Quantum Monte Carlo formalism for dynamical pions and nucleons

Lucas Madeira 1

European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)

Trento Institute for Fundamental Physics and Applications (TIFPA)

Next generation ab initio nuclear theory, July 14-18, 2025, ECT*

July 17, 2025

Collaborators

Andrea Di Donna

Alessandro Lovato

Francesco Pederiva

Kevin Schmidt

Objective

To include explicit pion degrees of freedom in quantum Monte Carlo simulations of nucleon systems

Usual assumptions

- Methods that are aimed at solving the Schrödinger equation associated with the nuclear Hamiltonian
 - Input: potentials and electroweak currents derived within some framework (pionless EFT, chiral EFT, phenomenology,...)
- Usual assumptions:
 - One meson exchange is instantaneous
 - Meson degrees of freedom can be integrated out → their contribution is encoded in nuclear potentials and electroweak currents
- Not much attention has been devoted to developing techniques capable of including mesonic degrees of freedom in these many-body calculations
- In this work we propose a formalism in which testing these assumptions is straightforward

What if instantaneous pions are fine?

- Even if few-nucleon sector calculations show that instantaneous pion interactions are justified
 - Our approach is enables us to compute quantities unavailable to other methods
 - In theories where pions are integrated out, current operators need to have the pion contributions calculated from the underlying theory
 - These pion contributions are immediately present in this work
- In this formalism m_{π} is an input
 - For this work, we employed the physical pion mass
 - It is straightforward to use different m_{π} , for example, to compare with LQCD calculations

Some previous works in this direction

- Nuclear lattice simulations with Chiral EFT: pions were treated as dynamical fields that coupled to the nucleon fields
- Explicit mesons (σ and π) as particles

Lee, Borasoy, and Schaefer. Nuclear lattice simulations with chiral effective field theory. PRC, 2004.

Fedorov. A Nuclear Model with Explicit Mesons. Few-Body Syst., 2020.

Fedorov and Mikkelsen. Threshold Photoproduction of Neutral Pions Off Protons in Nuclear Model with Explicit Mesons. Few-Body Syst., 2023.

Fedorov. The N(1440) Roper Resonance in the Nuclear Model with Explicit Mesons. Few-Body Syst., 2024.

Chiral EFT Lagrangian

Heavy baryon leading order chiral Lagrangian density

$$\mathcal{L}_{0} = \frac{1}{2} \partial_{\mu} \pi_{i} \partial^{\mu} \pi_{i} - \frac{1}{2} m_{\pi}^{2} \pi_{i} \pi_{i}$$

$$+ N^{\dagger} \left[i \partial_{0} + \frac{\nabla^{2}}{2M_{0}} - \frac{1}{4f_{\pi}^{2}} \epsilon_{ijk} \tau_{i} \pi_{j} \partial_{0} \pi_{k} - \frac{g_{A}}{2f_{\pi}} \tau_{i} \sigma^{j} \partial_{j} \pi_{i} - M_{0} \right] N$$

$$- \frac{1}{2} C_{S}(N^{\dagger}N)(N^{\dagger}N) - \frac{1}{2} C_{T}(N^{\dagger} \sigma_{i} N)(N^{\dagger} \sigma_{i} N)$$

- The nucleon kinetic energy has been promoted since, with the nucleons on a continuum, the kinetic energy is required to have a well-behaved Hamiltonian with physical states
- Only nucleon and pion degrees of freedom are included
- Standard quantum Monte Carlo simulations: pion degrees of freedom are replaced with potentials

A few words about the power counting

- Establishing a rigorous power counting scheme in chiral EFT is currently a subject of debate
- Our power counting gives an expansion in the number of pion field variables, in this work truncated at the quadratic level
- We solve the Schrödinger equation for the states of our system using this truncated interaction at all orders → we consider this to be a leading-order calculation
- In principle, going to higher order is straightforward: higher-order Lagrangians would include more pion interactions

A few words about the power counting

- Establishing a rigorous power counting scheme in chiral EFT is currently a subject of debate
- Our power counting gives an expansion in the number of pion field variables, in this work truncated at the quadratic level
- We solve the Schrödinger equation for the states of our system using this truncated interaction at all orders → we consider this to be a leading-order calculation
- In principle, going to higher order is straightforward: higher-order Lagrangians would include more pion interactions

Kaplan, Savage, and Wise. Nucleon-nucleon scattering from effective field theory. Nucl. Phys. B, 1996.

