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Table 1 GCM and PGCM m1 monopole moments computed via the SOES and GSEV approaches for 16O, 24Mg, 28Si (ground-state and prolate
isomer) and 46Ti

16O 24Mg 28Si 28Si iso
46Ti

SOES GSEV SOES GSEV SOES GSEV SOES GSEV SOES GSEV

GCM 7940 8611 16,676 17,850 21,046 22,384 22,104 23,625 43,185 46,776

PGCM 8386 8617 17,178 17,978 21,490 22,526 22,846 24,016 44,392 47,046

All quantities are in fm4MeV

Fig. 2 Integral m1(ω) moment, as defined in Eq. (21), as a function
of the maximum excitation energy and normalised by the GSEV value
of m1 from PGCM monopole calculations of 16O, 24Mg, 28Si (ground-
state and prolate isomer) and 46Ti

lowest eigenstates of axially deformed harmonic oscilla-
tors, the two generator coordinates being the corresponding
axial and perpendicular oscillator frequencies. While realis-
tic (P)GCM calculations rely on more general Bogoliubov
vacua (and include particle-number and angular-momentum
projections), such a proof gives some confidence that the
monopole operator might be well exhausted in present 2D
(P)GCM calculations using r2 and β2 as generator coordi-
nates. It is the goal of the present section to test quantitatively
to which extent this is indeed the case for m1.

4.2 Results

The (P)GCM m1 values obtained from both evaluation
methods are reported in Table 1. Furthermore, their differ-
ence [rescaled according to their expected A5/3 scaling; see
Eq. (25)] is displayed in Fig. 1 along with the difference in
percentage.

Results obtained via the SOES approach are about 6–
7% smaller than their GSEV counterpart across the five
cases under consideration. The underestimation of the SOES
approach is stable from A = 16 to A = 46 once the A5/3

scaling has been removed. The small but systematic improve-
ment of the PGCM over the GCM is attributed to the benefit
of the symmetry restoration, i.e. symmetry contaminants are

removed by the angular momentum projection on J = 0 such
that the operator r2 is better exhausted by the corresponding
subspace SP . For PGCM calculations the SOES m1 moment
as a function of the maximum excitation energy, reading

m1(ω) ≡
∫ ω

0
E S(E)dE, (21)

is displayed in Fig. 2 normalised by the corresponding GSEV
value. The excited states included in the SOES evaluation
reach a maximum energy of 97 MeV for 16O, 74 MeV for
24Mg, 94 and 98 MeV for the ground and isomeric state of
28Si and 102 MeV for 46Ti.

Eventually, the operator r2 is exhausted, within a few per-
cents, by the (P)GCM subspace S(P). This translates into the
fact that the SOES approach to m1 can be safely used within
a few percent uncertainty.10 Differences between the GSEV
and SOES approaches signal the necessity of improving the
determination of an optimal (P)GCM subspace S(P). While
this topic is of current interest, it goes beyond the scope of
the present article.

5 Angular-momentum projection

The effect of angular momentum projection on the monopole
moments mk , k = −1, 0, 1, 2, 3, evaluated via the SOES
approach is presently quantified by comparing results from
GCM and PGCM calculations. As seen in Table 2, the angular
momentum projection systematically enlarges mk in a way
that increases with k. In fact, while the increase with the
moment order is rather marked in 16O, it is limited in 24Mg
and has entirely disappeared in 46Ti. Thus, and even though
the range of nuclei presently tested is too limited to draw
general conclusions, the impact of the angular momentum
projection seems to decrease with A.

10 The resulting uncertainty for a moment mk can be conjectured to
increase with k. Indeed, the energy weight Ek entering mk accentu-
ates the importance of higher-energy states as k increases while the
truncation of the completeness relation in the SOES approach probably
affects more this higher-energy domain. Given that m1 is the highest
moment that can be computed exactly within the GSEV approach, this
conjecture cannot be presently tested.

123
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Starting from a general second-quantized Hamiltonian with
two- and three-body interactions,

Ĥ =
∑

qr

Tqra
†
qar + 1

2!2

∑

qrst

V
(2)
qrst a

†
qa

†
r atas

+ 1
3!2

∑

qrstuv

V
(3)
qrstuva

†
qa

†
r a

†
s avauat + · · · , (11)

all operators can be normal-ordered with respect to a finite-
density Fermi vacuum |!⟩ (e.g., the Hartree-Fock ground
state), as opposed to the zero-particle vacuum.2 Wick’s
theorem can then be used to exactly write H as

H = E +
∑

qr

fqr : a†
qar : +1

4

∑

qrst

"qrst : a†
qa

†
r atas :

+ 1
36

∑

qrstuv

Wqrstuv : a†
qa

†
r a

†
s avauat : , (12)

where strings of normal-ordered operators obey the following
relation.

