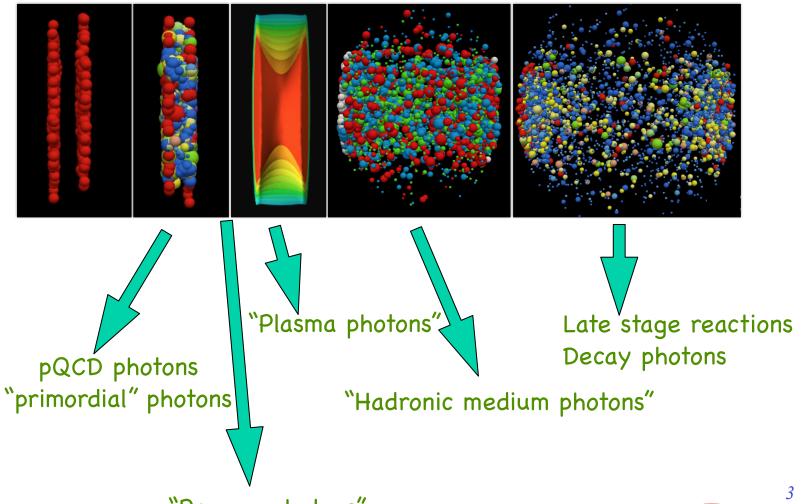

THEORY OVERVIEW; REAL AND VIRTUAL PHOTONS

Outline

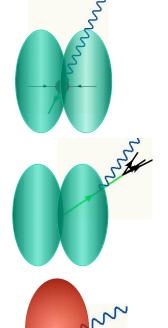

- Most of this talk: real and virtual(*) photons
- Photons can be soft and still penetrating They enjoy a unique status
 - Anatomy of a collision: the different stages
 - •Cold photons: pQCD
 - EM productions rates
 - \circ (QCD) dileptons@finite $\mu_{\rm R}$
 - •Polarization

(*) Virtual photons == dileptons

DIRECT PHOTONS AND HIC MODELLING

 Unlike hadrons, photons(*) are emitted throughout the entire space-time history of the HIC

"Pre-eq. photons"

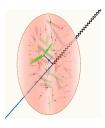

DIRECT PHOTON SOURCES

(real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

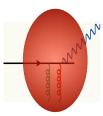
Thermal photons "Thermal"



DIRECT PHOTON SOURCES

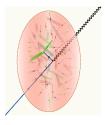
(real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal


Jet-photon conversions "Thermal"

 $\begin{array}{c} Fragmentation \ photons. \ pQCD \ with \ shadowing \\ Non-thermal \end{array}$

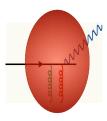
Thermal photons "Thermal"

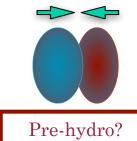

Jet in-medium bremsstrahlung "Thermal"

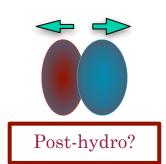
DIRECT PHOTON SOURCES

(real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal


Jet-photon conversions "Thermal"


 $\begin{array}{c} Fragmentation \ photons. \ pQCD \ with \ shadowing \\ Non-thermal \end{array}$



Thermal photons "Thermal"

Jet in-medium bremsstrahlung "Thermal"

About photon fragmentation functions

$$\frac{d}{d \log \mu^2} D_i^{\gamma}(z, \mu^2) = \sum_j P_{ij}(z, \mu^2) \otimes D_j^{\gamma}(z, \mu^2)$$

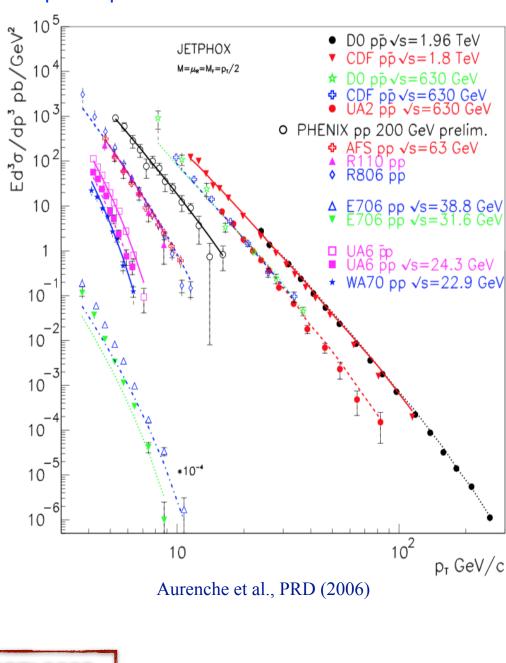
The evolution kernels

$$P_{ij}(z,\mu^2) = \sum_{m,n} \left(\frac{\alpha(\mu^2)}{2\pi}\right)^m \left(\frac{\alpha_s(\mu^2)}{2\pi}\right)^n P_{ij}^{(m,n)}(z)$$

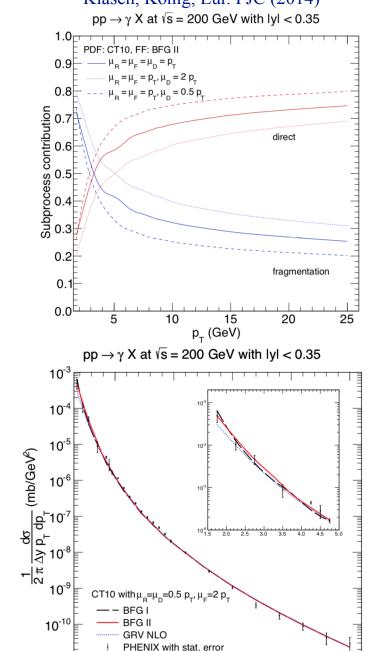
FF can be written as (LO in α)

$$\frac{d}{d \log \mu^2} D_i^{\gamma}(z, \mu^2) = k_i^{\gamma}(z, \mu^2) + \sum_j P_{ji}(z, \mu^2) \otimes D_j^{\gamma}(z, \mu^2)$$

Perturbative


Non-perturbative

Little new info on photon FF over the last 25 years. Most data used to fit FF are single-inclusive photon production, in hadronic reactions dominated by direct photon production


5
Charles Gale
McGill

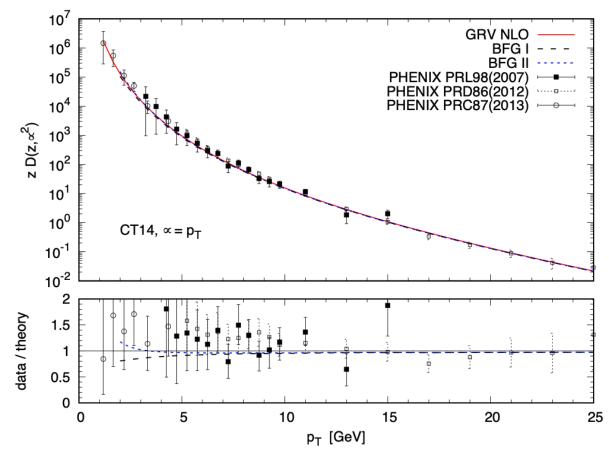
ECT* 2025

pQCD photon calculations and uncertainties

Klasen, König, Eur. PJC (2014)

15

p_T (GeV)


