

#### **Quantum Monte Carlo calculations** for next-generation electroweak physics experiments

**Garrett King** 

Next-generation ab initio nuclear theory ECT\*, Trento, Italy 7/17/2025

LA-UR-25-26508



#### **Exciting new experimental directions**

FEATURED IN PHYSICS | EDITORS' SUGGESTION | GO MOBILE » | ACCESS BY LANL RESEARCH LIBRARY

#### First Observation of Electron Scattering from Online-Produced Radioactive Target

K. Tsukada 👵 1,2, Y. Abe², A. Enokizono²,3, T. Goke⁴, M. Hara², Y. Honda²,⁴, T. Hori², S. Ichikawa²,\*, Y. Ito¹ et al.

Show more 🗸

Phys. Rev. Lett. **131**, 092502 - **Published 30 August, 2023** DOI: https://doi.org/10.1103/PhysRevLett.131.092502









## β-decays as a bridge to new physics

Weak currents with different transformation properties prefer different lepton angles

Standard Model is a vector minus axial theory

BSM tensor and scalar currents could interfere with standard current, changing kinematics

Neutrino mass would remove some phase space for the outgoing electron





#### Heading into the next generation of theory





#### **Quantum Monte Carlo**

Solving the many-body problem using random sampling to compute integrals

Variational MC wave function  $|\Psi_T\rangle=\mathcal{F}|\Phi\rangle$  contains model wave function and many-body correlations optimized by minimizing:



$$E_V = \min \left\{ \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \right\} \ge E_0$$

Green's function MC improves by *removing excited*state contamination and gives the exact ground state

$$\lim_{\tau \to \infty} e^{-(H - E_0)\tau} \Psi_V = \lim_{\tau \to \infty} e^{-(H - E_0)\tau} \left( c_0 \psi_0 + \sum_{i=1}^N c_i \psi_i \right) \to c_0 \psi_0$$



#### The Norfolk (NV2+3) interaction

$$H = \sum_{i} K_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$



Model based on χEFT with pion, nucleon, and delta degrees of freedom by **Piarulli et al.** [PRL 120, 052503 (2018)]

NV2 contains 26 unknown LECs in contacts, two more from the NV3

Eight model classes arrived at from different procedures to constrains the unknown LECs



#### Electroweak charge and current operators

Need electromagnetic and weak current operators to study decays/transitions

Schematically: 
$$\rho = \sum_{i=1}^A \rho_i + \sum_{i < j} \rho_{ij} + \dots$$
 
$$\mathbf{j} = \sum_{i=1}^A \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

External field interacts with single nucleons and correlated pairs of nucleons





#### **Beta decay**

Composed of Fermi (S=0) and Gamow-Teller "GT" transition (S=1)

GT is mediated by purely axial vector transition operator

Connected to experiment via:

$$\Gamma_eta \propto |M_eta|^2 = |M_\mathrm{F}|^2 + rac{g_A^2}{g_V^2} |M_\mathrm{GT}|^2$$
 ,





#### **Gamow-Teller matrix elements**

Calculations with NV2+3-la\* and NV2+3-la compared to AV18+IL7 (◊) and exp (dashes)

Correlations quench strongly in light nuclei

Two-body almost always enhances







#### Universal behavior in GT two-body densities





## <sup>6</sup>He β-decay spectrum: BSM connections



Include new physics with strengths  $\epsilon_i$  allowed from current analyses [from Cirigliano, Mereghetti, ...]

Can see the effects of new physics on the SM curves

Uncertainty estimate is dominated by  $O(Q_{\beta}^{2}/\Lambda_{\chi}^{2} \sim 10^{-3})$  correction that is stable across NV2+3 models



## <sup>6</sup>He β-decay spectrum: Probing neutrino physics

Can also investigate impacts from production of ~1 MeV sterile neutrinos

Can get a qualitative understanding of the effects new physics will generate





## $^{10}$ C(0+) -> $^{10}$ B(0+) β-decay

In an effective field theory approach:

$$\delta_{\rm NS} = \sum_{m,n,i} \alpha^m E_0^n c_{m,n} M_{m,n}^i$$

Can also evaluate: 
$$M = \int dr C(r)$$

**GFMC**: 
$$\delta_{NS} = -4.05(38) \times 10^{-3} - -4.10(77) \times 10^{-3}$$

Hardy and Towner:  $\delta_{NS} = -4.0(5) \times 10^{-3}$ 

$$\delta_{\rm NS} = -4.0(5) \times 10^{-3}$$

 $\delta_{\rm NS} = -4.22(32) \times 10^{-3}$ Gennari et al PRL **134**, 012501:





