

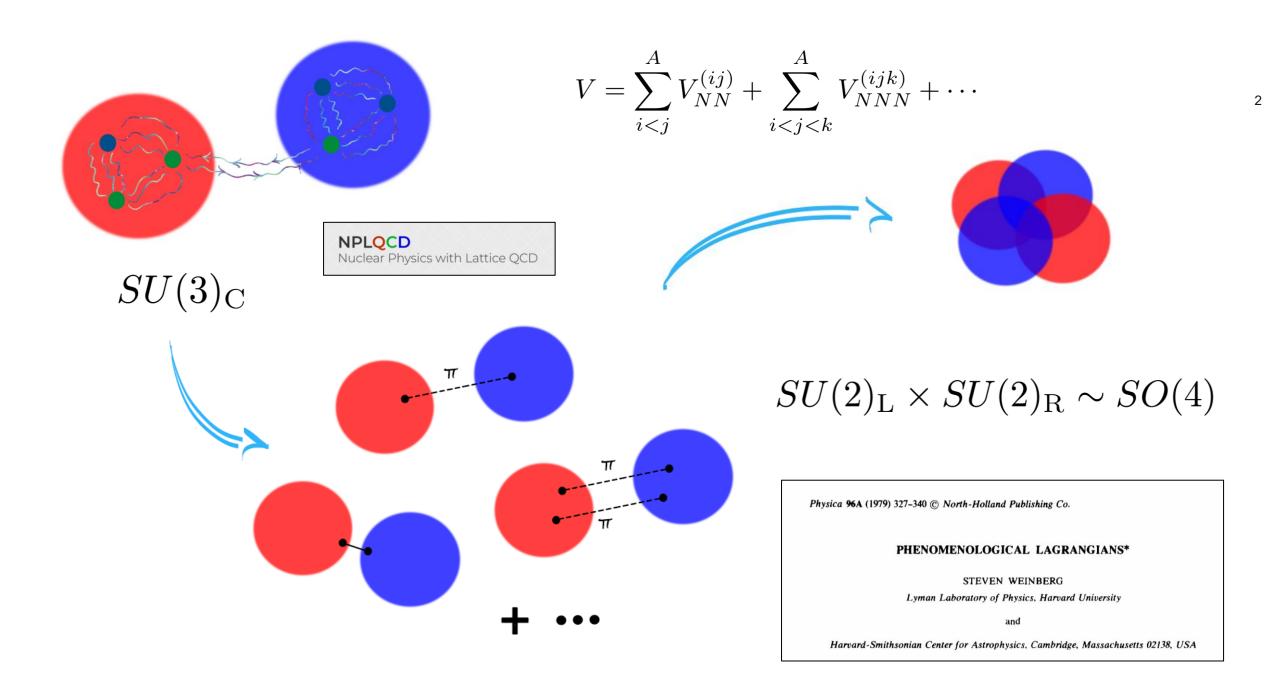
An *ab initio* framework for the modelling of electroweak processes in light nuclei