10

20

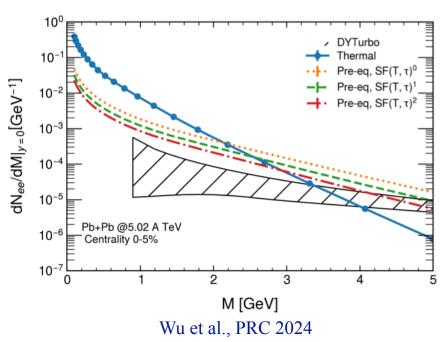
25

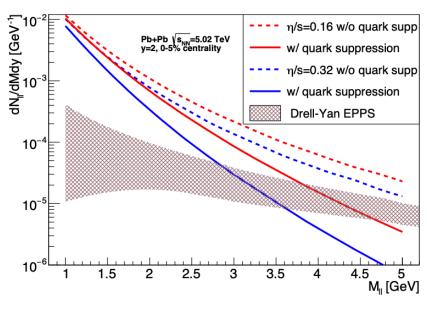
10⁻¹¹

pQCD photon calculations and uncertainties

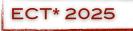
Kaufmann, Mukherjee, and Vogelsang, arXiv: 1708.06683

Stresses the need for a direct photon measurement in nucleon-nucleon collisions




Kaufmann, Mukherjee, Vogelsang, CERN Proc. 2018 Fragmentation component: $e^+e^- o ({\rm jet}\,\gamma)X$

pQCD dilepton calculations and uncertainties



Coquet et al., PLB 2021

- Scale dependence: irreducible uncertainty
- Value of pp measurement(s)

Info Carried by the thermal radiation

$$dR = -\frac{g^{\mu\nu}}{2\omega} \frac{d^3k}{(2\pi)^3} \frac{1}{Z} \sum_{i} e^{-\beta K_i} \sum_{f} (2\pi)^4 \delta(p_i - p_f - k)$$
$$\times \langle f | J_{\mu} | i \rangle \langle i | J_{\nu} | f \rangle$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$\omega \frac{d^{3}R}{d^{3}k} = -\frac{g^{\mu\nu}}{(2\pi)^{3}} \operatorname{Im}\Pi_{\mu\nu}^{R}(\omega, k) \frac{1}{e^{\beta\omega} - 1} \text{ (photons)} \left(= \frac{i}{2(2\pi)^{3}} (\Pi_{12}^{\gamma})_{\mu}^{\mu} \right)$$

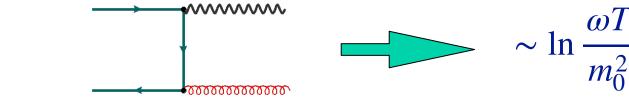
$$E_{+}E_{-} \frac{d^{6}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}} \frac{1}{k^{4}} L^{\mu\nu} \operatorname{Im}\Pi_{\mu\nu}^{R}(\omega, k) \frac{1}{e^{\beta\omega} - 1} \text{ (dileptons)}$$

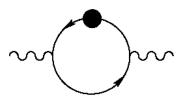
Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91)

\circ QGP rates have been calculated up to NLO in $lpha_{_{ m S}}$ in FTFT

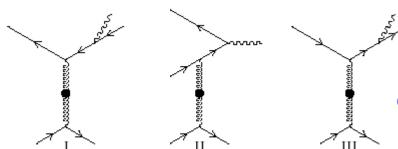
Ghiglieri et al., JHEP (2013); M. Laine, JHEP (2013), Jackson and Laine, JHEP (2019)

...and on the lattice


Ding et al., PRD (2011), HotQCD, PRD (2024), Krasnigi et al., 2505.10295


Hadronic rates

Turbide, Rapp, Gale PRC (2004) C. Gale, Landolt–Bornstein (2010) Heffernan, Hohler, Rapp PRC (2015)


Photon rates@LO

$${\rm Im}\,\Pi^{\mu}_{\rm R\,\mu} \sim {\rm ln} \left(\frac{\omega T}{m_{\rm th}^2}\right) \begin{array}{l} {\rm Braaten,\,Pisarski\,(1990)} \\ {\rm Kapusta,\,Lichard,\,Seibert\,(1991)} \\ {\rm Baier,\,Nakkagawa,\,Niegawa,} \\ {\rm Redlich\,(1992)} \end{array}$$

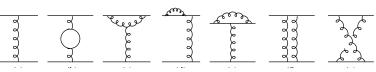
Going to two loops: Aurenche, Kobes, Gélis, Petitgirard (1996) Aurenche, Gélis, Kobes, Zaraket (1998)

Co-linear singularities:

$$\alpha_s^2 \left(\frac{T^2}{m_{th}^2} \right) \sim \alpha_s$$

McGill

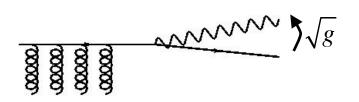

2001: Results complete at $O(\alpha_s)$


Arnold, Moore, and Yaffe JHEP **12**, 009 (2001); JHEP **11**, 057 (2001) Incorporate LPM; Inclusive treatment of collinear enhancement, photon and gluon emission Charles Gale

Photon rates@NLO

Ghiglieri, Hong, Kurkela, Lu, Moore, Teaney, JHEP (2013)

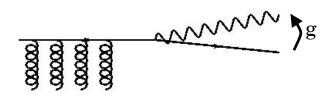
The two main contributions:

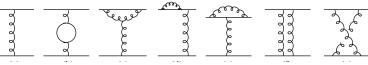


$$C(q_T)_{\text{LO}} = \frac{Tg^2 m_D}{q_T(q_T + m_D)} \Rightarrow \text{NLC}$$

Simon Caron-Huot PRD (2009)

Enhanced at NLO

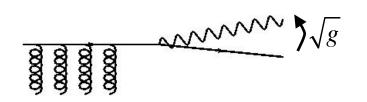

Larger angle bremmstrahlung


Suppressed at NLO

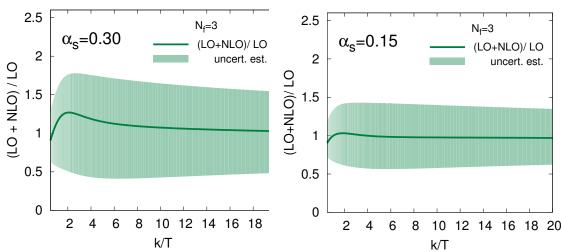
Photon rates@NLO

Ghiglieri, Hong, Kurkela, Lu, Moore, Teaney, JHEP (2013)

The two main contributions:



$$C(q_T)_{\text{LO}} = \frac{Tg^2 m_D}{q_T(q_T + m_D)} \Rightarrow \text{NLC}$$


Simon Caron-Huot PRD (2009)

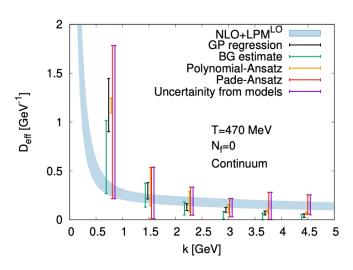
Enhanced at NLO

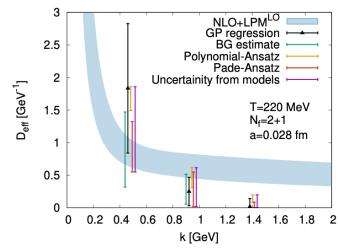
Larger angle bremmstrahlung

Suppressed at NLO

- Net correction to photon production rate is modest, for all k/T
- Study results consistent with those of lattice estimates

Ghiglieri, Kaczmareck, Laine, Meyer, JHEP (2016); Jackson, Laine JHEP (2019)

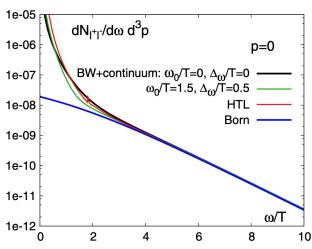



What about the lattice?

