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Graciously provided 

by Heiko Hergert

Even considering only protons and neutrons, 

we still have a large scale, strongly-interacting 

quantum many-body problem



4We are entering an era in which the precision modelling of 

strongly-interacting many-body systems is becoming possible
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Requires nuclear theory

Hardy et al. PRC 102, 045501 (2020)

Particle Data Group. PRD 110, 030001 (2024) and references therein
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Requires nuclear theory

Hardy et al. PRC 102, 045501 (2020)

Particle Data Group. PRD 110, 030001 (2024) and references therein
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Nuclear beta decay in the Standard Model

Particle Data Group. PRD 110, 030001 (2024)

Accounts for isospin symmetry breaking and 
electroweak radiative corrections
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One-loop radiative correction

Seng & Gorchtein. PRC 107, 035503 (2023)

Convenient [ not critical ] approximations

▪ Forward scattering limit

▪ Neglect recoil of final nucleus
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We use the ab initio no-core shell model, a quasi-exact approach for 

modelling nuclei as composite structures of nucleons interacting via 

internucleonic forces

1max += NN
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Anti-symmetrized products of many-

body harmonic oscillator states

Barrett et al. PPNP 69 (2013), pp.181-131
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We use the ab initio no-core shell model, a quasi-exact approach for 

modelling nuclei as composite structures of nucleons interacting via 

internucleonic forces

Lanczos Algorithm

Lanczos. JRNBS 45 no. 4 (1950)
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We use the ab initio no-core shell model, a quasi-exact approach for 

modelling nuclei as composite structures of nucleons interacting via 

internucleonic forces

Lanczos Strengths Method

Haydock. JPA 7, 2120 (1974)          Bessis & Villani. JMP 16, 462 (1975)          Dagotto. RMP 66, 763 (1994)

Method for extracting many-body 

resolvent amplitudes
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We use the ab initio no-core shell model, a quasi-exact approach for 

modelling nuclei as composite structures of nucleons interacting via 

internucleonic forces

1max += NN

No-core Shell Model

Lanczos Strengths Method

Chiral Effective Field Theory
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We use the ab initio no-core shell model, a quasi-exact approach for 

modelling nuclei as composite structures of nucleons interacting via 

internucleonic forces

Muonic atoms

Drissi et al. In prep.

Muon capture

Najera et al. In progress.

Super-allowed beta decay

Gennari et al.

PRL 134, 012501 (2025)
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We use the ab initio no-core shell model, a quasi-exact approach for 

modelling nuclei as composite structures of nucleons interacting via 

internucleonic forces

Muonic atoms

Drissi et al. In prep.

Muon capture

Najera et al. In progress.

Super-allowed beta decay

Gennari et al.

PRL 134, 012501 (2025) Gennari et al. PRL 134, 012501

No resolution for Compton amplitude above pion threshold, 

thus 𝛿NS matched with the free nucleon Born contribution only
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Amplitude and pole structure

Gennari et al. PRL 134, 012501
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Gennari et al. PRL 134, 012501
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Gennari et al. PRL 134, 012501

H&T 

2015

𝛿NS − 0.345(35)
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This work

H&T 2020
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Gennari et al. PRL 134, 012501
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PRELIMINARY
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PRELIMINARY

H&T 

2015

𝛿NS = −0.245(50)



Ordinary muon capture

Najera et al. In progress.
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Ordinary muon capture
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Ordinary muon capture

Why study muon capture?

Neutrinoless double beta decay of course!

1. Identical currents and coupling constants

2. Similar phase-space (different from electron-induced beta decay)

A measurable process which probes physics relevant to 
neutrinoless double beta decay
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Ordinary muon capture

Devil is in the details [ with the LSM ]

▪ Cast as energy-weighted sum of 
resolvent amplitudes

▪ Numerically evaluate off-shell and 
later cast as on-shell

Walecka. NPA 258 (1976), pp. 397-416
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DANGEROUSLY PRELIMINARY

Comparison to literature for 12C → 12B capture

Jokiniemi et al. PRC 109, 065501 (2024)

𝑁max = 3
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▪ Improved precision for electroweak radiative corrections in nuclei with 

the Lanczos Strengths Method coupled to the ab initio NCSM

▪ Systematic improvements available, e.g., consistent currents in chiral EFT

▪ Limited by matching of high-energy QCD to low-energy nuclear theory

The future of electroweak theory in light nuclei



38

What is feasible in the near future?
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Constraints on LECs of pNRQED

Courtesy of C.-Y. Seng
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Large cost 

reduction

UQ bounds on 

numerics
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Were I to dream
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What about 4He?

Constraints on scalar and pseudo-scalar dark matter! 
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Follow us @TRIUMFLab

www.triumf.ca

Thank you
Merci
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One-loop radiative correction

Seng & Gorchtein. PRC 107, 035503 (2023)
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Wick rotation and electron energy expansion

Wick rotated box diagram and electron residue 
contribution are regular as 𝐸𝑒 → 0

Nuclear residue contribution is singular

Gennari et al. PRL 134, 012501



46

Deriving the non-relativistic Compton amplitude
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Deriving the non-relativistic Compton amplitude

Donnelly et al. ADNDT 23, pp. 103-176 (1979)
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