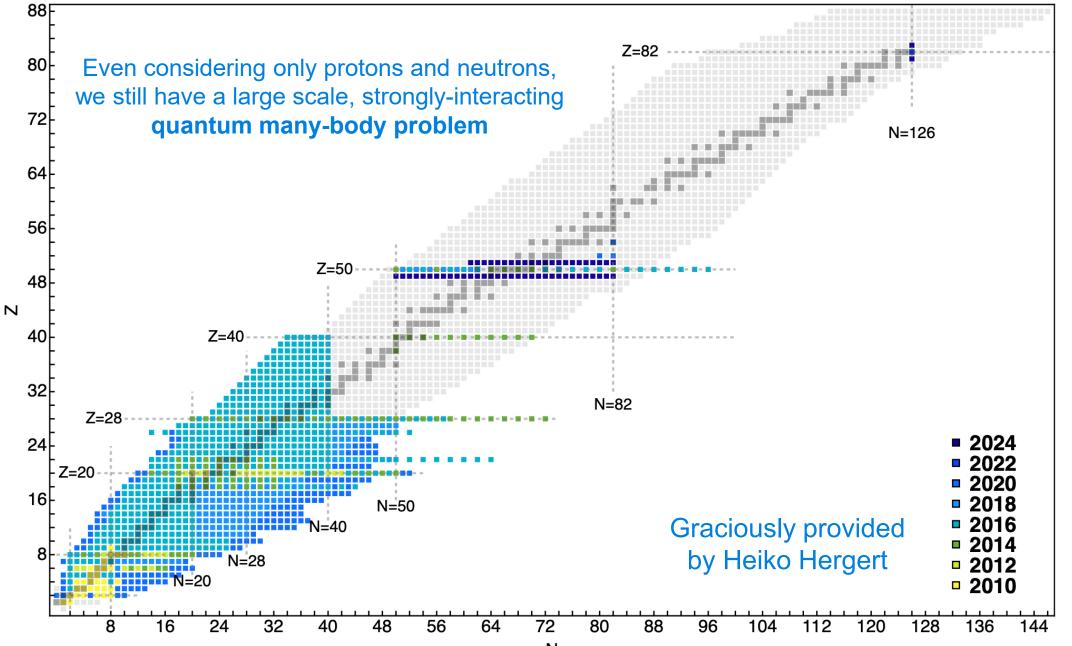
Michael Gennari

Collaborators

D. A. Najera, L. Jokiniemi, <u>M. Drissi</u>, <u>C.-Y. Seng</u>, <u>M. Gorchtein</u>, <u>P. Navratil</u>

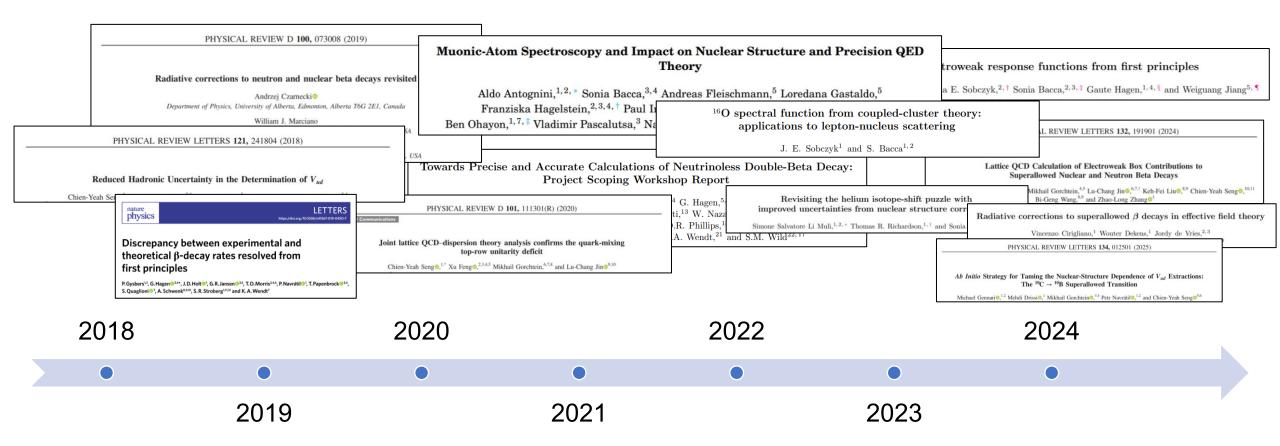
TECHNISCHE UNIVERSITÄT DARMSTADT

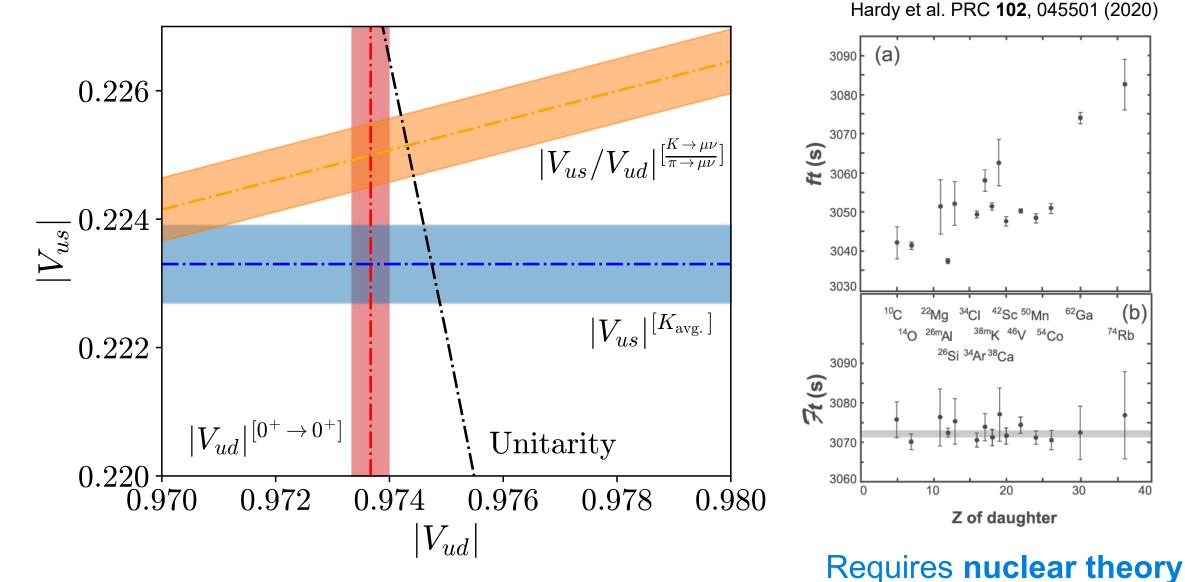




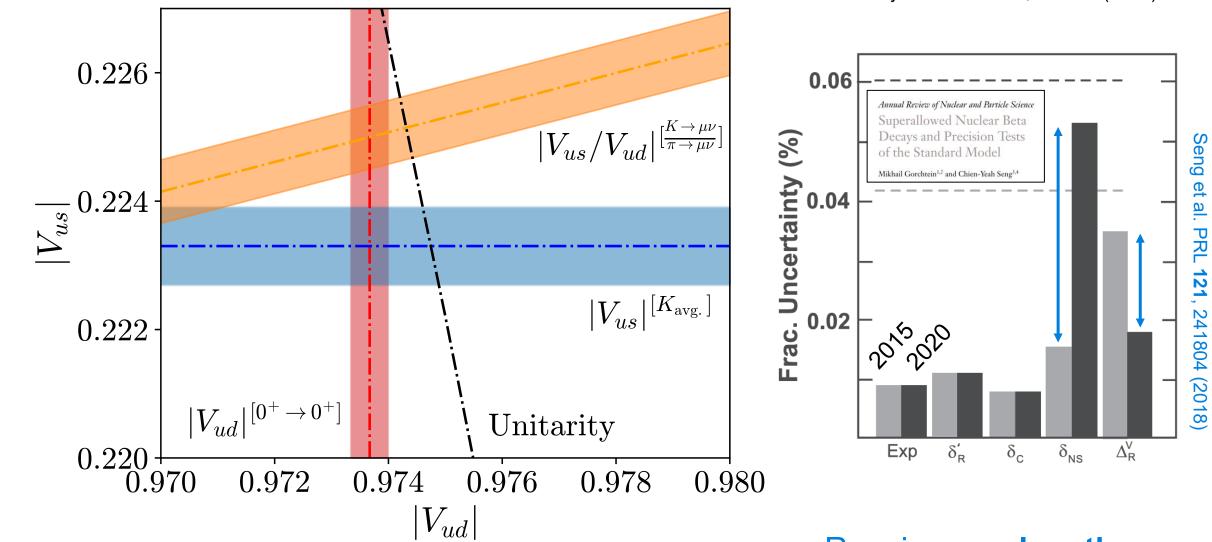
Ν

We are entering an era in which the precision modelling of strongly-interacting many-body systems is becoming possible





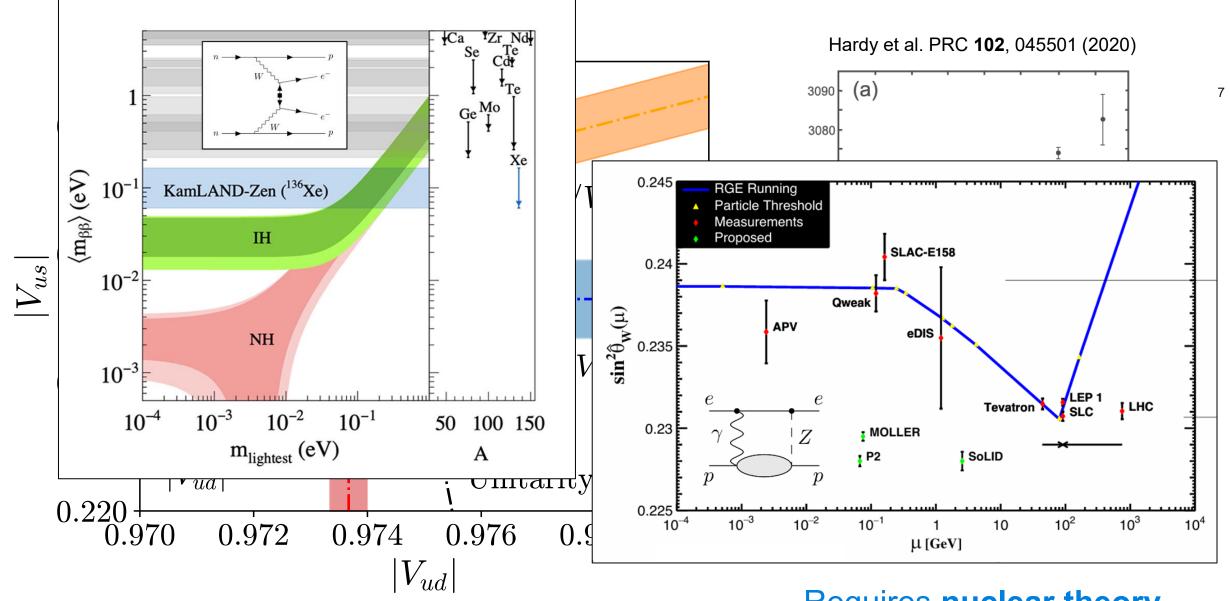
Particle Data Group. PRD 110, 030001 (2024) and references therein



Requires nuclear theory

Particle Data Group. PRD 110, 030001 (2024) and references therein

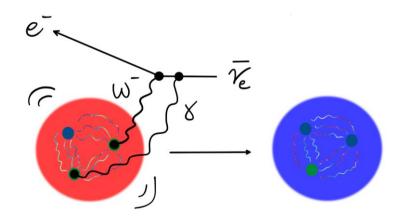
Hardy et al. PRC 102, 045501 (2020)



Requires nuclear theory

Particle Data Group. PRD 110, 030001 (2024) and references therein

Nuclear beta decay in the Standard Model



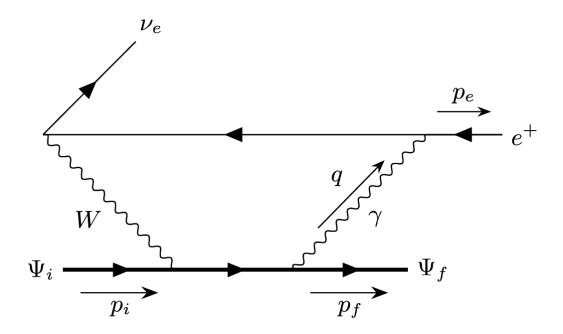
$$\left|V_{ud}\right|^2 = \frac{K}{\mathcal{F}t\left(1 + \Delta_R^V\right)}$$

 $\begin{array}{c} & & \\$

$$\mathcal{F}t = ft(1+\delta_R')(1-\delta_C+\delta_{NS})$$

Accounts for isospin symmetry breaking and electroweak radiative corrections

Particle Data Group. PRD **110**, 030001 (2024)



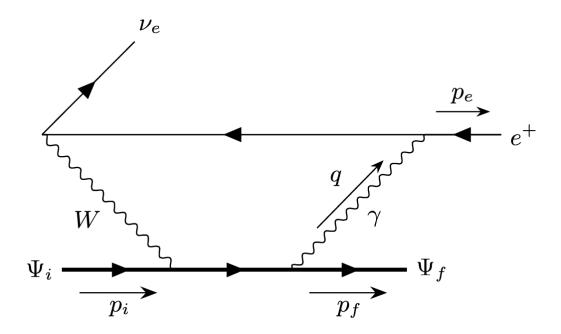
Convenient [not critical] approximations

- Forward scattering limit
- Neglect recoil of final nucleus

$$\delta \mathcal{M}_{\text{one-loop}} = \Box_{\gamma W}(E_e) \, \mathcal{M}_{\text{tree}}$$

$$T^{\mu\nu}(p_f, p_i; q) = \left\langle \Phi_f; p_f \middle| \left\{ \frac{1}{2} \int d^4 x \ e^{iq \cdot x} \operatorname{T} \left[J^{\mu}_{\mathrm{em}}(x) \ J^{\nu}_W(0)^{\dagger} \right] \right\} \middle| \Phi_i; p_i \right\rangle$$