The lattice measures the Euclidean correlator:

$$G_E(\tau, \mathbf{k}) = \int \frac{dk^0}{2\pi} \rho^V(k^0, \mathbf{k}) \frac{\cosh(k^0(\tau - 1/2T))}{\sinh(\frac{k^0}{2T})}$$

Ill-posed inverse problem


Photons

Ali et al., PRD (2024)

Krasniqi et al. arXiv: 2505.10295 "Results on the low side, but compatible with AMY"

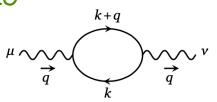
Dileptons $N_f = 0$

$$T \simeq 1.45 T_c$$

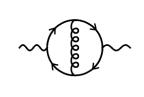
Ding et al., PRD (2011)

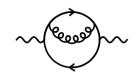
ECT* 2025

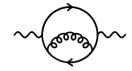
Virtual photons/Dileptons

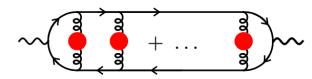

$$\omega \frac{d^3 R}{d^3 k} = -\frac{g^{\mu\nu}}{(2\pi)^3} \operatorname{Im} \Pi_{\mu\nu}(\omega, \mathbf{k}) \frac{1}{e^{\beta\omega} - 1}$$

$$E_+ E_- \frac{d^6 R}{d^3 p_+ d^3 p_-} = \frac{2e^2}{(2\pi)^6} \frac{1}{k^4} L^{\mu\nu} \operatorname{Im} \Pi_{\mu\nu}(\omega, \mathbf{k}) \frac{1}{e^{\beta\omega} - 1}$$

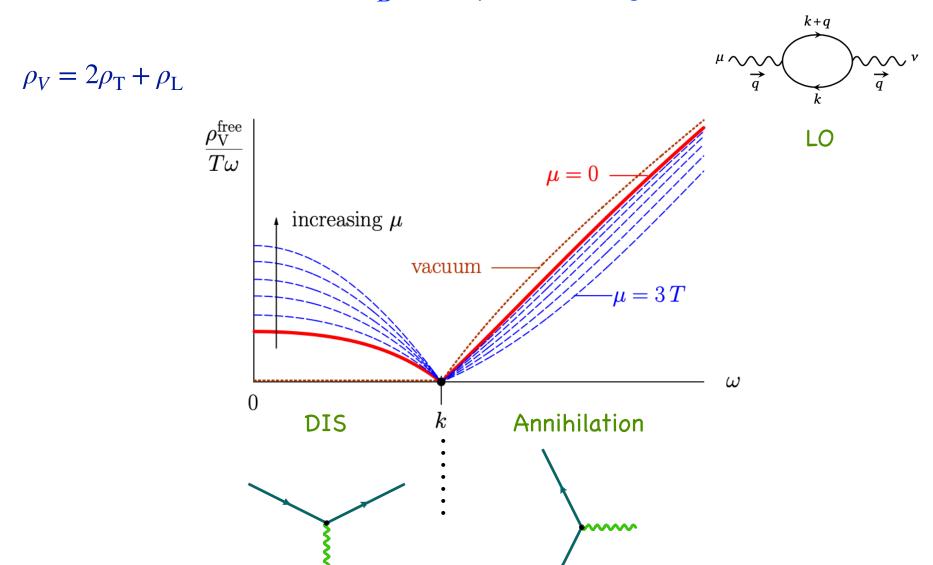

Rewrite as:


$$\operatorname{Im} \Pi_{\mu\nu} = \rho_{\mu\nu} = \mathbb{P}_{\mu\nu}^{\mathrm{T}} \, \rho_{\mathrm{T}} + \mathbb{P}_{\mu\nu}^{\mathrm{L}} \, \rho_{\mathrm{L}}$$
$$\frac{d\Gamma_{\ell\bar{\ell}}}{d\omega d^{3}\mathbf{k}} \sim 2 \, \rho_{\mathrm{T}}(\omega, \mathbf{k}) + \rho_{\mathrm{L}}(\omega, \mathbf{k})$$



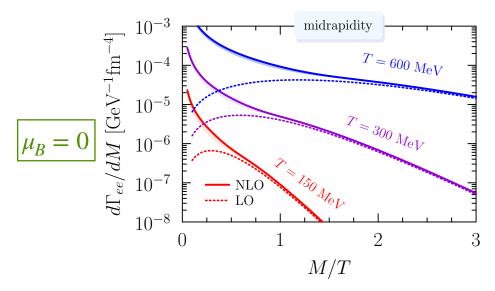


NLO

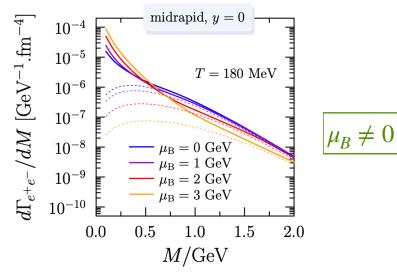


Aurenche, Gélis, Moore, Zaraket, JHEP (2002); Jackson, Laine, JHEP (2019)

Finite $\mu_{\rm B}$; 1-loop self-energy


What do we know at NLO and $\mu_B \neq 0$?

Dumitru et al., PRL (1993) [LO]
Traxler, Vija, Thoma, PLB (1995)
Gervais, Jeon, PRC (2012)
C. Shen et al., PoS (HP2024)


Y

$$\mu_B \neq 0$$
 $m_D^2 \equiv g^2 \left[\left(\frac{1}{2} n_f + N_c \right) \frac{T^2}{3} + n_f \frac{\mu^2}{2\pi^2} \right], \ m_\infty^2 \equiv g^2 \frac{C_F}{4} \left(T^2 + \frac{\mu^2}{\pi^2} \right)$

Churchill, Du, Forster, Jackson, Gale, Gao, Jeon, PRL, PRC (2023)

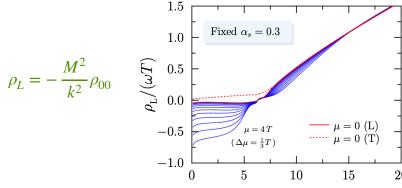
NLO correction gives $\gtrsim 10\,\%$ even for 1 GeV < M < 3 GeV

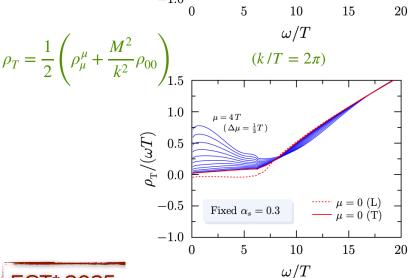
Growing μ_B : enhancement at low M, suppression at intermediate M

15

Charles Gale
McGill

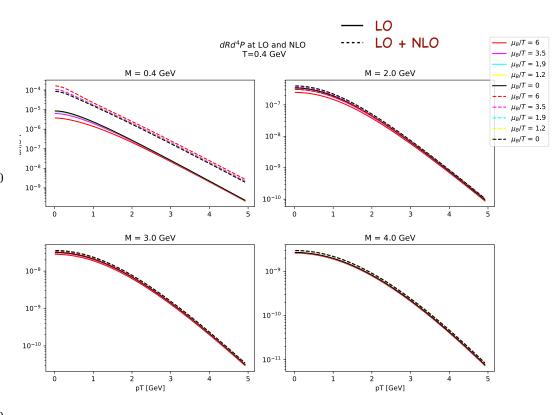
 μ_{B} effect more important on hadronic rates