⟨!| : a†
q · · · ar : |!⟩ = 0, (13)

and the terms in Eq. (12) are given by

E =
∑

q

Tqqnq + 1
2

∑

qr

V (2)
qrqrnqnr

+ 1
6

∑

qrs

V (3)
qrsqrsnqnrns , (14)

fqr = Tqr +
∑

s

V (2)
qsrsns + 1

2

∑

st

V
(3)
qstrstnsnt , (15)

"qrst = V
(2)
qrst +

∑

u

V
(3)
qrustunu , (16)

Wqrstuv = V
(3)
qrstuv . (17)

Here, the initial n-body interactions are denoted by V (n),
and nq = θ (ϵF − ϵq) are occupation numbers in the reference
state |!⟩, with Fermi energy ϵF. It is evident that the
normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
been shown to be an excellent approximation in many nuclear
systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
IM-SRG(2), will approximately evolve induced three- and
higher-body interactions through the nucleus-dependent 0-,
1-, and 2-body terms.

Using Wick’s theorem to evaluate Eq. 3 with H (s) =
E0(s) + f (s) + "(s) and η(s) = η(1)(s) + η(2)(s) truncated to

2In the present work, we restrict our attention to single reference
(i.e., closed-shell) systems for which a single Slater determinant
provides a reasonable starting point. See Refs. [15,17,19] for
extensions of the IM-SRG to open-shell systems.

normal-ordered two-body operators, one obtains the coupled
IM-SRG(2) flow equations

dE

ds
=

∑

qr

ηqrfrq(nq − nr ) + 1
2

∑

qrst

ηqrst"stqrnqnr n̄s n̄t ,

(18)
dfqr

ds
=

∑

s

(1 + Pqr )ηqsfsr

+
∑

st

(ns − nt )(ηst"tqsr − fstηtqsr )

+
∑

stu

(nsnt n̄u + n̄s n̄tnu)(1 + Pqr )ηuqst"stur ,

(19)
d"qrst

ds
=

∑

u

{(1 − Pqr )(ηqu"urst − fquηurst )}

−
∑

u

{(1 − Pst )(ηus"qrut − fusηqrut )}

+ 1
2

∑

uv

(1 − nu − nv)(ηqruv"uvst − "qruvηuvst )

−
∑

uv

(nu − nv)(1 − Pqr )(1 − Pst )ηvrut"uqvs ,

(20)

where n̄r ≡ 1 − nr and the s dependence has been suppressed
for brevity.

For the calculation of the ground state of a closed-shell
system in the IM-SRG(2) approximation, it is simple to
identify H od = {"abij ,fai, + H.c.}, where a,b denote particle
(unoccupied) and i,j hole (occupied) single-particle states,
as the relevant vertices which connect our chosen reference
state |!⟩ with higher particle-hole excitations; see Fig. 1. By
designing a generator to eliminate these terms, one finds that
the 0-body term approaches the interacting ground state energy
in the limit of large s,

lim
s→∞

E0(s) = ⟨!|H (s)|!⟩ = Egs . (21)

i|H(0) |j i|H(∞) |j

0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h

0p
0h

1p
1h

2p
2h

3p
3h

0p
0h

1p
1h

2p
2h

3p
3h

FIG. 1. Schematic representation of the initial and final Hamilto-
nians, H (0) and H (∞), in the many-body Hilbert space spanned by
particle-hole excitations of the reference state.
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Here, the initial n-body interactions are denoted by V (n),
and nq = θ (ϵF − ϵq) are occupation numbers in the reference
state |!⟩, with Fermi energy ϵF. It is evident that the
normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
been shown to be an excellent approximation in many nuclear
systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
IM-SRG(2), will approximately evolve induced three- and
higher-body interactions through the nucleus-dependent 0-,
1-, and 2-body terms.

Using Wick’s theorem to evaluate Eq. 3 with H (s) =
E0(s) + f (s) + "(s) and η(s) = η(1)(s) + η(2)(s) truncated to

2In the present work, we restrict our attention to single reference
(i.e., closed-shell) systems for which a single Slater determinant
provides a reasonable starting point. See Refs. [15,17,19] for
extensions of the IM-SRG to open-shell systems.
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For the calculation of the ground state of a closed-shell
system in the IM-SRG(2) approximation, it is simple to
identify H od = {"abij ,fai, + H.c.}, where a,b denote particle
(unoccupied) and i,j hole (occupied) single-particle states,
as the relevant vertices which connect our chosen reference
state |!⟩ with higher particle-hole excitations; see Fig. 1. By
designing a generator to eliminate these terms, one finds that
the 0-body term approaches the interacting ground state energy
in the limit of large s,
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to normal-ordered two-body operators, which we denote by
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higher-body interactions through the nucleus-dependent 0-,
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Here, the initial n-body interactions are denoted by V (n),
and nq = θ (ϵF − ϵq) are occupation numbers in the reference
state |!⟩, with Fermi energy ϵF. It is evident that the
normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
been shown to be an excellent approximation in many nuclear
systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
IM-SRG(2), will approximately evolve induced three- and
higher-body interactions through the nucleus-dependent 0-,
1-, and 2-body terms.