Seng & Gorchtein. PRC 107, 035503 (2023)



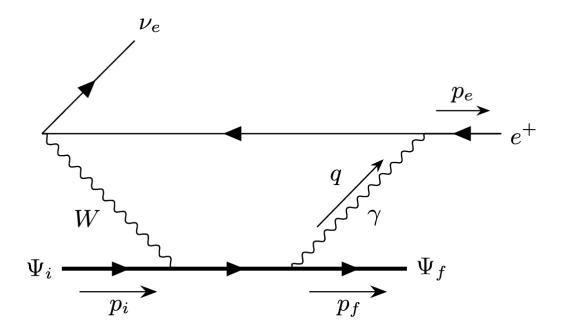
Convenient [not critical] approximations

- Forward scattering limit
- Neglect recoil of final nucleus

$$\delta \mathcal{M}_{\text{one-loop}} = \Box_{\gamma W}(E_e) \, \mathcal{M}_{\text{tree}}$$

$$\Box_{\gamma W}^{b}(E_{e}) = \frac{e^{2}}{M} \int \frac{d^{4}q}{(2\pi)^{4}} R_{W}(q) R_{e}(q) R_{\gamma}(q) \left(M \frac{p_{e} \cdot q}{p \cdot p_{e}} - \frac{q^{2}}{\nu} \right) \frac{T_{3}(\nu, |\vec{q}|)}{f_{+}}$$

Seng & Gorchtein. PRC 107, 035503 (2023)



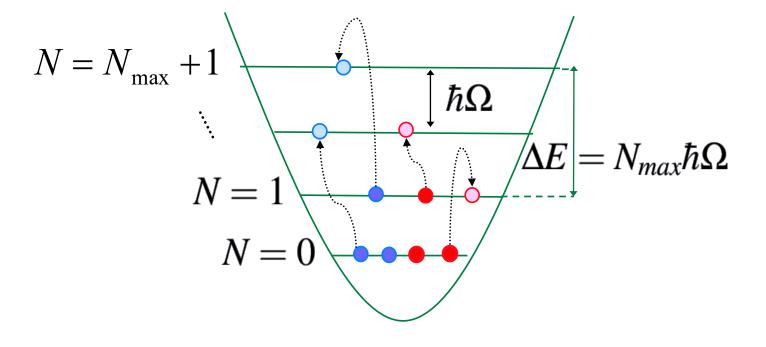
Convenient [not critical] approximations

- Forward scattering limit
- Neglect recoil of final nucleus

$$\delta \mathcal{M}_{\text{one-loop}} = \Box_{\gamma W}(E_e) \, \mathcal{M}_{\text{tree}}$$

$$\Box_{\gamma W}^{b}(E_{e}) = \frac{e^{2}}{M} \int \frac{d^{4}q}{(2\pi)^{4}} R_{W}(q) R_{e}(q) R_{\gamma}(q) \left(M \frac{p_{e} \cdot q}{p \cdot p_{e}} - \frac{q^{2}}{\nu} \right) \frac{T_{3}(\nu, |\vec{q}|)}{f_{+}}$$

Seng & Gorchtein. PRC 107, 035503 (2023)



$$N = \sum_{i} 2n_i + l_i \le N_{\rm LPC} + N_{\rm max}$$

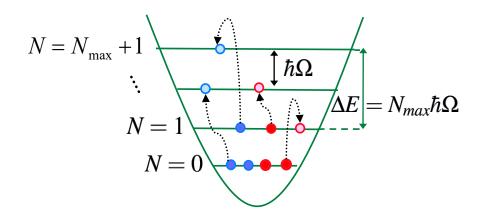
$$\mathcal{F}(\mathcal{H}) = \bigoplus_A \left[\mathcal{H}^{\otimes_A} \right] = \mathbb{1} \oplus \mathcal{H} \oplus \left[\mathcal{H} \otimes \mathcal{H} \right] \oplus \cdots$$

Anti-symmetrized products of manybody harmonic oscillator states

$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{N=0}^{N_{max}} \sum_{\alpha} c_{N\alpha}^{J^{\pi}T} \left|\Phi_{N\alpha}^{J^{\pi}T}\right\rangle$$

Barrett et al. PPNP 69 (2013), pp.181-131

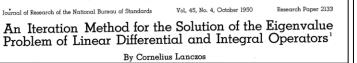
$$H = \frac{1}{A} \sum_{i < j}^{A} \frac{\left(\vec{p}_{i} - \vec{p}_{j}\right)^{2}}{2m_{N}} + \sum_{i < j}^{A} V_{NN}^{(ij)} + \sum_{i < j < k}^{A} V_{NNN}^{(ijk)} + \cdots$$



Barrett et al. PPNP 69 (2013), pp.181-131

Anti-symmetrized products of manybody harmonic oscillator states

$$\Psi_A^{J^{\pi}T} \rangle = \sum_{N=0}^{N_{max}} \sum_{\alpha} c_{N\alpha}^{J^{\pi}T} |\Phi_{N\alpha}^{J^{\pi}T} \rangle$$



The inverse of a linear operator

Roger Haydock Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK

Received 10 May 1974, in final form 21 June 1974

Lanczos Algorithm

$$H |\eta_{0}\rangle = \alpha_{0} |\eta_{0}\rangle + \beta_{0} |\eta_{1}\rangle$$

$$H |\eta_{1}\rangle = \beta_{0} |\eta_{0}\rangle + \alpha_{1} |\eta_{1}\rangle + \beta_{1} |\eta_{2}\rangle$$

$$H |\eta_{2}\rangle = \beta_{1} |\eta_{1}\rangle + \alpha_{2} |\eta_{2}\rangle + \beta_{2} |\eta_{3}\rangle$$

$$H |\eta_{3}\rangle = \beta_{2} |\eta_{2}\rangle + \alpha_{3} |\eta_{3}\rangle + \beta_{3} |\eta_{4}\rangle$$

$$\vdots$$

$$E = P^{-1} H_{\text{Lanczos}} P$$

Lanczos Strengths Method

$$\mathcal{A}_{fi} = \left\langle \Phi_f \middle| O_2 \left(z - H \right)^{-1} O_1 \middle| \Phi_i \right\rangle = \left\langle \Phi_f \middle| O_2 \middle| \Phi_R \right\rangle$$

$$(z-H)|\Phi_{\rm R}\rangle = O|\Phi_i\rangle$$

Method for extracting many-body resolvent amplitudes

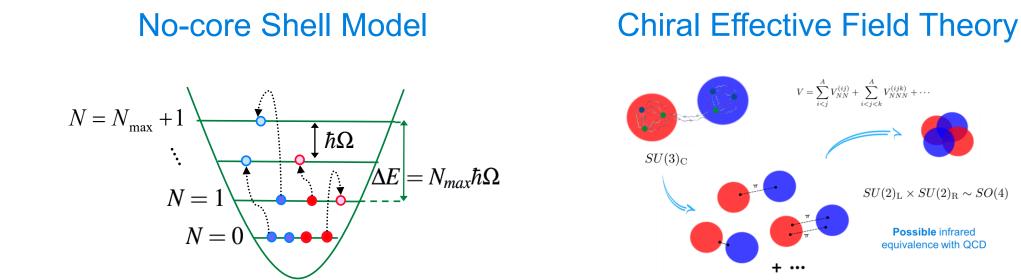
Haydock. JPA 7, 2120 (1974) Bessis & Villani. JMP 16, 462 (1975) Dagotto. RMP 66, 763 (1994)

Lanczos Strengths Method

$$\left\langle \Psi_{n} \right| O_{1} \left| \Psi_{i} \right\rangle = \left| \left\langle \Psi_{i} \right| O_{1}^{\dagger} O_{1} \left| \Psi_{i} \right\rangle \right| \left\langle \eta_{n} \right| P^{\dagger} \left| \eta_{0} \right\rangle$$

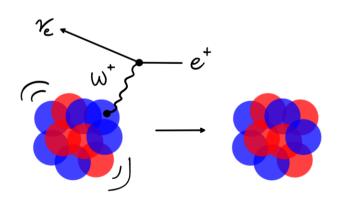
$$\Psi_{f} \left| O_{2} \left| \Psi_{n} \right\rangle = \left| \left\langle \Psi_{f} \right| O_{2}^{\dagger} O_{2} \left| \Psi_{f} \right\rangle \right| \sum_{m} \left\langle \eta_{m} \right| P \left| \eta_{n} \right\rangle \left\langle \zeta_{0} \right| \eta_{m} \right\rangle$$