Some interesting features seen in the spectral densities (more on this later)


QCD Rates

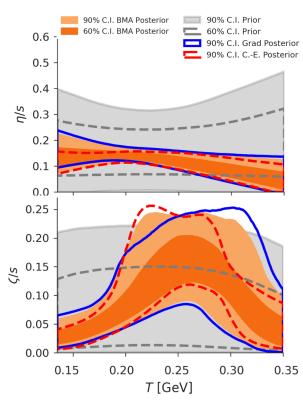
$$\operatorname{Im} \Pi_{\mu\nu} = \rho_{\mu\nu} = \mathbb{P}_{\mu\nu}^{\mathrm{T}} \, \rho_{\mathrm{T}} + \mathbb{P}_{\mu\nu}^{\mathrm{L}} \, \rho_{\mathrm{L}}$$

Weldon. PRD (1990); Gale, Kapusta Nucl. Phys. B (1991)


$$\frac{d\Gamma_{\ell\bar{\ell}}}{d\omega d^3\mathbf{k}} \sim \rho_V = \rho_\mu^\mu = 2\,\rho_{\mathrm{T}}(\omega,\mathbf{k}) + \rho_{\mathrm{L}}(\omega,\mathbf{k})$$

ECT* 2025

... but NLO effects dominate μ_B effects on spectra (rates)

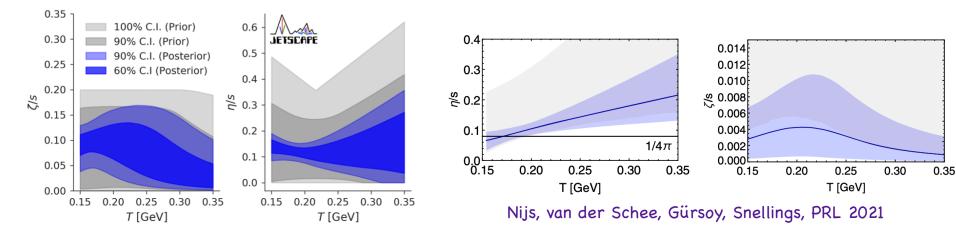


Photons and fluid dynamics

$$q_0 \frac{d^3 R}{d^3 q}\bigg|_{1+2\to 3+\gamma} = \int \frac{d^3 p_1}{2(2\pi)^3 E_1} \frac{d^3 p_2}{2(2\pi)^3 E_2} \frac{d^3 p_3}{2(2\pi)^3 E_3} (2\pi)^4 \left| M \right|^2 \delta^4 (...) \frac{f(E_1) f(E_2) \left[1 \pm f(E_3) \right]}{2(2\pi)^3}$$

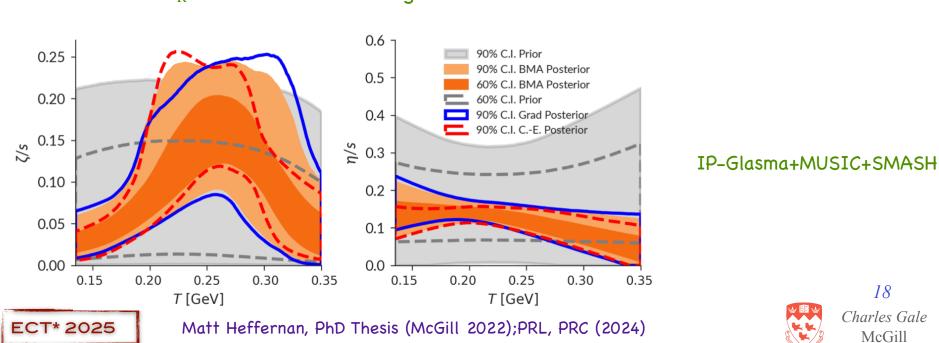
$$f_0(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{\exp[(u^{\mu}p_{\mu} - \mu)/T] \pm 1} \qquad f_0 \to f_0 + \delta f(\pi, \zeta)$$

Rate/viscous correction	ldeal	I+Shear	l+S+Bulk
QGP: 2->2	AMY (2001)	Shen et al., PRC (2015)	 Paquet et al., PRC (2016) Hauksson, Jeon, Gale (2017)
QGP: LPM- Brem.	AMY (2001)		Hauksson, Jeon, Gale (2017)
Hadronic: Meson reactions	 Turbide et al., PRC (2004) van Hees et al., PRC (2011) 	 Pion et al., PRC (2011) Paquet et al., PRC (2016) 	Paquet etal., PRC (2016)
Hadronic: Meson-Meson/ baryon Brem.	 Liu et al., NPA (2007) Linnyk et al., PRC (2015) 		
Hadronic: Baryons	 Rapp et al., ANP (2000) Turbide et al., PRC (2004) Paquet et al., PRC (2016) 		



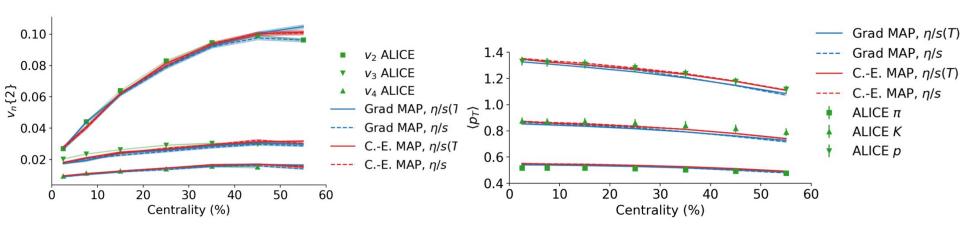
Heffernan, Gale, Jeon, Paquet PRL (2024)

- NLO rates not shown
 - Work left to be done to make hydro and EM emission consistent


