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Objective

To include explicit pion degrees of freedom in quantum Monte Carlo simulations of nucleon
systems
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Usual assumptions

Methods that are aimed at solving the Schrödinger equation associated with the nuclear
Hamiltonian

Input: potentials and electroweak currents derived within some framework (pionless EFT, chiral
EFT, phenomenology,...)

Usual assumptions:
One meson exchange is instantaneous
Meson degrees of freedom can be integrated out → their contribution is encoded in nuclear
potentials and electroweak currents

Not much attention has been devoted to developing techniques capable of including mesonic
degrees of freedom in these many-body calculations

In this work we propose a formalism in which testing these assumptions is straightforward
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What if instantaneous pions are fine?

Even if few-nucleon sector calculations show that instantaneous pion interactions are justified
Our approach is enables us to compute quantities unavailable to other methods
In theories where pions are integrated out, current operators need to have the pion contributions
calculated from the underlying theory
These pion contributions are immediately present in this work

In this formalism mπ is an input
For this work, we employed the physical pion mass
It is straightforward to use different mπ , for example, to compare with LQCD calculations
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Some previous works in this direction

Nuclear lattice simulations with Chiral EFT: pions were treated as dynamical fields that
coupled to the nucleon fields

Explicit mesons (σ and π) as particles

Lee, Borasoy, and Schaefer. Nuclear lattice simulations with chiral effective field theory. PRC, 2004.
Fedorov. A Nuclear Model with Explicit Mesons. Few-Body Syst., 2020.
Fedorov and Mikkelsen. Threshold Photoproduction of Neutral Pions Off Protons in Nuclear Model with Explicit Mesons. Few-Body
Syst., 2023.

Fedorov. The N(1440) Roper Resonance in the Nuclear Model with Explicit Mesons. Few-Body Syst., 2024.
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Chiral EFT Lagrangian
Heavy baryon leading order chiral Lagrangian density

L0 =
1
2
∂µπi∂

µπi −
1
2

m2
ππiπi

+ N†
[
i∂0 +

∇2

2M0
− 1

4f 2
π

ϵijkτiπj∂0πk −
gA

2fπ
τiσ

j∂jπi − M0

]
N

− 1
2

CS(N†N)(N†N)− 1
2

CT(N†σiN)(N†σiN)

The nucleon kinetic energy has been promoted since, with the nucleons on a continuum, the
kinetic energy is required to have a well-behaved Hamiltonian with physical states
Only nucleon and pion degrees of freedom are included
Standard quantum Monte Carlo simulations: pion degrees of freedom are replaced with
potentials
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A few words about the power counting

Establishing a rigorous power counting scheme in chiral EFT is currently a subject of debate

Our power counting gives an expansion in the number of pion field variables, in this work
truncated at the quadratic level

We solve the Schrödinger equation for the states of our system using this truncated interaction at
all orders → we consider this to be a leading-order calculation

In principle, going to higher order is straightforward: higher-order Lagrangians would include
more pion interactions
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deuteron. PRC, 2006.
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Counting. Few-Body Syst., 2013.

Song, Lazauskas, and van Kolck. Triton binding energy and neutron-deuteron scattering up to next-to-leading order in chiral effective
field theory. PRC, 2017.

Furnstahl, Hammer, and Schwenk. Nuclear Structure at the Crossroads. Few-Body Syst., 2021.
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Pion fields in the Schrödinger picture
Schrödinger picture: pion fields and their conjugate momenta are time independent
Plane-wave expansion in a box of size L with periodic boundary conditions. The allowed
momenta are discretized:

k =
2π
L
(nx, ny, nz) with ni = 0,±1,±2, . . .

EFTs have cutoffs
To avoid infinities, the theory is regularized introducing an ultraviolet cutoff for the
three-momentum of the pions, such that k ≡ |k| ≤ kc

πi(x) =
√

2
L3

∑
k

′
[πc

ik cos(k · x) + πs
ik sin(k · x)]

Πi(x) =
√

2
L3

∑
k

′
[Πc

ik cos(k · x) + Πs
ik sin(k · x)]
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Quantum Monte Carlo Hamiltonian

Since the number of nucleons is conserved, the Hamiltonian for the sector with A nucleons
and the pion field can be written down as

H = HN + Hππ + HAV + HWT

HN =
A∑

i=1

[
P2

i
2MP

+ MP + βKP2
i + δM

]
+

A∑
i<j

δkc(ri − rj)[CS + CTσi · σj]