Haydock. JPA 7, 2120 (1974) Bessis & Villani. JMP 16, 462 (1975) Dagotto. RMP 66, 763 (1994)



Lanczos Strengths Method

$$(z-H) \left| \Phi_{\mathrm{R}} \right\rangle = O \left| \Phi_i \right\rangle$$



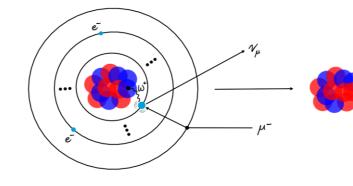
Super-allowed beta decay

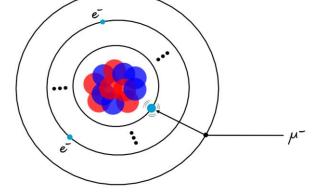
Gennari et al. PRL **134**, 012501 (2025)

PHYSICAL REVIEW LETTERS 134, 012501 (2025)

Ab Initio Strategy for Taming the Nuclear-Structure Dependence of V_{ud} Extractions: The ${}^{10}{\rm C} \to {}^{10}{\rm B}$ Superallowed Transition

Michael Gennario,^{1,2} Mehdi Drissio,¹ Mikhail Gorchteino,^{3,4} Petr Navrátilo,^{1,2} and Chien-Yeah Sengo^{5,6}





Muonic atoms

Drissi et al. In prep.

Muon capture

Najera et al. In progress.

No resolution for Compton amplitude above pion threshold, thus δ_{NS} matched with the free nucleon Born contribution **only**

$$\delta_{\rm NS} = 2\left\{ \left(\Box_{\gamma W}^{b,\rm nuc} \right)_{\rm a.i.} - \left(\Box_{\gamma W}^{b,n} \right)_{\rm el} + \delta \left(\Box_{\gamma W}^{b,n} \right)_{\rm sh} \right\}$$

PHYSICAL REVIEW LETTERS 134, 012501 (2025)

Ab Initio Strategy for Taming the Nuclear-Structure Dependence of V_{ud} Extractions: The ${}^{10}C \rightarrow {}^{10}B$ Superallowed Transition

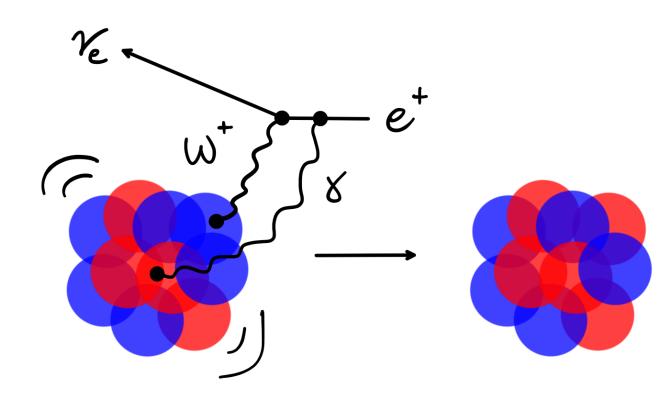
Michael Gennario,^{1,2} Mehdi Drissio,¹ Mikhail Gorchteino,^{3,4} Petr Navrátilo,^{1,2} and Chien-Yeah Sengo^{5,6}

Muon capture

Najera et al. In progress.

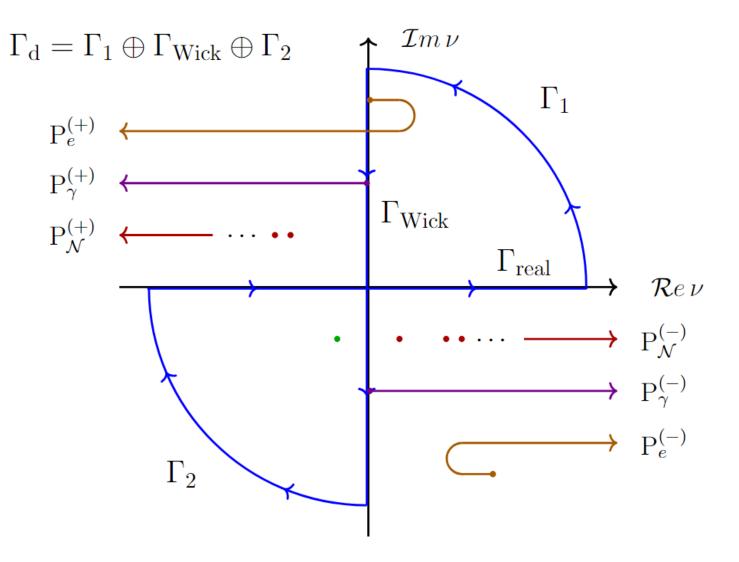
Amplitude and pole structure

$$\mathcal{A}_{fi} = \left\langle \Phi_f \middle| O_2 \left(z - H \right)^{-1} O_1 \middle| \Phi_i \right\rangle$$