Nogga, Timmermans, and van Kolck. Renormalization of one-pion exchange and power counting. PRC, 2005.

Valderrama and Arriola. Renormalization of the NN interaction with a chiral two-pion-exchange potential: Central phases and the deuteron. *PRC*, 2006.

Epelbaum and Meißner. On the Renormalization of the One–Pion Exchange Potential and the Consistency of Weinberg's Power Counting. Few-Body Syst., 2013.

Song, Lazauskas, and van Kolck. Triton binding energy and neutron-deuteron scattering up to next-to-leading order in chiral effective field theory. *PRC*, 2017.

Furnstahl, Hammer, and Schwenk, Nuclear Structure at the Crossroads, Few-Body Syst., 2021.

	2N Force		3N Force		4N Force		
	Included	Not Included	Inc.	Not Inc.	Inc.	Not Inc.	
LO							
NLO							
N2LO							
N3LO		XHMH	HIX				
	•••		•••	•••	•••	•••	

Pion fields in the Schrödinger picture

- Schrödinger picture: pion fields and their conjugate momenta are time independent
- Plane-wave expansion in a box of size *L* with periodic boundary conditions. The allowed momenta are discretized:

$$\mathbf{k} = \frac{2\pi}{L}(n_x, n_y, n_z) \text{ with } n_i = 0, \pm 1, \pm 2, \dots$$

- EFTs have cutoffs
- To avoid infinities, the theory is regularized introducing an ultraviolet cutoff for the three-momentum of the pions, such that $k \equiv |\mathbf{k}| \le k_c$

$$\pi_i(\mathbf{x}) = \sqrt{\frac{2}{L^3}} \sum_{\mathbf{k}}' [\pi_{i\mathbf{k}}^c \cos(\mathbf{k} \cdot \mathbf{x}) + \pi_{i\mathbf{k}}^s \sin(\mathbf{k} \cdot \mathbf{x})]$$

$$\Pi_i(\mathbf{x}) = \sqrt{\frac{2}{L^3}} \sum_{\mathbf{k}}' [\Pi_{i\mathbf{k}}^c \cos(\mathbf{k} \cdot \mathbf{x}) + \Pi_{i\mathbf{k}}^s \sin(\mathbf{k} \cdot \mathbf{x})]$$

• Since the number of nucleons is conserved, the Hamiltonian for the sector with *A* nucleons and the pion field can be written down as

$$H = H_N + H_{\pi\pi} + H_{AV} + H_{WT}$$

$$H_N = \sum_{i=1}^A \left[\frac{P_i^2}{2M_P} + M_P + \beta_K P_i^2 + \delta M \right] + \sum_{i < j}^A \delta_{k_c} (\boldsymbol{r}_i - \boldsymbol{r}_j) [\boldsymbol{C}_S + \boldsymbol{C}_T \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j]$$

• Since the number of nucleons is conserved, the Hamiltonian for the sector with *A* nucleons and the pion field can be written down as

$$H = H_N + H_{\pi\pi} + H_{AV} + H_{WT}$$

$$H_N = \sum_{i=1}^A \left[\frac{P_i^2}{2M_P} + M_P + \beta_K P_i^2 + \delta M \right] + \sum_{i

$$H_{\pi\pi} = \frac{1}{2} \sum_{k}' \left[|\mathbf{\Pi}_k^c|^2 + \omega_k^2 |\mathbf{\pi}_k^c|^2 + |\mathbf{\Pi}_k^S|^2 + \omega_k^2 |\mathbf{\pi}_k^S|^2 \right]$$$$