In collaboration with: **Mereghetti (LANL)**, Carlson (LANL), Flores (WUSTL), Gandolfi (LANL), Pastore (WUSTL), Piarulli (WUSTL)

#### **Electron scattering cross section**

$$\frac{d\sigma}{d\Omega} = 4\pi\sigma_M f_{\rm rec}^{-1} \left[ \frac{Q^4}{q^4} F_L^2(q) + \left( \frac{Q^2}{2q^2} + \tan^2 \theta_e / 2 \right) F_T^2(q) \right]$$

Where:

$$F_T^2(q) = F_M^2(q) = \frac{1}{2J_i + 1} \sum_{L=1}^{\infty} |\langle J_f || M_L(q) || J_i \rangle|^2 \qquad F_L^2(q) = \frac{1}{2J_i + 1} \sum_{L=0}^{\infty} |\langle J_f || C_L(q) || J_i \rangle|^2$$



#### **Magnetic moments**

#### One-body picture:

$$\mu^{LO} = \sum_{i} \left( L_{i,z} + g_{p} S_{i,z} \right) \frac{1 + \tau_{3,i}}{2} + g_{n} S_{i,z} \frac{1 - \tau_{3,i}}{2}$$



Two-body currents can play a large role (up to ~33%) in describing magnetic dipole moments



Chambers-Wall, King, et al. PRL 133, 212501 (2024) Chambers-Wall, King, et al. PRC 110, 054316 (2024)





#### Structural effects in magnetic densities





Chambers-Wall et al. PRL 133, 212501 (2024) Chambers-Wall et al. PRC 110, 054316 (2024)

#### **VMC** magnetic form factors

NV2+3-IIb\*

Form factors with naive truncation uncertainties up to N3LO in currents

Breakdown of contributions into different mulipolarities









Chambers-Wall et al. PRL 133, 212501 (2024) Chambers-Wall et al. PRC 110, 054316 (2024)

















#### Pattern:

Unpaired proton nuclei have M1 peak > M3 peak

Unpaired neutron nuclei have M3 peak > M1 peak



#### Spin-orbit interference in M1



Orbital contribution generates positive contribution to M1

Spin is positive for an unpaired proton, negative for an unpaired neutron at small q

Minimal contribution orbital contribution to M3

Destructive interference between spin and orbit for unpaired neutron -> smaller M1 peak than M3



#### Charge form factors: model dependence





"Harder cutoff" = solid "Softer cutoff" = dashed

Deviation roughly around the soft cutoff location in momentum space

Harder models tend to predict minimum inline with data

Low-energy physics consistent



#### **Elastic electron scattering form factors**



Charge form factor depends on sum of excited "multipolarities"

The I=0 term is related to spherically averaged charge density

I=2 is sensitive to quadrupole deformation of the nucleus





#### Charge radii

Agreement of ~5% or better across the board

Model successful for He and Li isotopes, less so for Be

Uncertainty is statistical, form factor dependence may also be important

NV2+3-IIb\* nuclear interaction model



$$\frac{1}{Z} \langle JJ | \rho(q\hat{\mathbf{z}}) | JJ \rangle \approx 1 - \frac{1}{6} r_E^2 q^2 + \mathcal{O}(q^4)$$



## What is missing?

Understanding convergence questions in currents (np→dy, pp fusion?)

More robust uncertainty quantification (emulators?)



#### What is missing?

Understanding convergence questions in currents (np→dy, pp fusion?)

More robust uncertainty quantification (emulators?)

Welcome ideas/collaboration to discuss to help improve QMC throughout the next-generation



#### **Acknowledgements**

WUSTL: Pastore, Piarulli

ANL: Wiringa

JLab+ODU: Andreoli, Gnech, Schiavilla

LANL: Carlson, Gandolfi, Mereghetti

LPC Caen: Hayen

ORNL: Baroni UW: Cirigliano









Funding from DOE/NNSA Stewardship Science Graduate Fellowship, LDRD program at LANL

Computational resources provided by LANL, ANL, and NERSC



# **Additional slides**