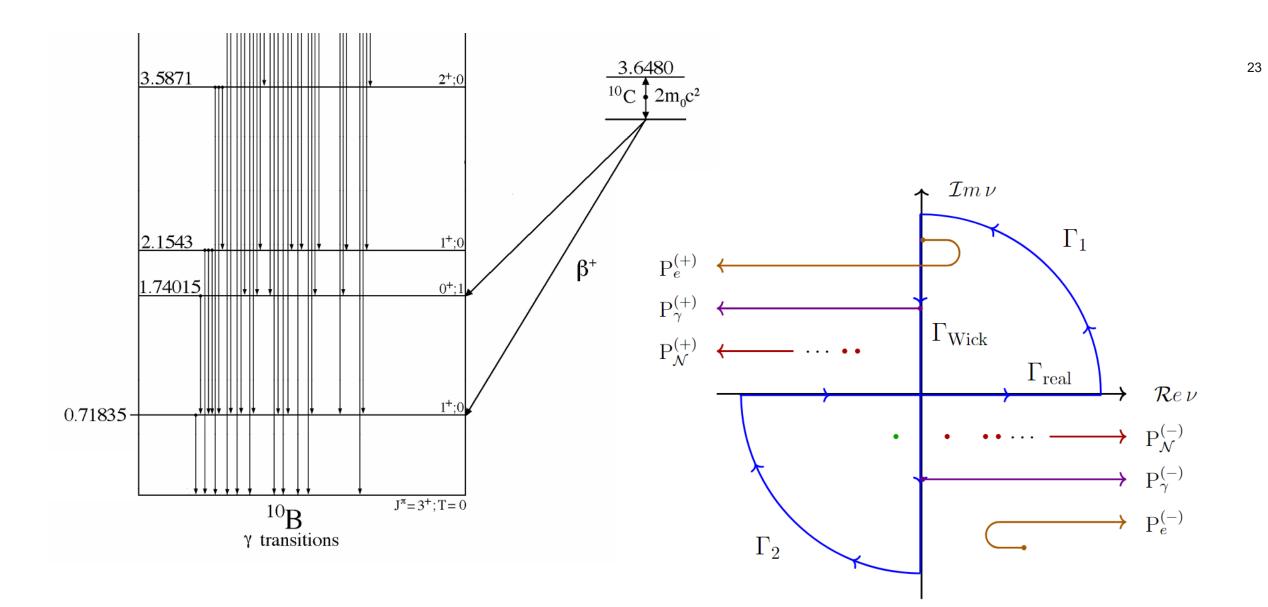


Gennari et al. PRL **134**, 012501

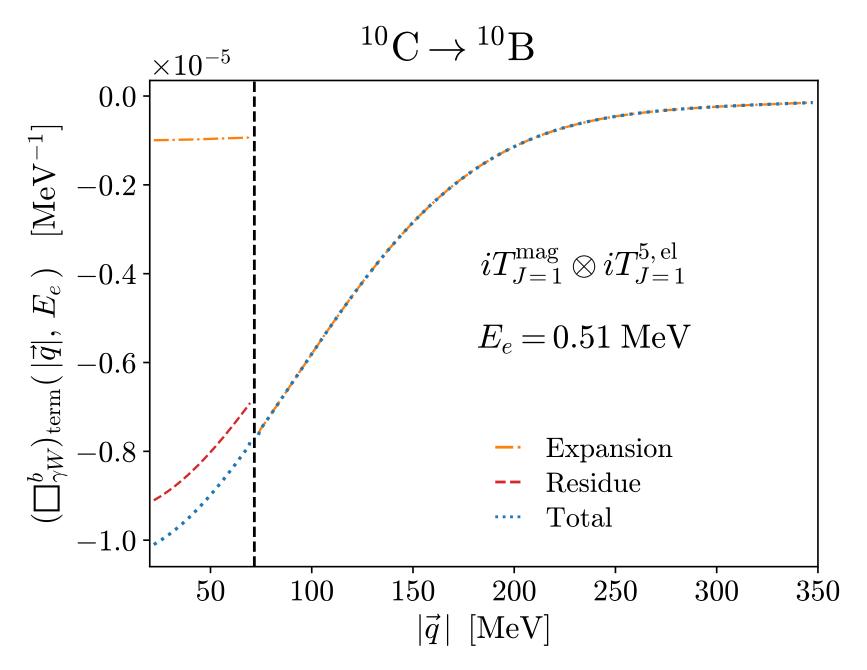
Amplitude and pole structure



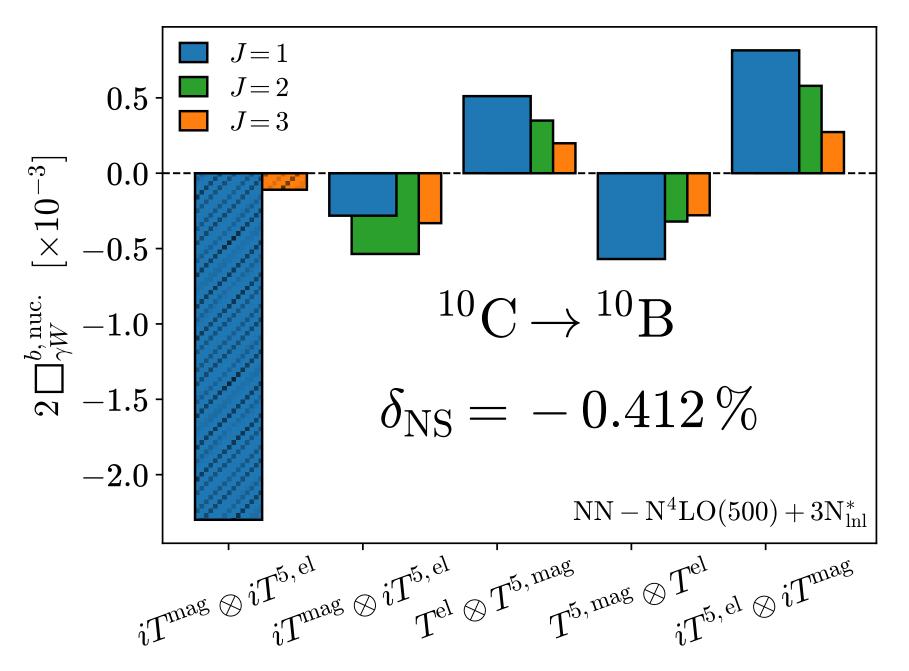
Gennari et al. PRL 134, 012501

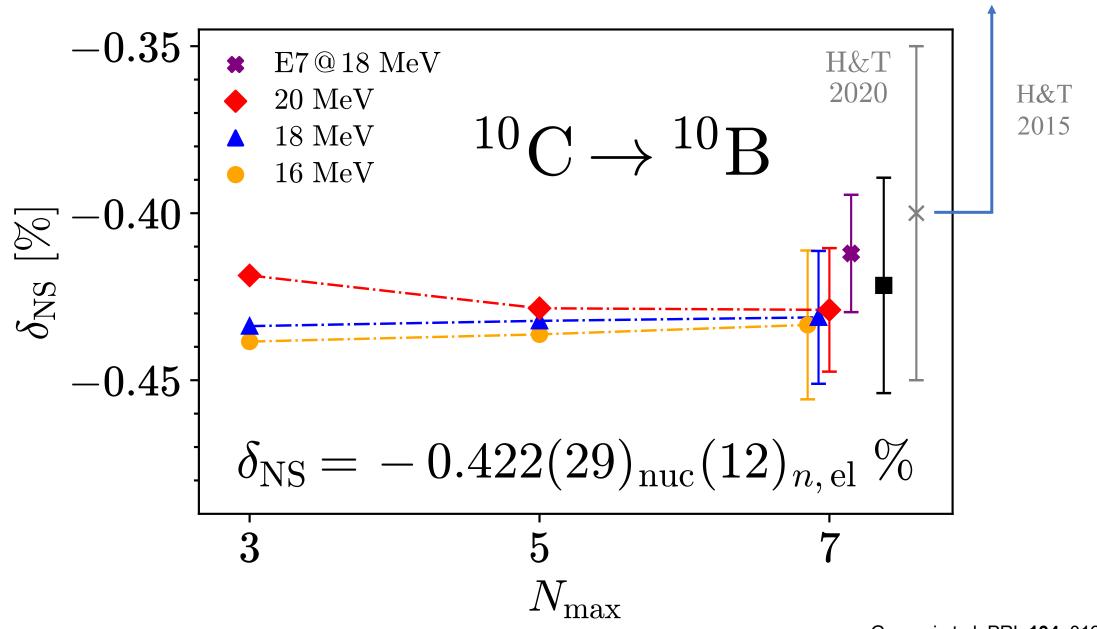


Gennari et al. PRL 134, 012501



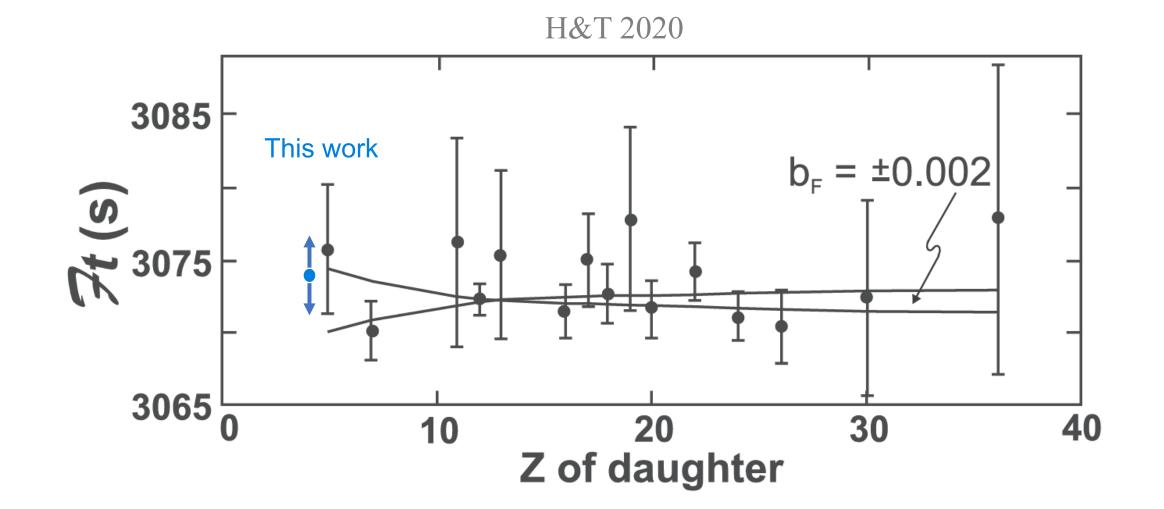
Gennari et al. PRL **134**, 012501



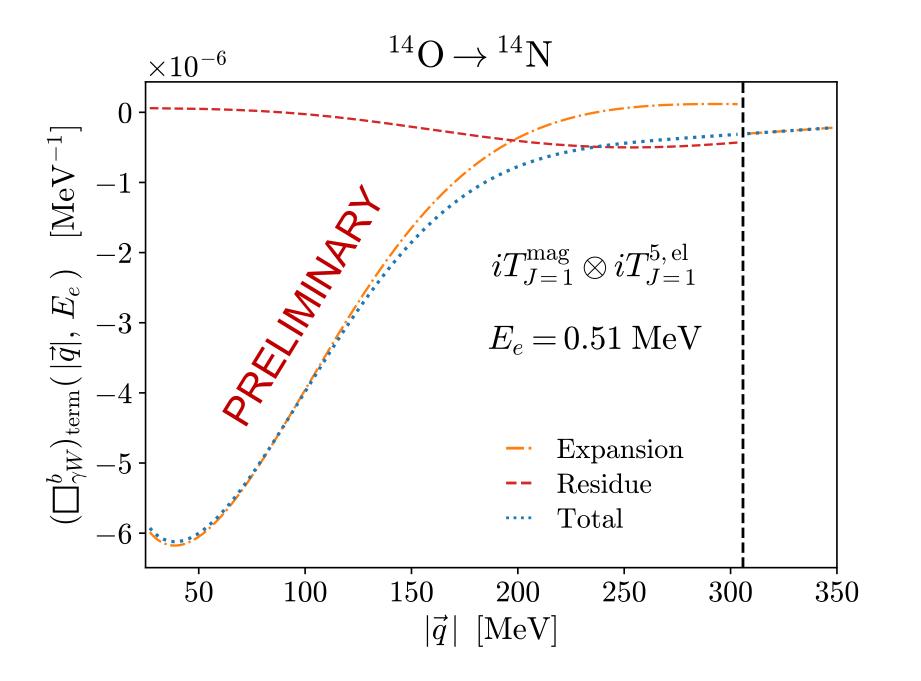


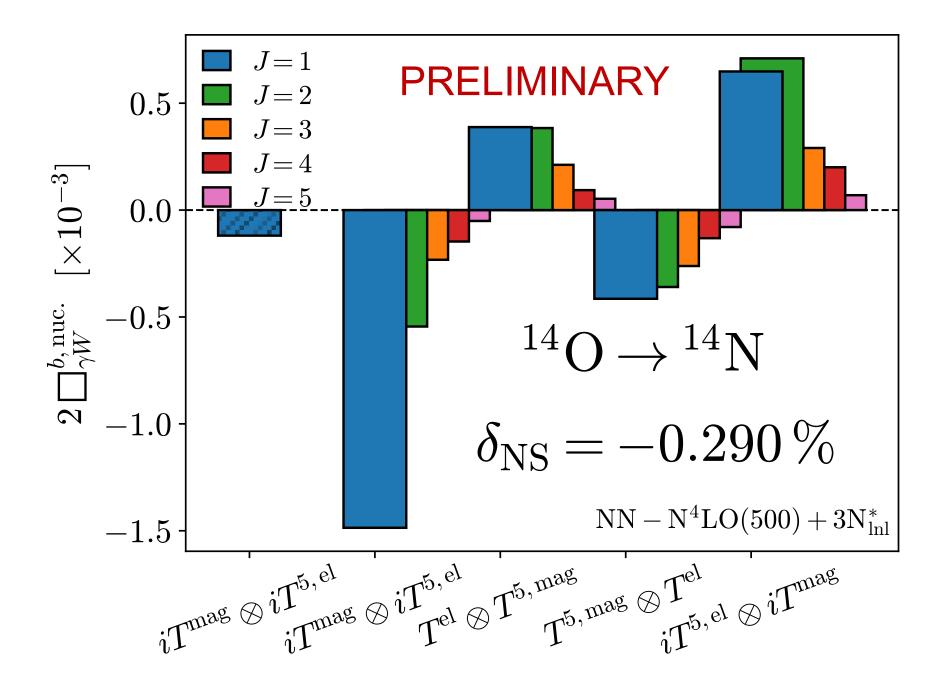
Gennari et al. PRL 134, 012501

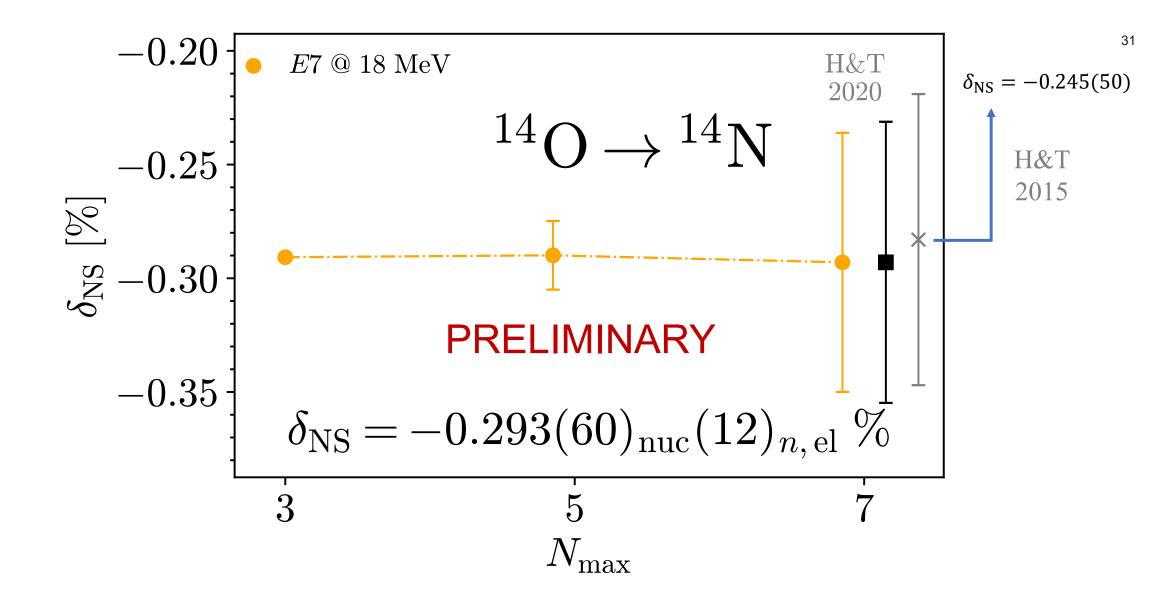
 $\delta_{\rm NS} - 0.345(35)$



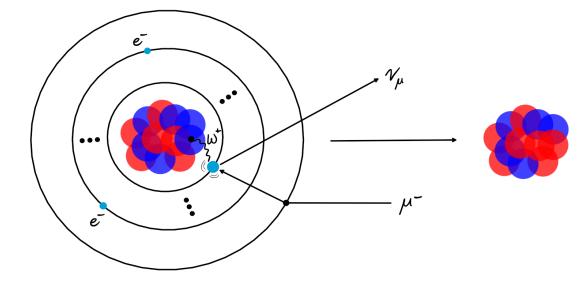