• Pion-nucleon couplings

$$H_{AV} = \sum_{i=1}^{A} \frac{g_A}{2f_{\pi}} \sqrt{\frac{2}{L^3}} \sum_{k}' \left\{ \boldsymbol{\sigma}_i \cdot \boldsymbol{k} \left[\boldsymbol{\tau}_i \cdot \boldsymbol{\pi}_k^s \cos(\boldsymbol{k} \cdot \boldsymbol{r}_i) - \boldsymbol{\tau}_i \cdot \boldsymbol{\pi}_k^c \sin(\boldsymbol{k} \cdot \boldsymbol{r}_i) \right] \right\}$$

• Pion-nucleon couplings

$$H_{AV} = \sum_{i=1}^{A} \frac{g_A}{2f_{\pi}} \sqrt{\frac{2}{L^3}} \sum_{k}' \left\{ \boldsymbol{\sigma}_i \cdot \boldsymbol{k} \left[\boldsymbol{\tau}_i \cdot \boldsymbol{\pi}_k^s \cos(\boldsymbol{k} \cdot \boldsymbol{r}_i) - \boldsymbol{\tau}_i \cdot \boldsymbol{\pi}_k^c \sin(\boldsymbol{k} \cdot \boldsymbol{r}_i) \right] \right\}$$

$$H_{WT} = \sum_{i=1}^{A} \frac{1}{2f_{\pi}^2 L^3} \boldsymbol{\tau}_i \cdot \left[\sum_{k}' \cos(\boldsymbol{k} \cdot \boldsymbol{r}_i) \boldsymbol{\pi}_k^c \times \sum_{q}' \cos(\boldsymbol{q} \cdot \boldsymbol{r}_i) \boldsymbol{\Pi}_q^c \right]$$

$$+ \sum_{k}' \cos(\boldsymbol{k} \cdot \boldsymbol{r}_i) \boldsymbol{\pi}_k^c \times \sum_{q}' \sin(\boldsymbol{q} \cdot \boldsymbol{r}_i) \boldsymbol{\Pi}_q^s$$

$$+ \sum_{k}' \sin(\boldsymbol{k} \cdot \boldsymbol{r}_i) \boldsymbol{\pi}_k^s \times \sum_{q}' \cos(\boldsymbol{q} \cdot \boldsymbol{r}_i) \boldsymbol{\Pi}_q^c$$

$$+ \sum_{k}' \sin(\boldsymbol{k} \cdot \boldsymbol{r}_i) \boldsymbol{\pi}_k^s \times \sum_{q}' \sin(\boldsymbol{q} \cdot \boldsymbol{r}_i) \boldsymbol{\Pi}_q^s$$

• $\tau \cdot \pi \times \Pi$ analog of $S \cdot r \times p$

- We need to construct an accurate ground state trial wave function for the Hamiltonian
- In GFMC the trial function performs the dual role of lowering the statistical errors and controlling the sign problem
- Let us consider the case of fixed nucleons

$$H_{\pi\pi} + H_{AV} = \frac{1}{2} \sum_{k}' \left[|\mathbf{\Pi}_{k}^{c}|^{2} + \omega_{k}^{2} |\mathbf{\pi}_{k}^{c}|^{2} + |\mathbf{\Pi}_{k}^{s}|^{2} + \omega_{k}^{2} |\mathbf{\pi}_{k}^{s}|^{2} \right]$$

$$+ \sum_{i=1}^{A} \frac{g_{A}}{2f_{\pi}} \sqrt{\frac{2}{L^{3}}} \sum_{k}' \left\{ \boldsymbol{\sigma}_{i} \cdot \boldsymbol{k} \left[\boldsymbol{\tau}_{i} \cdot \boldsymbol{\pi}_{k}^{s} \cos(\boldsymbol{k} \cdot \boldsymbol{r}_{i}) - \boldsymbol{\tau}_{i} \cdot \boldsymbol{\pi}_{k}^{c} \sin(\boldsymbol{k} \cdot \boldsymbol{r}_{i}) \right] \right\}$$