Development: realistic dynamics in the era of statistical learning

BAYES ANALYSIS @ RHIC&LHC

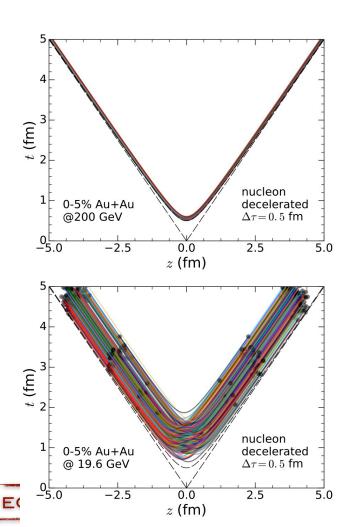
JETSCAPE Collab., PRC 2021; PRL 2021

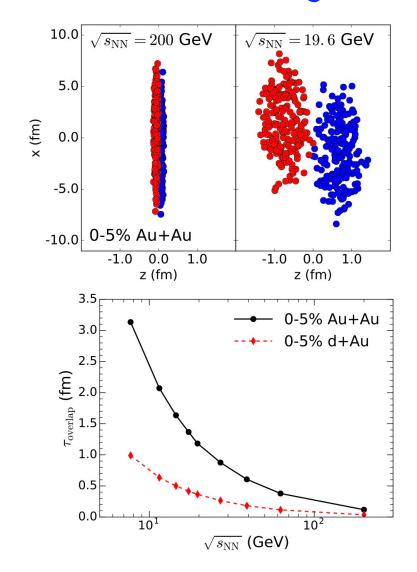

 $T_RENTO + free-streaming+MUSIC/TRAJECTUM+UrQMD/SMASH$

Parameter	Grad δf , η/s	Grad δf , $\eta/s(T)$	CE. δf , η/s	CE. δf , $\eta/s(T)$
$\overline{\mu_{Q_s}}$	0.72341	0.70808	0.72654	0.70858
$\overline{ au_0 \; [ext{fm}]}$	0.52127	0.51291	0.40142	0.55159
$T_{\eta, \mathrm{kink}} [\mathrm{GeV}]$	0.150	0.22333	0.150	0.21123
$a_{\eta,\text{low}} [\text{GeV}^{-1}]$	0.000	-0.16259	0.000	0.65272
$a_{\eta, \text{high}} [\text{GeV}^{-1}]$	0.000	-0.80217	0.000	-0.89472
$\overline{(\eta/s)_{ m kink}}$	0.13577	0.13944	0.12504	0.14888
$\overline{(\zeta/s)_{max}}$	0.28158	0.22085	0.17391	0.20117
$T_{\zeta,c}$ [GeV]	0.31111	0.29198	0.2706	0.25455
$w_{\zeta} \; [{ m GeV}]$	0.02878	0.03625	0.05255	0.04506
$\overline{\lambda_{\zeta}}$	-0.96971	-0.56235	-0.14178	0.06408
$T_{\mathrm{sw}} [\mathrm{GeV}]$	0.15552	0.15429	0.15069	0.1513

Maximum a Posteriori estimates with Grad's 14-moment and Chapman-Enskog RTA viscous corrections. Estimates with (denoted $\eta/s(T)$) and without (denoted η/s) temperature-dependent specific shear viscosity are reported.

Predictions:



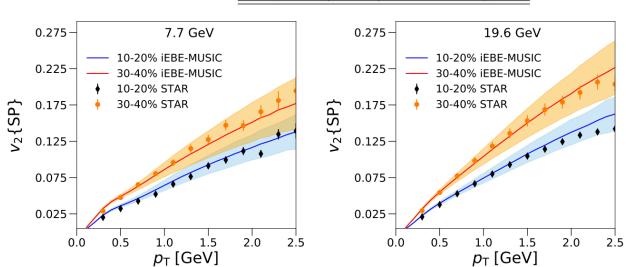


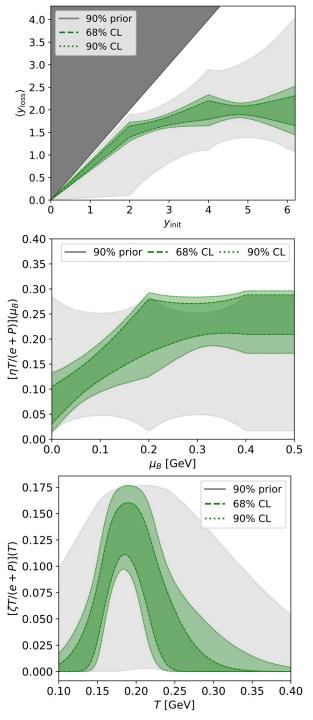
Realistic dynamics at lower energies

Shen and Schenke, PRC (2018)

At lower energies: pre-hydro stage. Colliding nucleons lose energy to stretched string

Hydro initialization will now spread over a range of proper times

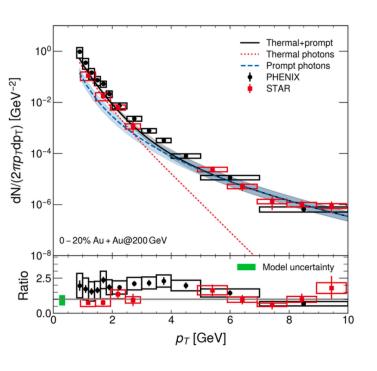

New: Bayes analysis at lower energies

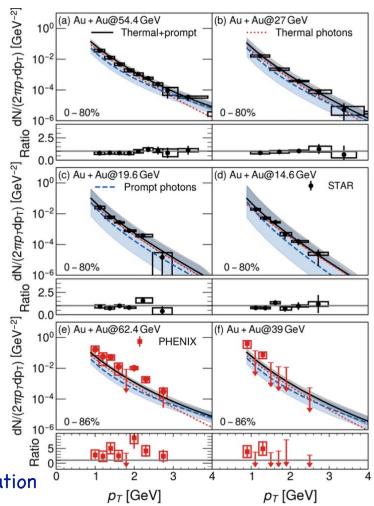

Jahan, Roch, Shen, PRC (2025)

Au+Au
$$\sqrt{s_{\rm NN}}$$
 = 7.7, 19.6, 200 GeV (EOS=HotQCD + Taylor)

The highest likelihood parameter set obtained from the MCMC with the PCSK emulator (LHD + HPP), imposing the monotonic constraint $y_{\text{loss},2} \leq y_{\text{loss},4} \leq y_{\text{loss},6}$.

Parameter	Value	Parameter	Value
$B_G [{ m GeV}^{-2}]$	17.095	$lpha_{ m string\ tilt}$	0.884
$lpha_{ m shadowing}$	0.145	$lpha_{ m preFlow}$	0.004
$y_{ m loss,2}$	1.467	η_0	0.045
$y_{ m loss,4}$	1.759	η_2	0.280
$y_{ m loss,6}$	2.260	η_4	0.287
$\sigma_{y_{\mathrm{loss}}}$	0.356	$\zeta_{ m max}$	0.148
$lpha_{ m rem}$	0.611	$T_{\zeta,0} \ [{ m GeV}]$	0.214
λ_B	0.129	$\sigma_{\zeta,+} \ [{ m GeV}]$	0.018
$\sigma_x^{ m string} \; [{ m fm}]$	0.113	$\sigma_{\zeta,-} \ [{ m GeV}]$	0.040
$\sigma_{\eta}^{ m string}$	0.156	$e_{\rm sw}~[{ m GeV/fm^3}]$	0.350




New: use the Bayesian-tuned model to calculate EM observables at BES energies

- Not emulator-based: need the full history
- Sample the 20-dimensional parameter space
- Run the multistage simulation with photon and dilepton rates
- Integrate over the full space-time

(I) Photons

- PHENIX > STAR
- High pT = prompt
- Low E_{ν} = new
- Bands: pQCD scale variation

Xiang-Yu Wu et al., in preparation

ECT* 2025

Putting EM probes to work: temperature extraction?