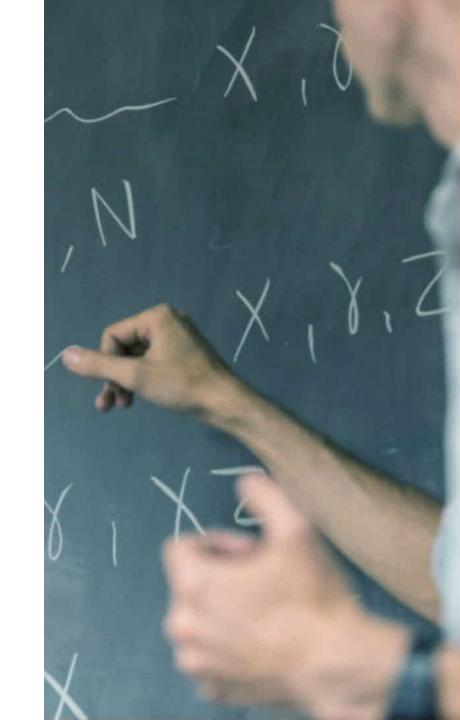


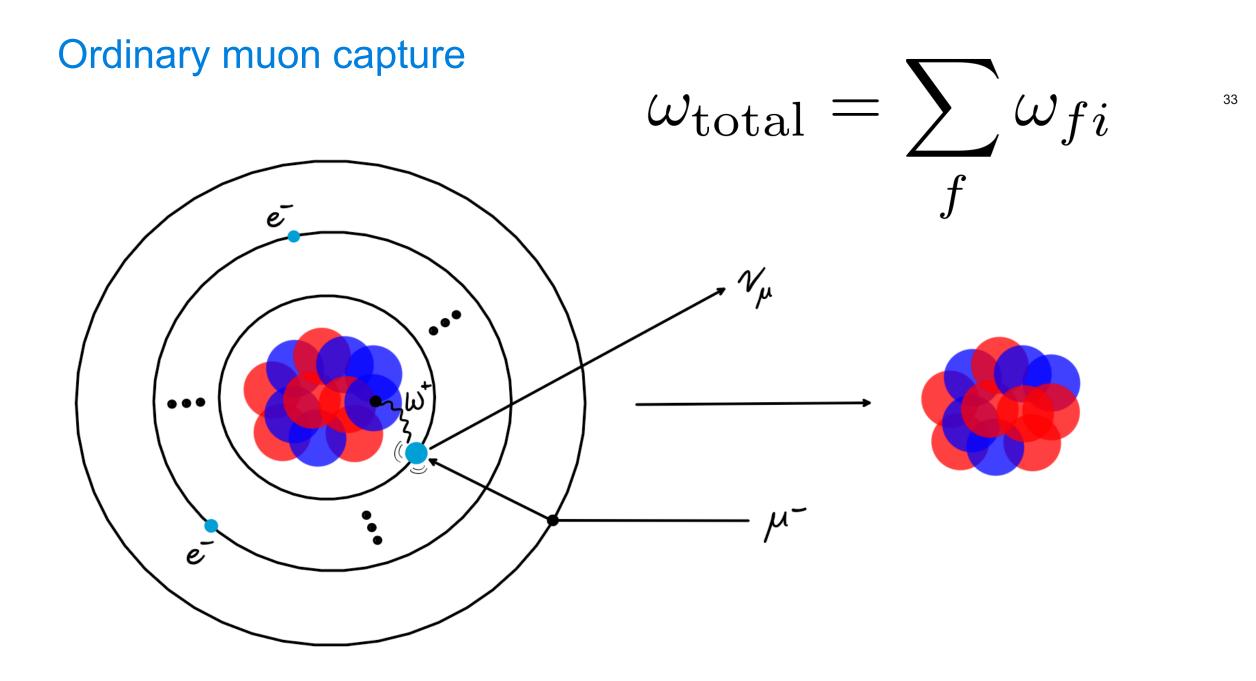


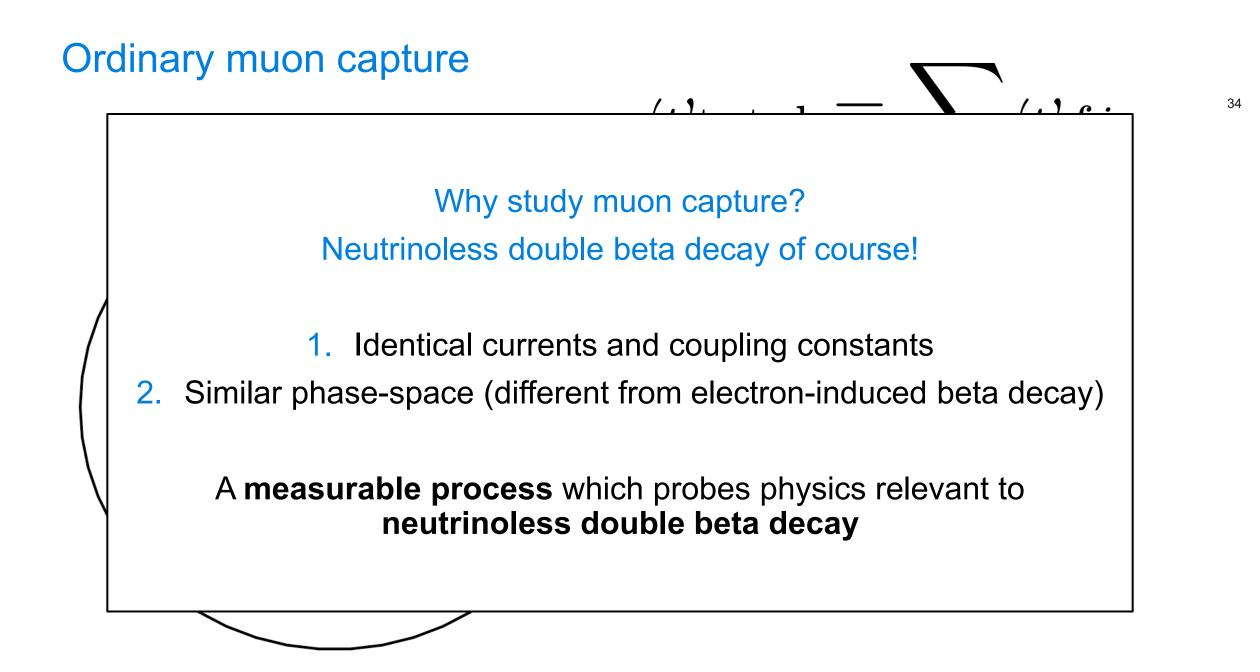
Ordinary muon capture



Najera et al. In progress.

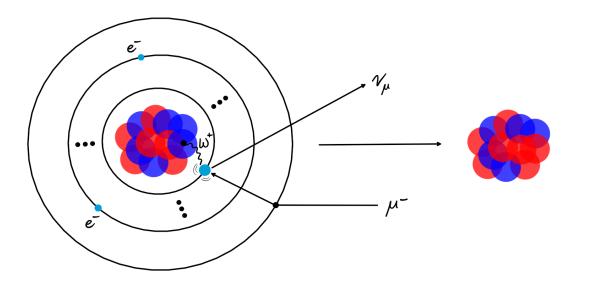






Ordinary muon capture

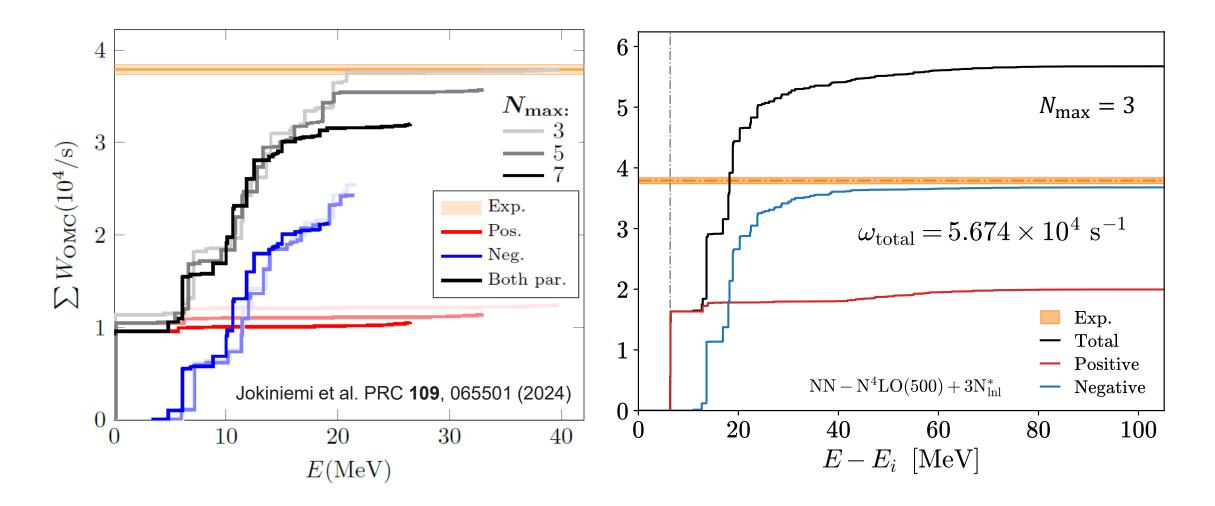
$$\omega_{fi} \propto \langle \phi_{1s} \rangle_{\rho} \sum_{J=0}^{\infty} \left| \left\langle \Phi_f; p_f | O_L(|\vec{q}|) | \Phi_i; p_i \right\rangle \right|^2 + \left| \left\langle \Phi_f; p_f | O_T(|\vec{q}|) | \Phi_i; p_i \right\rangle \right|^2$$



Devil is in the details [with the LSM]

- Cast as energy-weighted sum of resolvent amplitudes
