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Exotic nuclei

Why are exotic nuclei important?

Neutron rich

Proton rich

Where is the limit of the driplines?
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Exotic nuclei

Why are exotic nuclei important?

Important in astrophyics

r-process

- Reaction rates

- Nucleosynthesis during supernovae

- Nucleosynthesis during neutron star mergers
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Exotic nuclei

Why are exotic nuclei important?

p-process

rp-process

- Reaction rates

- Nucleosynthesis during supernovae

- X-ray bursts
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Exotic nuclei

Exotic nuclei exhibit properties like:

Short lifetimes

Near threshold clustering

Halo nuclei

These brings the following challenges:

Coupling to the continuum −→
Structure calculation cannot
ignore the coupling to the
continuum.

How do we address the low energy regime where individual resonances are
important?

Towards a unified nuclear structure and nuclear reaction approaches!
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Resonating group method (RGM)

We consider the ansatz:

|(c , r)Jπ⟩ = Ac

{
|ΨJT

T ⟩ ⊗ |ΨJP
P ⟩
}Jπ

= Ac |
Jπ

⟩.

Antisymmetrized!

∑
i ci

The wave functions are expanded in this basis

|ΨJπ⟩ =
∑
c

∫ ∞

0

(
gJπ
c (r)

r

)
Ac |

Jπ

⟩r2dr .

Relative motion between T and P.

Which lead to the coupled channel equation (Hills-Wheeler)

∑
c

∫ ∞

0

[
HJπ

cc ′(r , r
′)− E NJπ

cc ′(r , r
′)
] gJπ

c (r)

r
r2dr = 0 .

Channels are not orthogonal!
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Resonating group method (RGM)

First, we go from a generalized eigenvalue problem to the standard case by:

H |Ψ⟩ = EN |Ψ⟩ → H̄ |Ψ̄⟩ = E |Ψ̄⟩ ,

where we have defined and orthogonalized channel basis

H̄ = N̂−1/2ĤN̂−1/2 |Ψ̄⟩ = N̂1/2 |Ψ⟩ .

This allows us to get the interaction between channels as a non-local
potential:(

Tc(r) + EI
π1
1

+ EI
π2
2

) uJ
π

c (r)

r
+
∑
c ′

∫
dr ′ r ′

2
Wcc ′(r , r

′)
uJ

π

c ′ (r
′)

r ′
= 0,

which we can compute in matrix form as:

W = N−1/2TrelN
1/2 − Trel + N−1/2VrelN̂

−1/2.

We compute scattering observables with a microscopic R-matrix
calculation.
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Resonating group method (RGM)

Let’s use the wavefunctions from a microscopic model!

|Ψ⟩ =
∑
c

∫ ∞

0

(
gc(r)

r

)
A| ⟩r2dr .

Symmetry-adapted No-core Shell Model

All nucleons active.

Chiral EFT interaction

RGM version only nucleon projectiles
(for now).
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Symmetry-adapted no-core shell model

SA-NCSM is based on standard
configuration interaction (CI) approach

Harmonic oscillator basis.

Model space set by Nmaxℏω

Hamiltonian from first principles
VNN = VχEFT

.

CI → | ⟩ SA-NCSM → | ⟩

The SA-NCSM leverages near-exact symmetries

Reorganization of the Slater determinant basis into SU(3) coupled states.

This allows the construction of model spaces containing only the most
physically relevant configurations.

This truncation still has exact CM factorization.

In a complete model space equivalent to CI.
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Symmetry-adapted no-core shell model

Selected basis

24Ne

K. D. Launey et al., Annu. Rev. Nucl. Part. Sci. 71, 253–277 (2021)

Few basis states contribute and
they capture relevant
correlations.

Practically exact calculations
with selections.
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Two important questions to address

What do I mean by SU(3) coupled states?

How do we actually do the selection of the basis?
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The SU(3)×SU(2) basis

SU(2) coupling:

|j1j2JM⟩ =
∑
m1m2

⟨j1m1j2m2|JM⟩ |j1m1j2m2⟩

Clebsch–Gordan (SU(2) coupling) coefficients
SU(3) coupling:

|(λ3µ3)α3⟩ρ =
∑
α1α2

⟨(λ1µ1)α1; (λ2µ2)α2|(λ3µ3)α3⟩ |(λ1µ1)α1⟩ |(λ2µ2)α2⟩

SU(3) coupling coefficients

The (λµ) projection convention
used is:

α → κLM

Later we can couple in SU(2):

{LS} → {j}
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The SU(3)×SU(2) basis

K. D. Launey et al., Prog. Part. Nuc. Phys. 89, 101–136 (2016)

In the HO basis, we typically use:

N = 2n + ℓ,

but we can also use Cartesian:

N = nx + ny + nz

We can obtain (λ, µ) by:

λ = nz − nx µ = nx − ny
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Physical interpretation of an SU(3) irrep

We have two quantum numbers (λ, µ)

(λ, 0) ∼ nz − nx → prolate shape (0, µ) ∼ nx − ny → oblate shape

Specific superposition of(λ, µ)
creates triaxial shapes

We can relate them to β and γ too:

β2 ∝ λ2 + µ2 + λµ+ 3(λ+ u) γ = arctan

( √
3µ

2λ+ µ

)
J. P. Draayer et al., Phys. Rev. Lett. 62, 20–23 (1989)
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Model space selection

Full Nmax (No selection)

Selected SU(3) irreps

- Relevant contibutions

- Controlled approximation

2ℏω raising operator

λ+ µ = λ0 + µ0 + N

N = 0, 2, 4, ...

T. Dytrych et al., Phys. Rev. Lett. 111, 252501 (2013)
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Validation against NCSM-RGM

|(c , r)⟩ = A
{
|ΨJT

T ⟩ ⊗ |ΨJP
P ⟩
}JA

MA

=
∑
i

ci |
i

⟩ from SA-NCSM

nucleon (for now)

Interaction: NNLOopt

Nmax = 14

Two target states:
Ground state 0+ and
excited 2−

Preliminary
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24Mg + n

We can compute cross-sections for intermediate nuclei

Interaction: NNLOopt

Nmax =< 2 > 6

Two target states:
Ground state 0+, first
excited 2+.

Up to ℓ = 8 partial
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40Ca + n

Let’s push the model even more!

Interaction: NNLOopt

Nmax =< 4 > 6

One target state:
Ground state 0+

Up to ℓ = 8 partial
waves.
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Conclusions and outlook

The resonating group method provides a
powerful tool that can be applied to
different nuclear models to unify nuclear
structure and reactions.

The SA-RGM is a powerful method that
allows to do ab initio reaction calculations
of intermediate nuclei at bigger Nmax

spaces.

Next step: radiative capture.
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