Volume 78B, number 1

PHYSICS LETTERS

11 Spetember 1797

QUARK-GLUON PLASMA AND HADRONIC PRODUCTION

E.V. SHURYAK

Institute of Nuclear Physics, Novosibirsk, USSR

OF LEPTONS, PHOTONS AND PSIONS

Received 16 March 1978

Temperature Measurement of Quark-Gluon Plasma Formed in High Energy Nucleus-Nucleus Collisions

K. Kajantie

Department of Theoretical Physics, University, SF-00170 Helsinki 17, Finland

Z. Phys. C - Particles and Fields 9, 341-345 (1981)

H.I. Miettinen

Research Institute for Theoretical Physics, University, SF-00170 Helsinki 17, Finland

Received 6 March 1981

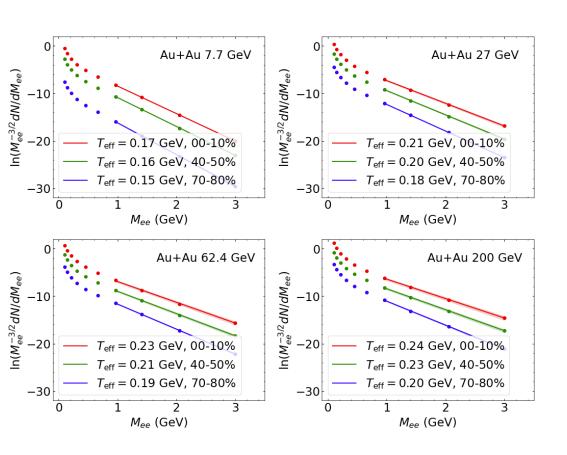
Abstract. We discuss lepton pair and real photon emission from quark-gluon plasma, which is very likely to be formed in high energy nucleus-nucleus collisions. Measurement of pair production cross-section will provide one with accurate information of the temperature of this plasma.

Nuclear Physics A400 (1983) 43c-62c. ©North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher.

NUCLEUS-NUCLEUS COLLISIONS: OBSERVATIONS AND EXPECTATIONS

Hans J. Specht

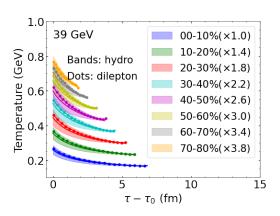
Physikalisches Institut der Universität Heidelberg, Germany

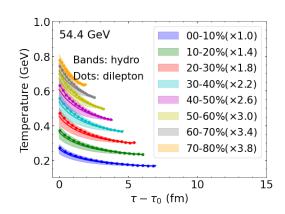

Abstract: Selected topics of nucleus-nucleus collisions between MeV/u and TeV/u are discussed, covering some recent experiments on fusion and fusion-like processes in the heavy element regime at energies around the Coulomb-barrier, some experiments on ternary exit channels at the borderline to intermediate energies, and some possible future experiments on signals associated with quark-gluon plasma formation at ultrarelativistic energies.

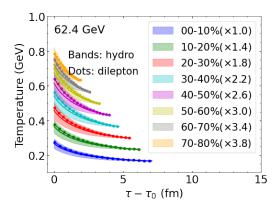
Putting EM probes to work

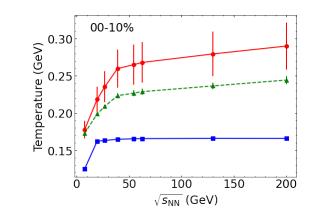
- Real photon spectrum is sensitive to local T and to blue shift: informs the modelling
- Virtual photon spectrum is invariant, but "T" depends on some details
 Those two are complementary

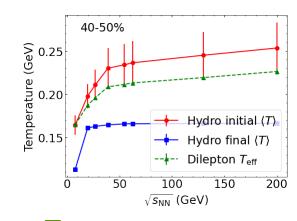
(II) Dileptons

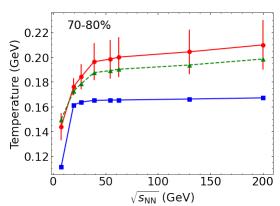

The y-axis is $\ln \left\{ dN/dM \times M^{-3/2} \right\}$ The effective T is extracted from slope, considering $1~{\rm GeV} < M < 3~{\rm GeV}$


Rapp, van Hees, PLB (2016)

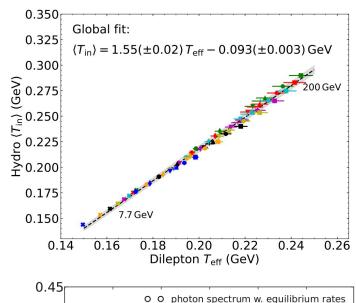

 $T_{
m eff}$ is energy- and centrality-dependent


Evaluating the efficacy of "the dilepton thermometer"



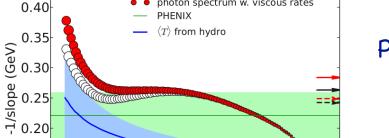


- Bands represent the temperature spread in hydro cells
- Dots are effective T read off the dilepton spectrum



- \circ Dilepton $T_{
 m eff}$ increases with colliding energy
- \circ We see that $T_{\rm final} < T_{\rm eff} < T_{\rm initial}$

McGill


Message from photons & dileptons

Churchill et al., PRL (2024)

Dileptons

Combining all energies and centralities, the initial temperature in the fluid dynamical model correlates well with the effective temperature extracted from the dilepton spectrum

MCGlb., $\eta/s = 0.08$, AuAu @ RHIC, 0-20%

 τ (fm/c)

hoton spectrum w. viscous rates

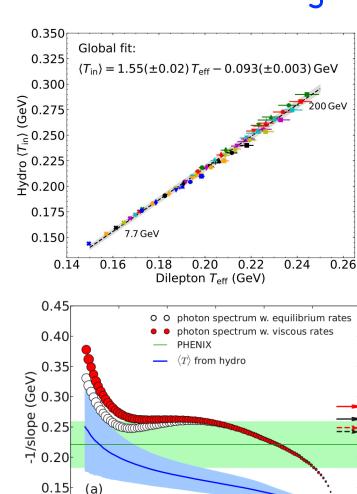
Photons

Photon "temperatures" are systematically higher than real T, but reveal some of the expansion dynamics

> van Hees et al., PRC (2011) Shen et al., PRC (2014)

$$\frac{d^3R}{d^3p} \sim \exp\left(-\gamma E + \beta \gamma E\right)$$

10


$$T_{\text{eff}} = \sqrt{\frac{1+v}{1-v}}T$$

0.15

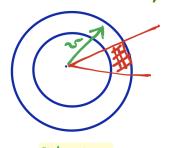
0.10

(a)

Message from photons & dileptons

MCGlb., η/s = 0.08, AuAu @ RHIC, 0-20%

 τ (fm/c)


Churchill et al., PRL (2024)

Dileptons

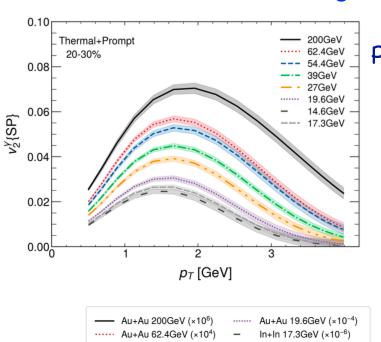
Combining all energies and centralities, the **initial** temperature in the fluid dynamical model correlates well with the effective temperature extracted from the dilepton spectrum

Photons

Photon "temperatures" are systematically higher than real T, but reveal some of the expansion dynamics

van Hees et al., PRC (2011) Shen et al., PRC (2014)

$$\frac{d^3R}{d^3p} \sim \exp\left(-\gamma E + \beta \gamma E\right)$$

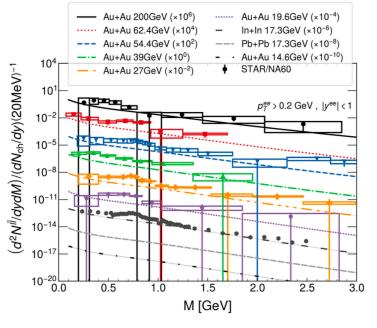

10

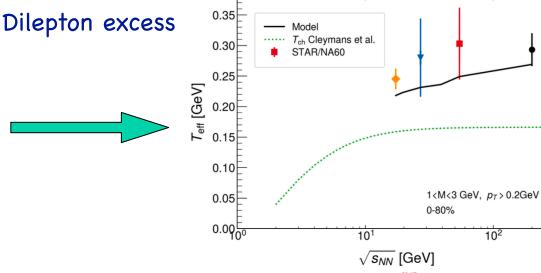
$$T_{\text{eff}} = \sqrt{\frac{1+v}{1-v}}T$$