- We need to construct an accurate ground state trial wave function for the Hamiltonian
- In GFMC the trial function performs the dual role of lowering the statistical errors and controlling the sign problem
- Let us consider the case of fixed nucleons

$$H_{\pi\pi} + H_{AV} = \frac{1}{2} \sum_{k}' \left[|\mathbf{\Pi}_{k}^{c}|^{2} + \omega_{k}^{2} |\mathbf{\pi}_{k}^{c}|^{2} + |\mathbf{\Pi}_{k}^{s}|^{2} + \omega_{k}^{2} |\mathbf{\pi}_{k}^{s}|^{2} \right]$$

$$+ \sum_{i=1}^{A} \frac{g_{A}}{2f_{\pi}} \sqrt{\frac{2}{L^{3}}} \sum_{k}' \left\{ \boldsymbol{\sigma}_{i} \cdot \boldsymbol{k} \left[\boldsymbol{\tau}_{i} \cdot \boldsymbol{\pi}_{k}^{s} \cos(\boldsymbol{k} \cdot \boldsymbol{r}_{i}) - \boldsymbol{\tau}_{i} \cdot \boldsymbol{\pi}_{k}^{c} \sin(\boldsymbol{k} \cdot \boldsymbol{r}_{i}) \right] \right\}$$

• For each pion mode, this looks like a harmonic oscillator with a linear term

- We need to construct an accurate ground state trial wave function for the Hamiltonian
- In GFMC the trial function performs the dual role of lowering the statistical errors and controlling the sign problem
- Let us consider the case of fixed nucleons

$$H_{\pi\pi} + H_{AV} = \frac{1}{2} \sum_{k}^{\prime} \left[|\mathbf{\Pi}_{k}^{c}|^{2} + \omega_{k}^{2} |\mathbf{\pi}_{k}^{c}|^{2} + |\mathbf{\Pi}_{k}^{s}|^{2} + \omega_{k}^{2} |\mathbf{\pi}_{k}^{s}|^{2} \right]$$

$$+ \sum_{i=1}^{A} \frac{g_{A}}{2f_{\pi}} \sqrt{\frac{2}{L^{3}}} \sum_{k}^{\prime} \left\{ \boldsymbol{\sigma}_{i} \cdot \boldsymbol{k} \left[\boldsymbol{\tau}_{i} \cdot \boldsymbol{\pi}_{k}^{s} \cos(\boldsymbol{k} \cdot \boldsymbol{r}_{i}) - \boldsymbol{\tau}_{i} \cdot \boldsymbol{\pi}_{k}^{c} \sin(\boldsymbol{k} \cdot \boldsymbol{r}_{i}) \right] \right\}$$

• For each pion mode, this looks like a harmonic oscillator with a linear term

$$H = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{\omega^2 x^2}{2} + \lambda x \qquad \xrightarrow{\tilde{x} = x + \lambda/\omega^2} \qquad \boxed{H = -\frac{1}{2}\frac{\partial^2}{\partial \tilde{x}^2} + \frac{\omega^2 \tilde{x}^2}{2} - \frac{\lambda^2}{2\omega^2}}$$

• Defining:

$$m{B}_{m{k}}^c \equiv \sqrt{rac{2}{L^3}} rac{g_A}{f_\pi} \sum_{i=1}^A m{ au}_i \sin(m{k} \cdot m{r}_i) m{\sigma}_i \cdot m{k}, \qquad m{B}_{m{k}}^s \equiv -\sqrt{rac{2}{L^3}} rac{g_A}{f_\pi} \sum_{i=1}^A m{ au}_i \cos(m{k} \cdot m{r}_i) m{\sigma}_i \cdot m{k}$$