Hππ =
1
2

∑
k

′ [
|Πc

k|2 + ω2
k|πc

k|2 + |Πs
k|2 + ω2

k|πs
k|2
]
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Quantum Monte Carlo Hamiltonian
Pion-nucleon couplings

HAV =

A∑
i=1

gA

2fπ

√
2
L3

∑
k

′
{σi · k [τi · πs

k cos(k · ri)− τi · πc
k sin(k · ri)]}

HWT =
A∑

i=1

1
2f 2

πL3τi ·

[∑
k

′
cos(k · ri)π

c
k ×

∑
q

′
cos(q · ri)Π

c
q

+
∑

k

′
cos(k · ri)π

c
k ×

∑
q

′
sin(q · ri)Π

s
q

+
∑

k

′
sin(k · ri)π

s
k ×

∑
q

′
cos(q · ri)Π

c
q

+
∑

k

′
sin(k · ri)π

s
k ×

∑
q

′
sin(q · ri)Π

s
q

]
τ · π ×Π analog of S · r × p
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Trial wave functions: pions and nucleons

We need to construct an accurate ground state trial wave function for the Hamiltonian

In GFMC the trial function performs the dual role of lowering the statistical errors and
controlling the sign problem

Let us consider the case of fixed nucleons

Hππ + HAV =
1
2

∑
k

′ [
|Πc

k|2 + ω2
k|πc

k|2 + |Πs
k|2 + ω2

k|πs
k|2
]

+

A∑
i=1

gA

2fπ

√
2
L3

∑
k

′
{σi · k [τi · πs

k cos(k · ri)− τi · πc
k sin(k · ri)]}
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For each pion mode, this looks like a harmonic oscillator with a linear term

H = −1
2
∂2

∂x2 +
ω2x2

2
+ λx

x̃=x+λ/ω2

−−−−−−→ H = −1
2
∂2

∂x̃2 +
ω2x̃2

2
− λ2

2ω2
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Trial wave functions: pions and nucleons
Defining:

Bc
k ≡

√
2
L3

gA

fπ

A∑
i=1

τi sin(k · ri)σi · k, Bs
k ≡ −

√
2
L3

gA

fπ

A∑
i=1

τi cos(k · ri)σi · k

Allows us to complete the squares:

Hππ + HAV =
1
2

∑
k

′
[
|Πc

k|2 + ω2
k|π̃c

k|2 + |Πs
k|2 + ω2

k|π̃s
k|2 −

1
4ω2

k

(
|Bc

k|
2 + |Bs

k|
2
)]

π̃c,s
k ≡ πc,s

ik − Bc,s
k /2ω2

k
Trial wave function:

⟨RSΠ|ΨT⟩ = ⟨RSΠ| exp

[
−
∑

k

′ωk

2
(|π̃c

k|2 + |π̃s
k|2)

]
|Φ⟩
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Trial wave functions: pions and nucleons

Going back to the original coordinates:

⟨RSΠ|ΨT⟩ = ⟨RSΠ| exp

−
∑

k

′

ωk

2
(|πc

k|2 + |πs
k|2) +

αk

2ωk
(πc

k · Bc
k + πs

k · Bs
k)

−1
4
ωkα

2
kG2

k

A∑
i<j

τi · τjσi · kσj · k cos(k · rij)

 |Φ⟩

|Φ⟩: nucleon model states
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Nucleon model states
One nucleon (4 components):

|Φ⟩ →


p ↑
p ↓
n ↑
n ↓


Two nucleons (16 components)

Deuteron
Two neutrons

We solve the two-body Schrödinger equation in a box with periodic boundary conditions:

VNN(rij) = δkc(rij)[CS + CTσi · σj] with δkc(r) =
1
L3

(
1 + 2

∑
k

′
cos(k · r)

)

A nucleons: 4A components
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Quantum Monte Carlo methods

Variational Monte Carlo (VMC)
Green’s function Monte Carlo (GFMC)

Method for solving the imaginary-time many-body Schrödinger equation
Projects out the lowest energy eigenstate that has non-zero overlap with the initial state

|Φ0⟩ ∝ lim
τ→∞

exp [−(H − ET)τ ] |ΨT⟩

⟨RNSNΠN |Φ0⟩ =
∑

S0

· · ·
∑
SN−1

∫
d3R0d3Π0 · · · d3RN−1d3ΠN−1(

N−1∏
i=0

⟨Ri+1Si+1Πi+1| exp [−(H − ET)δτ ] |RiSiΠi⟩

)
⟨R0S0Π0|ΨT⟩
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One nucleon: mass renormalization