- Numerically evaluate off-shell and later cast as on-shell

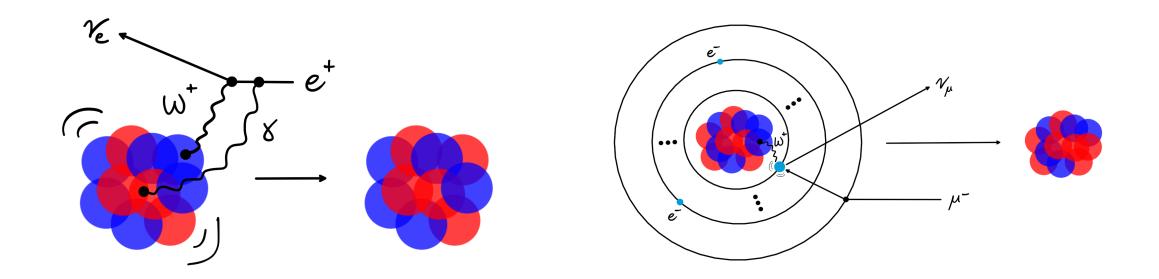
Comparison to literature for ${}^{12}C \rightarrow {}^{12}B$ capture



DANGEROUSLY PRELIMINARY

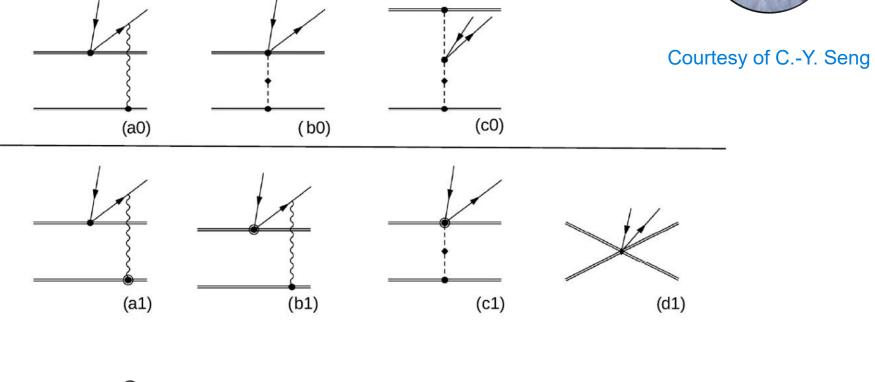
The future of electroweak theory in light nuclei

- Improved precision for electroweak radiative corrections in nuclei with the Lanczos Strengths Method coupled to the ab initio NCSM
- Systematic improvements available, e.g., consistent currents in chiral EFT
- Limited by matching of high-energy QCD to low-energy nuclear theory



What is feasible in the near future?