• Allows us to complete the squares:

$$H_{\pi\pi} + H_{AV} = \frac{1}{2} \sum_{k}' \left[|\mathbf{\Pi}_{k}^{c}|^{2} + \omega_{k}^{2} |\mathbf{ ilde{\pi}}_{k}^{c}|^{2} + |\mathbf{\Pi}_{k}^{s}|^{2} + \omega_{k}^{2} |\mathbf{ ilde{\pi}}_{k}^{s}|^{2} - \frac{1}{4\omega_{k}^{2}} \left(|\mathbf{ ilde{B}}_{k}^{c}|^{2} + |\mathbf{ ilde{B}}_{k}^{s}|^{2}
ight) \right]$$

- $\bullet \ \tilde{\boldsymbol{\pi}}_{\boldsymbol{k}}^{c,s} \equiv \boldsymbol{\pi}_{i\boldsymbol{k}}^{c,s} \boldsymbol{B}_{\boldsymbol{k}}^{c,s} / 2\omega_{\boldsymbol{k}}^2$
- Trial wave function:

$$\langle RS\Pi | \Psi_T \rangle = \langle RS\Pi | \exp \left[-\sum_{\pmb{k}}' \frac{\omega_{\pmb{k}}}{2} (|\tilde{\pmb{\pi}}^c_{\pmb{k}}|^2 + |\tilde{\pmb{\pi}}^s_{\pmb{k}}|^2) \right] |\Phi \rangle$$

• Going back to the original coordinates:

$$\langle RS\Pi | \Psi_T \rangle = \langle RS\Pi | \exp \left\{ -\sum_{k}' \left[\frac{\omega_k}{2} (|\boldsymbol{\pi}_k^c|^2 + |\boldsymbol{\pi}_k^s|^2) \right] + \frac{\alpha_k}{2\omega_k} (\boldsymbol{\pi}_k^c \cdot \boldsymbol{B}_k^c + \boldsymbol{\pi}_k^s \cdot \boldsymbol{B}_k^s) \right.$$
$$\left. -\frac{1}{4} \omega_k \alpha_k^2 G_k^2 \sum_{i < j}^A \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \boldsymbol{\sigma}_i \cdot \boldsymbol{k} \boldsymbol{\sigma}_j \cdot \boldsymbol{k} \cos(\boldsymbol{k} \cdot \boldsymbol{r}_{ij}) \right] \right\} | \boldsymbol{\Phi} \rangle$$

• $|\Phi\rangle$: nucleon model states

Nucleon model states

• One nucleon (4 components):

$$|\Phi\rangle \rightarrow \begin{pmatrix} p\uparrow\\p\downarrow\\n\uparrow\\n\downarrow \end{pmatrix}$$

- Two nucleons (16 components)
 - Deuteron
 - Two neutrons
- We solve the two-body Schrödinger equation in a box with periodic boundary conditions:

$$V_{NN}(\pmb{r}_{ij}) = \delta_{k_c}(\pmb{r}_{ij})[C_S + C_T \pmb{\sigma}_i \cdot \pmb{\sigma}_j] ext{ with } \delta_{k_c}(\pmb{r}) = rac{1}{L^3} \left(1 + 2 \sum_{\pmb{k}}' \cos(\pmb{k} \cdot \pmb{r})
ight)$$