Using Wick’s theorem to evaluate Eq. 3 with H (s) =
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2In the present work, we restrict our attention to single reference
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system in the IM-SRG(2) approximation, it is simple to
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normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
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systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
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higher-body interactions through the nucleus-dependent 0-,
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state |!⟩, with Fermi energy ϵF. It is evident that the
normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
been shown to be an excellent approximation in many nuclear
systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
IM-SRG(2), will approximately evolve induced three- and
higher-body interactions through the nucleus-dependent 0-,
1-, and 2-body terms.

Using Wick’s theorem to evaluate Eq. 3 with H (s) =
E0(s) + f (s) + "(s) and η(s) = η(1)(s) + η(2)(s) truncated to

2In the present work, we restrict our attention to single reference
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system in the IM-SRG(2) approximation, it is simple to
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(unoccupied) and i,j hole (occupied) single-particle states,
as the relevant vertices which connect our chosen reference
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designing a generator to eliminate these terms, one finds that
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E0(s) + f (s) + "(s) and η(s) = η(1)(s) + η(2)(s) truncated to

2In the present work, we restrict our attention to single reference
(i.e., closed-shell) systems for which a single Slater determinant
provides a reasonable starting point. See Refs. [15,17,19] for
extensions of the IM-SRG to open-shell systems.

normal-ordered two-body operators, one obtains the coupled
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For the calculation of the ground state of a closed-shell
system in the IM-SRG(2) approximation, it is simple to
identify H od = {"abij ,fai, + H.c.}, where a,b denote particle
(unoccupied) and i,j hole (occupied) single-particle states,
as the relevant vertices which connect our chosen reference
state |!⟩ with higher particle-hole excitations; see Fig. 1. By
designing a generator to eliminate these terms, one finds that
the 0-body term approaches the interacting ground state energy
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normal-ordered 0-, 1-, and 2-body terms include contributions
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occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
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Ĥ =
∑

qr

Tqra
†
qar + 1

2!2

∑

qrst

V
(2)
qrst a

†
qa

†
r atas

+ 1
3!2

∑

qrstuv

V
(3)
qrstuva

†
qa

†
r a

†
s avauat + · · · , (11)

all operators can be normal-ordered with respect to a finite-
density Fermi vacuum |!⟩ (e.g., the Hartree-Fock ground
state), as opposed to the zero-particle vacuum.2 Wick’s
theorem can then be used to exactly write H as

H = E +
∑

qr

fqr : a†
qar : +1

4

∑

qrst

"qrst : a†
qa

†
r atas :

+ 1
36

∑

qrstuv

Wqrstuv : a†
qa

†
r a

†
s avauat : , (12)

where strings of normal-ordered operators obey the following
relation.

⟨!| : a†
q · · · ar : |!⟩ = 0, (13)

and the terms in Eq. (12) are given by

E =
∑

q

Tqqnq + 1
2

∑

qr

V (2)
qrqrnqnr

+ 1
6

∑

qrs

V (3)
qrsqrsnqnrns , (14)

fqr = Tqr +
∑

s

V (2)
qsrsns + 1

2

∑

st

V
(3)
qstrstnsnt , (15)

"qrst = V
(2)
qrst +

∑

u

V
(3)
qrustunu , (16)

Wqrstuv = V
(3)
qrstuv . (17)

Here, the initial n-body interactions are denoted by V (n),
and nq = θ (ϵF − ϵq) are occupation numbers in the reference
state |!⟩, with Fermi energy ϵF. It is evident that the
normal-ordered 0-, 1-, and 2-body terms include contributions
from the three-body interaction V (3) through sums over the
occupied single-particle states in the reference state |!⟩.
Neglecting the residual three-body interaction leads to the
normal-ordered two-body approximation (NO2B), which has
been shown to be an excellent approximation in many nuclear
systems [9,11,25]. Truncating the in-medium SRG equations
to normal-ordered two-body operators, which we denote by
IM-SRG(2), will approximately evolve induced three- and
higher-body interactions through the nucleus-dependent 0-,
1-, and 2-body terms.