0.10

2

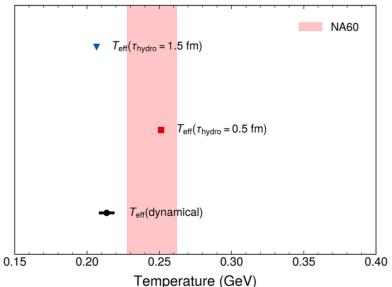
Putting EM probes to work: data in the BES range and effective temperatures




Photons (No photon v2 data yet at those energies)

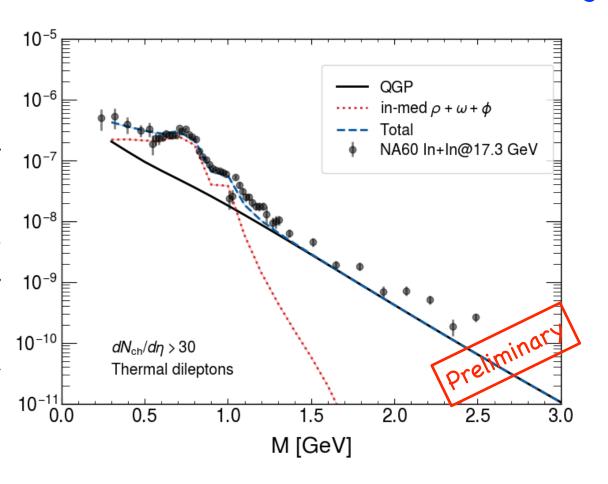
> Dilepton excess (hadronic cocktail subtracted), from STAR BES runs and NA60 measurements. Consider M > 1 GeV


X.-Y. Wu et al., in preparation


10²

New: exploring the early stages at SPS energies

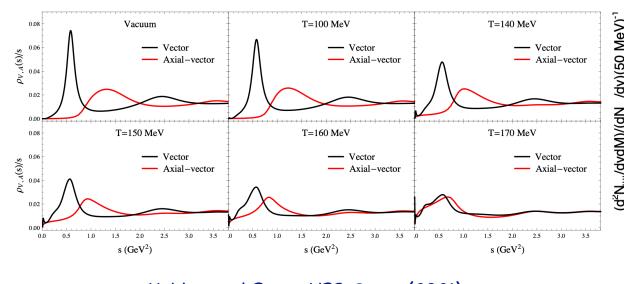
$$\sqrt{s_{\rm NN}} = 17.3 \; {\rm GeV}$$


- Concentrate on IMR (for the moment)
- 3 scenarios: 3 different temperatures

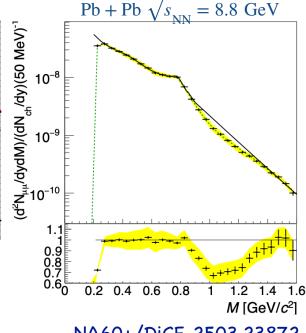
X.-Y. Wu et al., in preparation

- ullet As SPS energies, smaller "instantaneous" au_0 not realistic
- ullet Other choices lead to lower T values than window estimated by NA60
- Evidence for pre-equilibrium contribution(s)

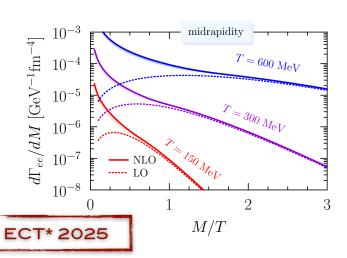
Towards inclusion of spectral densities from all invariant mass regions


- LMR: $\rho^V_{\rho,\omega,\phi}$ from manybody hadronic theory*
- IMR: QCD (NLO, $\mu_{\rm B}$)
- Dynamical initial states+MUSIC+UrQMD
- Next: Pre-eq. Contribution, 4π , v_n ...

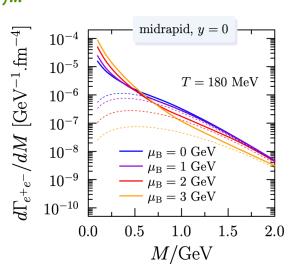
X.-Y. Wu et al., in preparation


(*) R. Rapp

Putting EM probes to work: dileptons and fundamental symmetries



Hohler and Rapp, NPB Supp. (2021)

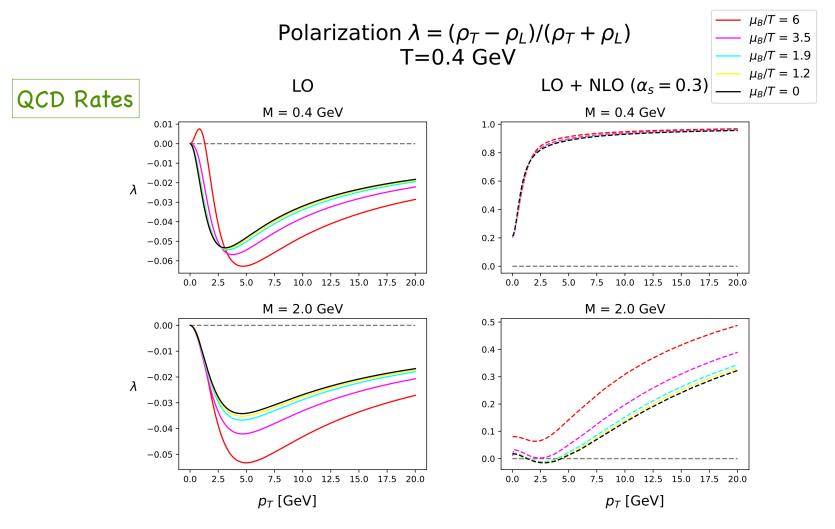


NA60+/DICE 2503.23872 ests

Importantly, the symmetry restoration manifests itself around $M\sim 1$ GeV ($\Delta N\sim 20-30\,\%$)...

