

PENETRATING PROBES OF HOT HIGH $-\mu_B$ MATTER: THEORY MEETS EXPERIMENT

ECT* Workshop, 21-25 July 2025

Probing the phase-coexistence region with leptons

Jørgen Randrup

Lawrence Berkeley National Laboratory

PENETRATING PROBES OF HOT HIGH $-\mu_B$ MATTER: THEORY MEETS EXPERIMENT

ECT* Workshop, 21-25 July 2025

Probing the phase-coexistence region with leptons?

Jørgen Randrup

Lawrence Berkeley National Laboratory

Hadron gas

Dilute: hadron gas

Dense: hadrons?

CONFINED PHASE

Hadron Gas

$$p^H = p_\pi + p_N + p_{\bar{N}} + p_w$$

DECONFINED PHASE

Quark Gluon Plasma

$$p^Q = p_g + p_q + p_{\bar{q}} - B$$

5

Equation of state

The pressure in uniform matter at equilibrium

$$p(\varepsilon,\rho)$$
 $p_T(\rho)$ $(p_{T\mu})$

 $T < T_c$: Phase **COEXISTENCE**: same (T, μ, p)

Phase diagram of strongly interacting matter

Recent analysis of neutron star data shows that a phase transition is unlikely to appear below compressions of ≈ 5 , L. Brandes & W. Weise, Phys. Rev. D **111**, 034005 (2025)

Phase diagram of strongly interacting matter

Collective dynamics near a critical point

Amplitude evolution:

$$rac{d}{dt}A_{
u}(t) = -i\omega_{
u}A_{
u}(t) + B_{
u}(t) \ \omega_{
u} = \epsilon_{
u} + i\gamma_{
u}$$

Markovian noise:

$$\prec B_{\nu}(t) B_{\mu}(t')^* \succ = 2 \mathcal{D}_{\nu\mu} \delta(t - t')$$

Correlation function:

$$\sigma_{\nu\mu}(t_1, t_2) \equiv \langle A_{\nu}(t_1) A_{\mu}(t_2)^* \rangle$$

Evolution:

$$rac{d}{dt}\sigma_{
u\mu}(t) \;=\; 2\mathcal{D}_{
u\mu} \;-\; i(\omega_
u - \omega_\mu^*)\sigma_{
u\mu}$$

Variance of a single mode:

$$= > \sigma_{\nu}^{2}(t) = \left[2\mathcal{D}_{\nu} \int_{0}^{t} e^{-2\Gamma_{\nu}(t')} dt' + \sigma_{0}^{2} \right] e^{2\Gamma_{\nu}(t)}$$

Time t

Phase diagram of strongly interacting matter

Spinodal decomposition in nuclear matter

In the spinodal region, density undulations are amplified:

Long-wavelength undulations grow slowly (it takes time to relocate the matter)

Short-wavelength undulations grow slowly (they are hardly felt due to finite range)

=> There is an *optimal wavelength* that grows faster than all others

Ph Chomaz, M Colonna, J Randrup Nuclear Spinodal Fragmentation Physics Reports **389** (2004) 263

Jørgen Randrup 13

Correlation

32 MeV/A Xe + Sn (b=0)

Theory (*Boltzmann-Langevin*):

The collision produces a compressed system whose subsequent expansion brings its bulk into the spinodal region where it condenses into several fragments having the *same* size

Statistical distribution (≈98%)

In these events, all 6 fragments have (nearly) the same charge

LEGO plot of ($\langle Z \rangle$, ΔZ)

For each event having M fragments, calculate mean fragment charge $\langle Z \rangle$ and the charge dispersion ΔZ

32 MeV/A Xe + Sn (b=0):

select events with M IMFs

Bin wrt $\begin{cases} \langle Z \rangle : \text{ average IMF charge} \\ \Delta Z : \text{ dispersion in IMF charge} \end{cases}$

Experiment (INDRA @ GANIL)

B. Borderie *et al*, PRL **86** (2001) 3252

Theory (Boltzmann-Langevin)

Ph. Chomaz et al, PRL 73 (1994) 3512

M=6:

Ph. Chomaz *et al,* Phys. Rev. Lett. 73 (1994) 3512

B. Borderie *et al*, Phys. Rev. Lett. 86 (2001) 3252

Is the spinodal mechanism a useful tool for probing the deconfinement phase transition?

Construct a plausible equation of state $p_0(\varepsilon, \rho)$: Interpolate between hadron gas and QGP

J Randrup, PRC 82, 034902 (2010)

Jørgen Randrup 17

Is the spinodal mechanism a useful tool for probing the deconfinement phase transition?