Using Wick’s theorem to evaluate Eq. 3 with H (s) =
E0(s) + f (s) + "(s) and η(s) = η(1)(s) + η(2)(s) truncated to

2In the present work, we restrict our attention to single reference
(i.e., closed-shell) systems for which a single Slater determinant
provides a reasonable starting point. See Refs. [15,17,19] for
extensions of the IM-SRG to open-shell systems.

normal-ordered two-body operators, one obtains the coupled
IM-SRG(2) flow equations

dE

ds
=

∑

qr

ηqrfrq(nq − nr ) + 1
2

∑

qrst

ηqrst"stqrnqnr n̄s n̄t ,

(18)
dfqr

ds
=

∑

s

(1 + Pqr )ηqsfsr

+
∑

st

(ns − nt )(ηst"tqsr − fstηtqsr )

+
∑

stu

(nsnt n̄u + n̄s n̄tnu)(1 + Pqr )ηuqst"stur ,

(19)
d"qrst

ds
=

∑

u

{(1 − Pqr )(ηqu"urst − fquηurst )}

−
∑

u

{(1 − Pst )(ηus"qrut − fusηqrut )}

+ 1
2

∑

uv

(1 − nu − nv)(ηqruv"uvst − "qruvηuvst )

−
∑

uv

(nu − nv)(1 − Pqr )(1 − Pst )ηvrut"uqvs ,

(20)

where n̄r ≡ 1 − nr and the s dependence has been suppressed
for brevity.

For the calculation of the ground state of a closed-shell
system in the IM-SRG(2) approximation, it is simple to
identify H od = {"abij ,fai, + H.c.}, where a,b denote particle
(unoccupied) and i,j hole (occupied) single-particle states,
as the relevant vertices which connect our chosen reference
state |!⟩ with higher particle-hole excitations; see Fig. 1. By
designing a generator to eliminate these terms, one finds that
the 0-body term approaches the interacting ground state energy
in the limit of large s,

lim
s→∞

E0(s) = ⟨!|H (s)|!⟩ = Egs . (21)

i|H(0) |j i|H(∞) |j

0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h

0p
0h

1p
1h

2p
2h

3p
3h

0p
0h

1p
1h

2p
2h

3p
3h

FIG. 1. Schematic representation of the initial and final Hamilto-
nians, H (0) and H (∞), in the many-body Hilbert space spanned by
particle-hole excitations of the reference state.

034331-3

Unitary transformation

MAGNUS EXPANSION AND IN-MEDIUM SIMILARITY . . . PHYSICAL REVIEW C 92, 034331 (2015)

Starting from a general second-quantized Hamiltonian with
two- and three-body interactions,
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Steps
• Start from the moment operator in the HO basis

• Perform an IMSRG(2) calculation
• Evolve moment operators using Magnus

Strategy in the IMSRG framework

[github.com/ragnarstroberg/imsrg]

Implemented within imsrg++ code

[Lu and Johnson, PRC 97 (2018) 3, 034330]

J-scheme expressions of m0 and m1

Benchmarks

• HF value of m0 against TDA

• HF value of m1 against RPA

[Tsukiyama, Bogner and Schwenk, PRL, 2011]

[Hergert, Bogner, Morris, Schwenk, 
Tsukiyama, Phys. Rept., 2016]
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• Slower convergence

• Relative difference ~1.3%

• 2% error for ℏ⍵ variations
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• ~5% correlations effect
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[Ahrens et al., NPA, 1975]

[Courtesy of P.-G. Reinhard]

Photoabsorption cross section

TRK sum rule

Comparison to exp only makes sense for integrated quantities

Both needed for consistent description
• Ground-state correlations

• Commutator expression generates 2-body currents

Comparison to EDF calculations
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15Comparison to sum rules
Sum rules extensively studied in the past

True if continuity Eq is only 1B

But many-body currents can be there !

E.g. leading order exchange currents (Siegert’s limit)

[Christillin, Physics Reports, 1990]

If V local

If V local
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Relative difference

Differences from EWSR

• Nonlocalities

• Two-body currents

m1 from moments is better !
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Comparison to VS calculation for 40Ca with 28Si core

• Large uncertainties for m1 and m0

• Two-step decoupling

• Is the core well described ? (deformation)

Other possibilities within the IMSRG
• Multi-reference formulation

• Symmetry-breaking calculations

No limitation on the many-body method (and operators) of choice

• Exact treatment of excited states

• Can benchmark response calculations going through exc states EOM, LIT etc. (can send matrix elements)

Going open-shel l

Benchmarks  and uncer ta inty  quant ificat ion

Systematic studies of H properties
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Sonia Bacca

Francesca Bonaiti

• Moment method useful for uncertainty quantification 
      /benchmark of exc states

• Can be used for systematic studies of H properties

• Small finite-basis uncertainty 

• Correlation effect ~5% in monopole and quadrupole

• Qualitative change (~40%) for dipole
• Better agreement with data and smaller interaction spread

• Comparison to EWSR diagnostic of non-localities and two-body currents

Summary