We introduced two counter terms due to our cutoff

HN =

[
P2

2MP
+ MP + βKP2 + δM

]

Diffusion
∂C(r, τ)

∂τ
= D∇2C(r, τ)

⟨r2(τ)⟩ = 6Dτ + constant

Density correlation function

D(r) =
⟨ΨT |ρ(r)e−(H−ET)δτρ(0)|Ψ0⟩

⟨ΨT |Ψ0⟩
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One nucleon: mass renormalization
We set βK = 0
This is in agreement with a nonrelativistic self-energy calculation we performed
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One nucleon: mass renormalization
Rest mass counter term as a function of the cutoff for different box sizes

HN =

[
P2

2MP
+ MP + βKP2 + δM

]

 10

 20

 30

 40

 50

 60

 70

 300  320  340  360  380  400  420  440  460

δ
M

 [
M

e
V

]

ω
s
c [MeV]

GFMC
L=15 fm
L=10 fm
L=5  fm
Lowest order
L=15 fm
L=10 fm
L=5  fm

Madeira, Lovato, Pederiva, and Schmidt. Quantum Monte Carlo formalism for dynamical pions and nucleons. PRC, 2018.

Quantum Monte Carlo formalism for dynamical pions and nucleons Lucas Madeira 19 / 26



One nucleon: the pion cloud

Model state is a spin-up proton
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τiπi =
1
2
τ+(πx − iπy) +

1
2
τ−(πx + iπy) + τzπ0

Madeira, Lovato, Pederiva, and Schmidt. Quantum Monte Carlo formalism for dynamical pions and nucleons. PRC, 2018.
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One pion exchange
Long-range behavior of the nuclear force

π

N

N

N

N

VOPE(q) = −
(

gA

2fπ

)2 (σ1 · q)(σ2 · q)
q2 + m2

π

τ1 · τ2

In real space:

VOPE(r) =
m2
π

12π

(
gA

2fπ

)2

(τ 1 · τ 2)([
(3r̂ · σ1r̂ · σ2 − σ1 · σ2)

(
1 +

3
mπr

+
3

(mπr)2

)
+ σ1 · σ2

]
e−mπr

r
− 4π

3
σ1 · σ2δ3(r)

)
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Two nucleons: one pion exchange
In the box and with a cutoff:

VOPE(r) = − 1
L3

g2
A

2f 2
π

τ1 · τ2

∑
k

′
(σ1 · k)(σ2 · k)

cos(k · r)
ω2

k
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Two nucleons: LECs
We need to fit the low-energy constants in the Hamiltonian

HN =

A∑
i=1

[
P2

i
2MP

+ MP + βKP2
i + δM

]
+

A∑
i<j

δR0(ri − rj)[CS + CTσi · σj]

“Numerical experiment” → Energy of the deuteron and two neutrons in a box using a
well-established phenomenological potential (AV6P)
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We tuned CS and CT to reproduce the energies of the physical systems
Madeira, Lovato, Pederiva, and Schmidt. Quantum Monte Carlo formalism for dynamical pions and nucleons. PRC, 2018.
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Two nucleons

Now the A-nucleon Hamiltonian is completely determined
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Outlook

Promising scheme to explicitly include pion contributions in QMC simulations

One-nucleon properties

Pion cloud: momentum and density distributions

Two fixed nucleons → one pion exchange at large distances

Low-energy constants

Light-nuclei
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Neural-Network Quantum States
The objective of NNQS are to represent and approximate many-body wave functions by
means of Neural Networks

ΨV(R,S) → ΨW(R,S) =

Input
layer

Hidden
layers

Output
layer

Courtesy of Andrea Di Donna
We will employ NNQS that take as input nucleon and pion degrees of freedom are have the
correct symmetries

Lovato, Adams, Carleo, and Rocco. Hidden-nucleons neural-network quantum states for the nuclear many-body problem. Phys. Rev.
Research, 2022.

Gnech, Adams, Brawand, Carleo, Lovato, and Rocco. Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave
Functions. Few-Body Syst., 2022.
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