... where hadronic and QCD physics meet. Precision physics will require controlled calculations (LMR, IMR (NLO), $\mu_{\rm B}$, realistic dynamics, etc)

A new twist: dilepton polarization


Go back to
$$E_{+}E_{-}\frac{dR_{\ell\bar{\ell}}}{d^{3}p_{+}d^{3}p_{-}} = -\frac{2e^{4}}{(2\pi)^{6}}\frac{\sum_{i}^{N_{\mathrm{f}}}Q_{i}^{2}}{K^{4}}L^{\mu\nu}\rho_{\mu\nu}\,f_{\mathrm{B}}(\omega)$$

$$K^{\mu} = p_{+}^{\mu} + p_{-}^{\mu}$$

$$\rho_{\mu\nu}(\omega,\mathbf{k}) \equiv -\operatorname{Im}\left[\int_{0}^{\beta}d\tau e^{i\omega_{n}\tau}G_{\mu\nu(\tau,\mathbf{k})}\right]_{i\omega_{n}\to\omega+i\,0^{+}}$$

$$G_{\mu\nu}(\tau,\mathbf{k}) = \int d^{3}x e^{-i\mathbf{k}\cdot\mathbf{x}}\langle J_{\mu}(\tau,\mathbf{x})J_{\nu}(0,\mathbf{0}\rangle_{T}$$

$$\rho_{\mu\nu} = P_{\mu\nu}^{\mathrm{T}}\rho_{\mathrm{T}} + P_{\mu\nu}^{\mathrm{L}}\rho_{\mathrm{L}} \qquad \rho_{\mathrm{L}} \equiv -\frac{K^{2}\rho_{\mu\nu}u^{\mu}u^{\nu}}{(u\cdot K)^{2} - K^{2}}, \qquad \rho_{\mathrm{T}} \equiv \frac{\rho_{\mu}^{\mu} - \rho_{\mathrm{L}}}{2}$$

$$\frac{dR_{\ell\bar{\ell}}}{d^4K} = \frac{2\alpha_{\rm em}^2}{9\pi^2} \frac{\sum_{i}^{N_{\rm f}} Q_i^2}{K^2} B\left(\frac{m_{\ell}^2}{K^2}\right) \rho_{\rm V} f_{\rm B}(\omega), \quad \rho_{\rm V} = \rho_{\mu}^{\mu} = \rho_{\rm L} + 2\rho_{\rm T}$$

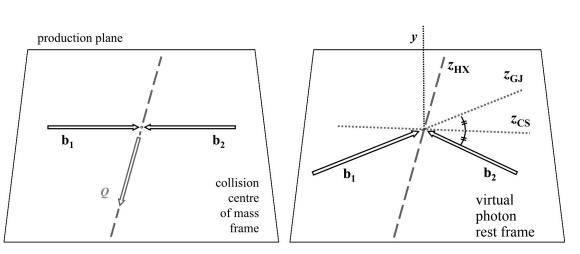
$$B(0) = 1$$

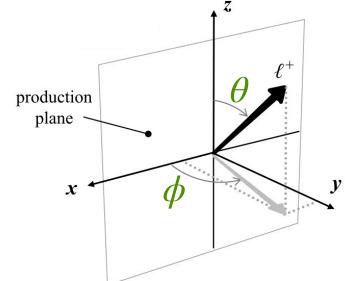
Dilepton polarization; looking at the longitudinal and transverse rates

- Qualitative and quantitative difference between LO and LO+NLO
- ullet Polarization contains info on $\mu_{
 m R}$

McGill

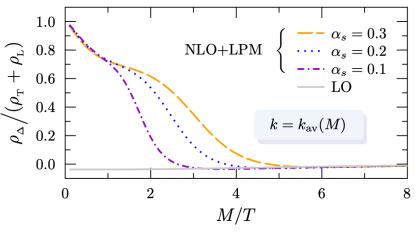
Trajectories: Values of T and $\mu_{\rm B}$ spanned at lower energies

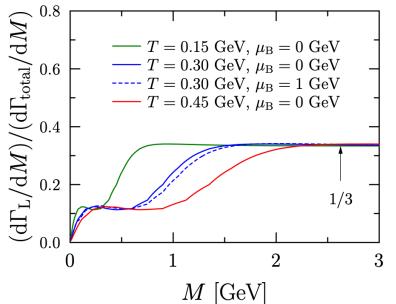



- Au + Au@19.7 and 7.7 GeV
- Hydro trajectories in three different rapidity windows: [left to right]: {-0.5, 0.5}, {0.5, 1.0}, {1.0, 1.5}
- Dot-dashed line: chemical freeze-out estimate

The dilepton polarization and the lepton angular distribution

$$\begin{split} \frac{dN}{d^4Kd\Omega_{\ell}} &\propto 1 + \lambda_{\theta}\cos^2\theta_{\ell} + \lambda_{\phi}\sin^2\theta_{\ell}\cos2\phi_{\ell} \\ &\quad + \lambda_{\theta\phi}\sin2\theta_{\ell}\cos\theta_{\ell} + \lambda_{\phi}^{\perp}\sin^2\theta_{\ell}\sin2\phi_{\ell} \\ &\quad + \lambda_{\theta}^{\perp}\phi\sin2\theta_{\ell}\sin\phi_{\ell} \end{split}$$




P. Faccioli et al., Eur. Phys. J. C (2010)

For the moment, use the HX frame

Polarization, the importance of NLO contributions

For a QCD plasma at rest:

$$\lambda_{\theta} \simeq \frac{\rho_{\Delta}}{\rho_{T} + \rho_{L}}$$

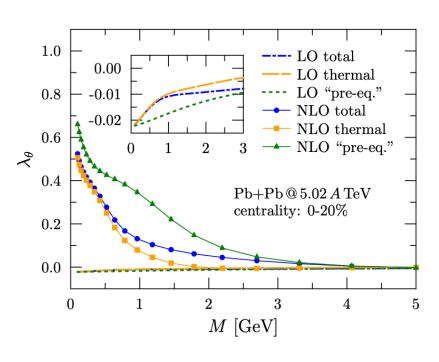
$$\rho_{\Delta} = \rho_{T} - \rho_{L}$$

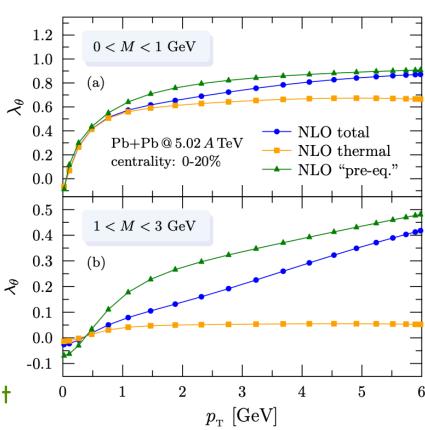
$$\omega = \sqrt{k^{2} + M^{2}}$$

- The large M limit is like the $T \to 0$ limit for the M/T ratio. Then $\lambda_{\theta} \to 0$. OPE : $\rho_{\Lambda} \sim k^2 (T/M)^4$
- When $M \to 0$, approaching the (real) photon point,

$$\rho_{\Delta} \rightarrow \rho_{\rm T}$$

 LO + NLO has the correct limit, not LO


Wu et al., PRL (2025)



Polarization at the LHC, and as a functions of p_T

$$Pb + Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$$

- Flow effects in polarization coefficient
- λ_{θ} sensitive to pre-eq. conditions
- $\lambda_{\theta}(p_T)$ behaviour differs in LMR and IMR

Dilepton polarization at all energies, next steps

- Extend result to lower E results (e.g. F. Seck et al., PLB 2025)
- Add Drell-Yan polarization
- Add pre-eq. contribution
- Small systems
- Dynamical model is important
- Non-eq. Effect in rates (transport coefficients)

Conclusions:

- Progress in
 - NLO rates at $\mu_{\rm B} \neq 0$
 - Non-eq. Contributions
 - Dilepton polarization calculations
- Much progress in dynamical evolution models
- Dynamical hadronic evolution models and EM emission are intrinsically connected
- Real photons and dileptons are complementary observables

Conclusions:

- Progress in
 - NLO rates at $\mu_{\rm B} \neq 0$
 - Non-eq. Contributions
 - Dilepton polarization calculations
- Much progress in dynamical evolution models
- Dynamical hadronic evolution models and EM emission are intrinsically connected
- Real photons and dileptons are complementary observables

Thank you!