Construct a plausible equation of state $p_0(\varepsilon, \rho)$: Interpolate between hadron gas and QGP

J Randrup, PRC **82**, 034902 (2010)

Introduce *finite-range correction*:

Equation of state: Finite range

Free energy density for uniform matter: $f_0(
ho,T)$

But we need to treat non-uniform systems: $ho(m{r}), \ T(m{r})$

Local density approximation: $f({m r}) \doteq f_0(
ho({m r}), T({m r}))$

Total free energy: $F[\rho({\bm r}),T({\bm r})] \ = \ \int d^3{\bm r} \, f({\bm r})$

The local density approximation implies:

$$F_{\mathcal{T}}(\underline{\hspace{1cm}}) = F_{\mathcal{T}}(\underline{\hspace{1cm}}\underline{\hspace{1cm}})$$

No good! => Finite range <u>must</u> be taken into account

Is the spinodal mechanism a useful tool for probing the deconfinement phase transition?

Construct a plausible equation of state $p_0(\varepsilon, \rho)$: Interpolate between hadron gas and QGP

J Randrup, PRC **82**, 034902 (2010)

Introduce *finite-range correction*:

 $p(\mathbf{r}) \approx p_0(\varepsilon(\mathbf{r}), \rho(\mathbf{r})) - C\rho_0 \nabla^2 \rho(\mathbf{r})$ => Interface tension, spinodal clumping

J. Randrup, PRC **79**, 054911 (2009)

MB Pinto, V Koch, J Randrup, PRC **86**, 025023 (2012)

Carry out *dynamical simulations*:

3D relativistic fluid dynamics (Jan Steinheimer)

Which collision energy?

Dynamical phase trajectories $(\rho(t), \varepsilon^*(t))$

with various dynamical models

Arsene, Bravina, Cassing, Ivanov, Larionov, Randrup, Russkikh, Toneev, Zeeb, Zschiesche, PRC 75 (2007) 034902

Maximum compression

Arsene, Bravina, Cassing, Ivanov, Larionov, Randrup, Russkikh, Toneev, Zeeb, Zschiesche, PRC **75** (2007) 034902

Is the spinodal mechanism a useful tool for probing the deconfinement phase transition?

Construct a plausible equation of state $p_0(\varepsilon, \rho)$: Interpolate between hadron gas and QGP

J Randrup, PRC **82**, 034902 (2010)

Introduce finite-range correction: $p(\boldsymbol{r}) \approx p_0(\varepsilon(\boldsymbol{r}), \rho(\boldsymbol{r})) - C\rho_0\nabla^2\rho(\boldsymbol{r})$ => Interface tension, spinodal clumping

J. Randrup, PRC **79**, 054911 (2009)

MB Pinto, V Koch, J Randrup, PRC **86**, 025023 (2012)

Carry out *dynamical simulations*:

3D relativistic fluid dynamics (Jan Steinheimer)

J. Steinheimer & J. Randrup, PRL **109**, 212301 (2012); PRC **87**, 054903 (2013)

Does phase separation (clumping) occur?

If so, what are the <u>observable</u> effects?

3 *A* GeV Pb + Pb (*b*=0)

Identical initial conditions

J. Steinheimer & J. Randrup,
 Phys Rev Lett 109, 212301 (2012);
 Phys Rev C 87, 054903 (2013)
 ECT* 2025

Is the spinodal mechanism a useful tool for probing the deconfinement phase transition?

Does phase separation (clumping) occur?

Yes, within an optimal energy range

J. Steinheimer & J. Randrup, Phys Rev Lett **109**, 212301 (2012); Phys Rev C **87**, 054903 (2013)

If so, what are the observable effects?

Hadronic observables: nothing spectacular

Penetrating probes: dileptons?

J Steinheimer, J Randrup, V Koch, Phys Rev C **89**, 034901 (2014)

Lattice QCD at μ = 0 may elucidate how the system evolves from a hadron gas to a quark-gluon fluid as the temperature is increased though the phase transformation region

How does the dilepton production evolve?

"HG" at density ρ_H coexists with "QGP" at density ρ_Q (Coexistence: the two systems have the same p, T, μ)

(How) do dileptons emitted from such coexisting systems differ?

A systematic comparison of dilepton emission from *coexisting* confined and deconfined matter

Probing the phase-coexistence region with leptons Recent dynamical studies

Dilepton signature of a first-order phase transition, F. Seck, T. Galaytuk, A. Mukheerjee, R. Rapp, J. Steinheimer, J. Stroth, Phys Rev C **106**, 014904 (2022)

Enhanced dilepton emission from a phase transition in dense matter, O. Savchuck, A. Motornenko, J. Steinheimer, V. Vovchenko, M. Bleicher, M. Gorenstein, T. Galatyuk, J Phys G: Nucl Part Phys **50**, 125104 (2023)

Concluding remarks

A first-order phase transition might produce transient blobs of quark matter (whereas a smooth phase change would not)

It may be *im*possible to determine experimentally whether the QCD phase diagram has a *first-order* phase transition and an associated *critical point*

But it may be feasible to observe the *softening* associated with a deconfinement phase change, due to the enhancement resulting from the increased time spent in the transformation zone

PENETRATING PROBES OF HOT HIGH $-\mu_B$ MATTER: THEORY MEETS EXPERIMENT

ECT* Workshop, 21-25 July 2025

Probing the phase-coexistence region with leptons?

Jørgen Randrup

Lawrence Berkeley National Laboratory

Thank You!