Constraints on LECs of pNRQED



$$\delta_{\rm NS} = \frac{2}{M_F} \langle \mathcal{V}_0^{\rm mag}(\vec{r}) + \mathcal{V}_0^{\rm rec,1}(\vec{r}) + \mathcal{V}_0^{\rm CT}(\vec{r}) \rangle_{fi}$$

$$\mathcal{A}_{fi} = \left\langle \Phi_f \middle| O_2 \left(z - H \right)^{-1} O_1 \middle| \Phi_i \right\rangle$$

PHYSICAL REVIEW C 72, 065501 (2005)

Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces

Wick C. Haxton,¹ Kenneth M. Nollett,² and Kathryn M. Zurek¹ ¹Institute for Nuclear Theory and Department of Physics, University of Washington, Seattle, Washington 98195, USA ²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 22 August 2005; published 29 December 2005)

UQ bounds on numerics

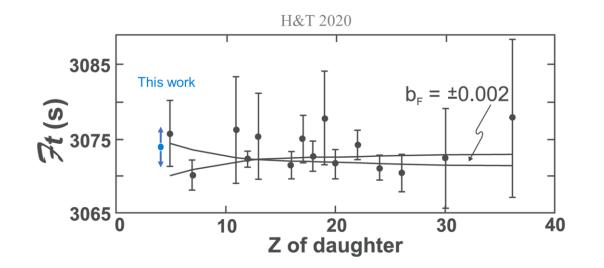
reduction

Do We Fully Understand the Symmetric Lanczos Algorithm Yet? *

Beresford N. Parlett[†]

Large cost Piecewise

Were I to dream



What about ⁴He?

A non-Hermitian quantum mechanics approach for extracting and emulating continuum physics based on bound-state-like calculations: technical details

Xilin Zhang $\mathbb{D}^{1,*}$

¹Facility for Rare Isotope Beams, Michigan State University, Michigan 48824, USA (Dated: November 12, 2024)

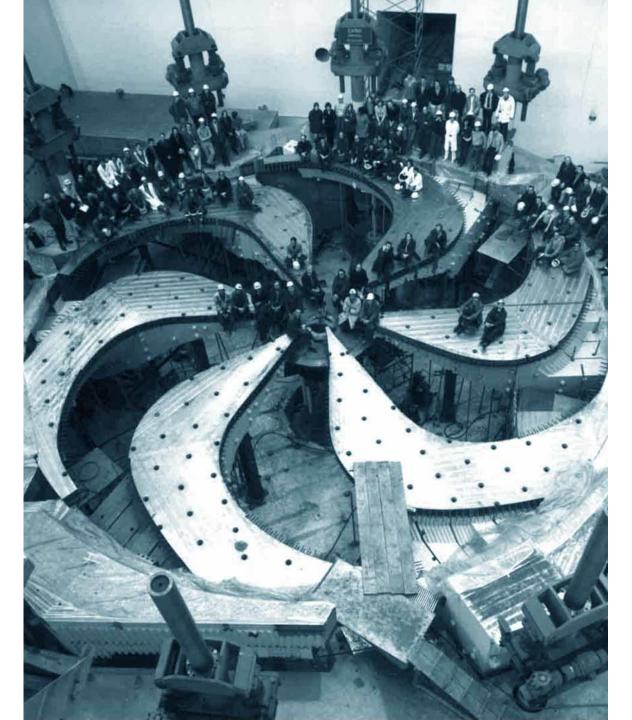
Constraints on scalar and pseudo-scalar dark matter!

∂TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab



Discovery, accelerated

$$\mathcal{M} = \mathcal{M}_{\text{tree}} + \delta \mathcal{M}_{\text{one-loop}} + \cdots$$

$$\delta \mathcal{M}_{\text{one-loop}} = -i\sqrt{2} G_F e^2 L_\lambda(k_f, k_i) \int \frac{d^4 q}{(2\pi)^4} R_W(q) R_e(q) R_\gamma(q)$$
$$\times \left[\epsilon^{\mu\nu\alpha\lambda} q_\alpha T_{\mu\nu}(p_f, p_i; q) \right]$$

Seng & Gorchtein. PRC 107, 035503 (2023)

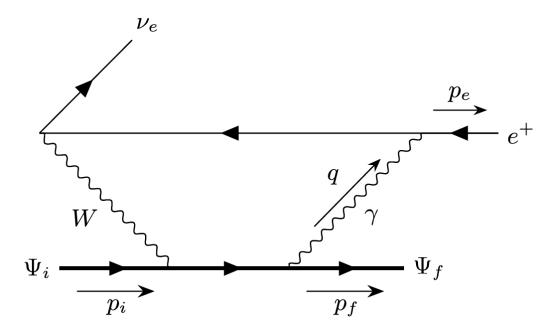
Wick rotation and electron energy expansion

$$\Box_{\gamma W}^{b}(E_{e}) = \left(\Box_{\gamma W}^{b}\right)_{\mathrm{Wick}}(E_{e}) + \left(\Box_{\gamma W}^{b}\right)_{\mathrm{Res},e}(E_{e}) + \left(\Box_{\gamma W}^{b}\right)_{\mathrm{Res},T_{3}}(E_{e})$$

Wick rotated box diagram and electron residue contribution are regular as $E_e \rightarrow 0$ Nuclear residue contribution is **singular**

$$\Box_{\gamma W}^{b}(E_e) = \boxminus_0 + E_e \boxminus_1 + \left(\Box_{\gamma W}^{b}\right)_{\operatorname{Res},T_3}(E_e) + \mathcal{O}(E_e^2)$$

Deriving the non-relativistic Compton amplitude



.

$$J(\vec{r}) = \int \frac{d^3r}{(2\pi)^3} \ e^{i\vec{q}\cdot\vec{r}} J(\vec{q})$$

$$J^{\mu}(t, \vec{x}) = e^{-iHt} J^{\mu}(0, \vec{x}) \ e^{iHt}$$

$$T^{\mu\nu}(p_f, p_i; q) = -\frac{i}{2} \langle \Phi_f; p_f | J^{\mu}_{em}(-\vec{q})(z_f - H)^{-1} J^{\dagger\nu}_{W}(\vec{q}) | \Phi_i; p_i \rangle - \frac{i}{2} \langle \Phi_f; p_f | J^{\dagger\nu}_{W}(-\vec{q})(z_i - H)^{-1} J^{\mu}_{em}(\vec{q}) | \Phi_i; p_i \rangle$$

Deriving the non-relativistic Compton amplitude

$$M_{JM}(q) \coloneqq \int d^3r \ \mathcal{M}_{JM}(q, \vec{r}) \ \rho(\vec{r})$$
$$L_{JM}(q) \coloneqq \int d^3r \ \frac{i}{q} \left(\vec{\nabla} \mathcal{M}_{JM}(q, \vec{r}) \right) \cdot \vec{J}(\vec{r})$$
$$T_{JM}^{\rm el}(q) \coloneqq \int d^3r \ \frac{1}{q} \left(\vec{\nabla} \times \vec{\mathcal{M}}_{JJ}^M(q, \vec{r}) \right) \cdot \vec{J}(\vec{r})$$
$$T_{JM}^{\rm mag}(q) \coloneqq \int d^3r \ \vec{\mathcal{M}}_{JJ}^M(q, \vec{r}) \cdot \vec{J}(\vec{r})$$