• A nucleons: 4^A components

Quantum Monte Carlo methods

- Variational Monte Carlo (VMC)
- Green's function Monte Carlo (GFMC)
 - Method for solving the imaginary-time many-body Schrödinger equation
 - Projects out the lowest energy eigenstate that has non-zero overlap with the initial state

$$|\Phi_0\rangle \propto \lim_{ au o \infty} \exp\left[-(H-E_T) au\right] |\Psi_T\rangle$$

$$\langle \mathbf{R}_N S_N \mathbf{\Pi}_N | \Phi_0 \rangle = \sum_{S_0} \cdots \sum_{S_{N-1}} \int d^3 \mathbf{R}_0 d^3 \mathbf{\Pi}_0 \cdots d^3 \mathbf{R}_{N-1} d^3 \mathbf{\Pi}_{N-1}$$

$$\left(\prod_{i=0}^{N-1} \langle \mathbf{R}_{i+1} S_{i+1} \mathbf{\Pi}_{i+1} | \exp\left[-(H-E_T) \delta \tau\right] | \mathbf{R}_i S_i \mathbf{\Pi}_i \rangle\right) \langle \mathbf{R}_0 S_0 \mathbf{\Pi}_0 | \Psi_T \rangle$$

One nucleon: mass renormalization

• We introduced two counter terms due to our cutoff

$$H_N = \left[\frac{P^2}{2M_P} + M_P + \beta_K P^2 + \delta M\right]$$

Diffusion

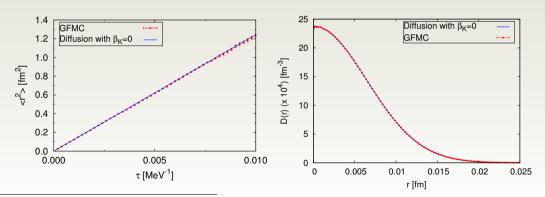
$$\frac{\partial C(\mathbf{r}, \tau)}{\partial \tau} = D\nabla^2 C(\mathbf{r}, \tau)$$
$$\langle r^2(\tau) \rangle = 6D\tau + \text{constant}$$

• Density correlation function

$$\mathcal{D}(\mathbf{r}) = \frac{\langle \Psi_T | \rho(\mathbf{r}) e^{-(H - E_T)\delta\tau} \rho(0) | \Psi_0 \rangle}{\langle \Psi_T | \Psi_0 \rangle}$$

One nucleon: mass renormalization

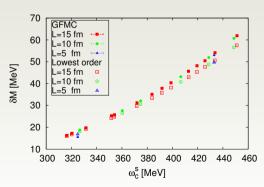
- We set $\beta_K = 0$
- This is in agreement with a nonrelativistic self-energy calculation we performed



One nucleon: mass renormalization

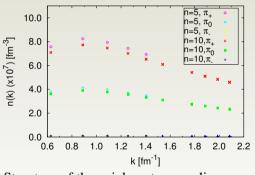
• Rest mass counter term as a function of the cutoff for different box sizes

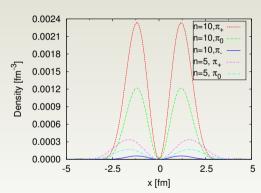
$$H_N = \left[\frac{P^2}{2M_P} + M_P + \beta_K P^2 + \delta M\right]$$



One nucleon: the pion cloud

• Model state is a spin-up proton



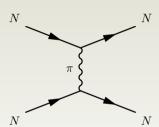


• Structure of the axial-vector coupling

$$au_i \pi_i = \frac{1}{2} \tau_+(\pi_x - i\pi_y) + \frac{1}{2} \tau_-(\pi_x + i\pi_y) + \tau_z \pi_0$$

One pion exchange

• Long-range behavior of the nuclear force



$$V_{\text{OPE}}(\boldsymbol{q}) = -\left(rac{g_A}{2f_\pi}
ight)^2 rac{(\boldsymbol{\sigma}^1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}^2 \cdot \boldsymbol{q})}{q^2 + m_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$$

• In real space:

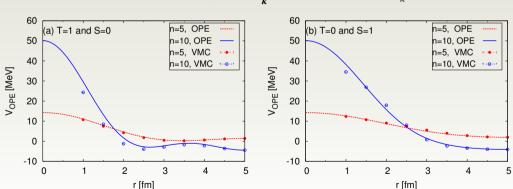
$$V_{\text{OPE}}(\mathbf{r}) = \frac{m_{\pi}^2}{12\pi} \left(\frac{g_A}{2f_{\pi}}\right)^2 (\boldsymbol{\tau}^1 \cdot \boldsymbol{\tau}^2)$$

$$\left(\left[(3\hat{r} \cdot \boldsymbol{\sigma}^1 \hat{r} \cdot \boldsymbol{\sigma}^2 - \boldsymbol{\sigma}^1 \cdot \boldsymbol{\sigma}^2) \left(1 + \frac{3}{m_{\pi}r} + \frac{3}{(m_{\pi}r)^2}\right) + \boldsymbol{\sigma}^1 \cdot \boldsymbol{\sigma}^2\right] \frac{e^{-m_{\pi}r}}{r} - \frac{4\pi}{3} \boldsymbol{\sigma}^1 \cdot \boldsymbol{\sigma}^2 \delta^3(r)\right)$$

Two nucleons: one pion exchange

• In the box and with a cutoff:

$$V_{\mathrm{OPE}}(\pmb{r}) = -rac{1}{L^3}rac{g_A^2}{2f_\pi^2}\pmb{ au}_1\cdot\pmb{ au}_2{\sum_{\pmb{k}}}'(\pmb{\sigma}^1\cdot\pmb{k})(\pmb{\sigma}^2\cdot\pmb{k})rac{\cos(\pmb{k}\cdot\pmb{r})}{\omega_k^2}$$

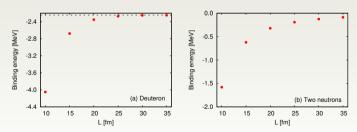


Two nucleons: LECs

• We need to fit the low-energy constants in the Hamiltonian

$$H_N = \sum_{i=1}^{A} \left[\frac{P_i^2}{2M_P} + M_P + \beta_K P_i^2 + \delta M \right] + \sum_{i < j}^{A} \delta_{R_0} (\boldsymbol{r}_i - \boldsymbol{r}_j) [\boldsymbol{C}_S + \boldsymbol{C}_T \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j]$$

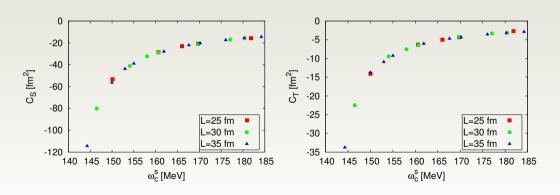
 "Numerical experiment" → Energy of the deuteron and two neutrons in a box using a well-established phenomenological potential (AV6P)



• We tuned C_S and C_T to reproduce the energies of the physical systems

Two nucleons

• Now the A-nucleon Hamiltonian is completely determined



Outlook

- Promising scheme to explicitly include pion contributions in QMC simulations
- One-nucleon properties
- Pion cloud: momentum and density distributions
- ullet Two fixed nucleons o one pion exchange at large distances
- Low-energy constants
- Light-nuclei

Neural-Network Quantum States

• The objective of NNQS are to represent and approximate many-body wave functions by means of Neural Networks

$$\Psi_V(\mathbf{R}, \mathbf{S}) \to \Psi_W(\mathbf{R}, \mathbf{S}) = \langle \mathbf{R}, \mathbf{S} | \mathbf{N} \rangle$$

Courtesy of Andrea Di Donna

 We will employ NNQS that take as input nucleon and pion degrees of freedom are have the correct symmetries

Lovato, Adams, Carleo, and Rocco. Hidden-nucleons neural-network quantum states for the nuclear many-body problem. *Phys. Rev. Research*, 2022.

Gnech, Adams, Brawand, Carleo, Lovato, and Rocco. Nuclei with Up to A=6 Nucleons with Artificial Neural Network Wave Functions. Few-Body Syst., 2022.