Impact of ground-state correlations on the nuclear response

ECT* workshop Next generation *ab initio* nuclear theory

Trento, July 16th, 2025

Andrea Porro

Technische Universität Darmstadt

Introduction

- Physics case
- Existing ab initio methods

Introduction

- Physics case
- Existing ab initio methods

IMSRG multipole moments

- Moments of the strength
- IMSRG implementation
- Model-space convergence

Introduction

- Physics case
- Existing ab initio methods

IMSRG multipole moments

- Moments of the strength
- IMSRG implementation
- Model-space convergence

Numerical results

- Interaction sensitivity
- Comparison to experiment
- Comparison to sum rules

Introduction

- Physics case
- Existing ab initio methods

IMSRG multipole moments

- Moments of the strength
- IMSRG implementation
- Model-space convergence

Numerical results

- Interaction sensitivity
- Comparison to experiment
- Comparison to sum rules

Challenges and opportunities

Introduction

- Physics case
- Existing ab initio methods

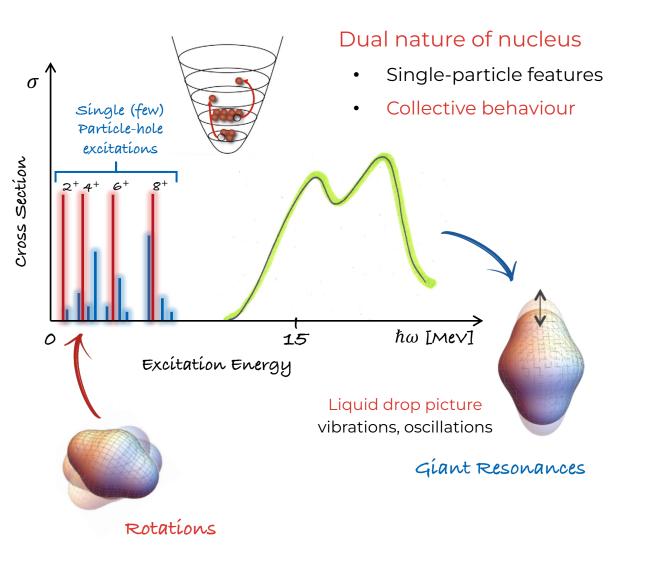
IMSRG multipole moments

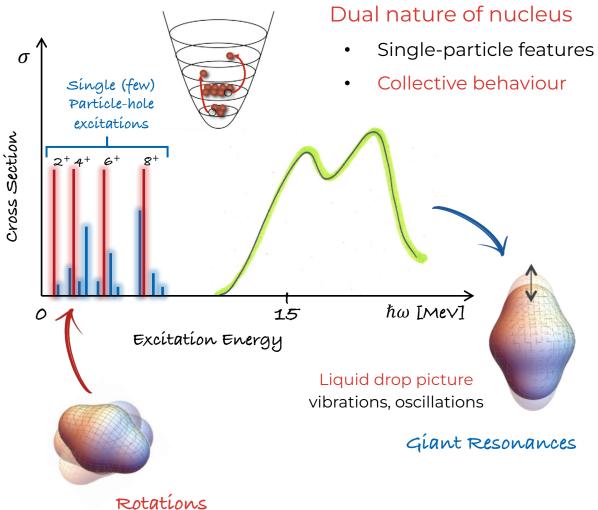
- Moments of the strength
- IMSRG implementation
- Model-space convergence

Numerical results

- Interaction sensitivity
- Comparison to experiment
- Comparison to sum rules

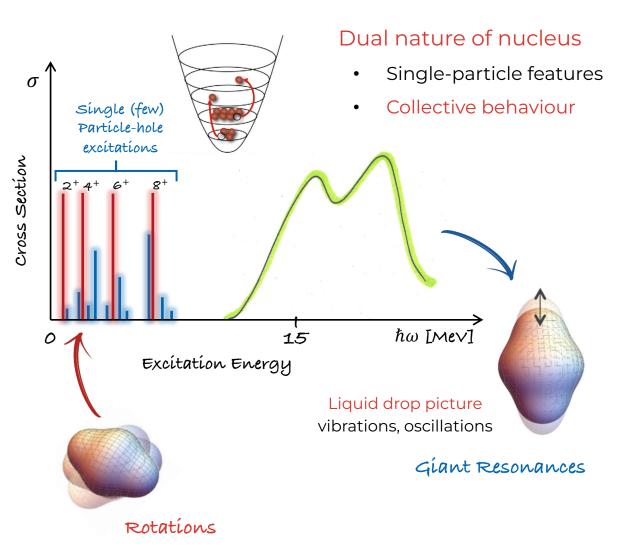
Challenges and opportunities





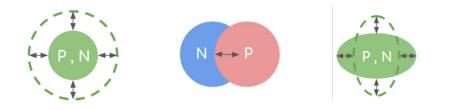
Response function

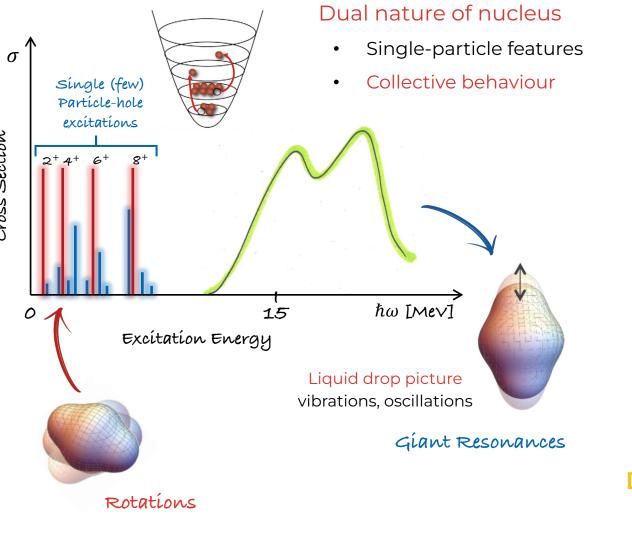
Fully characterise linear response



Response function

Fully characterise linear response

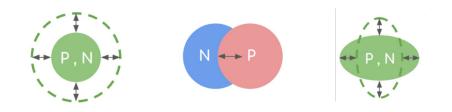




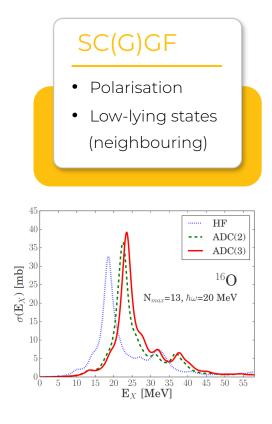
Response function

Fully characterise linear response

Studied quantity: multipole response



Different excitations



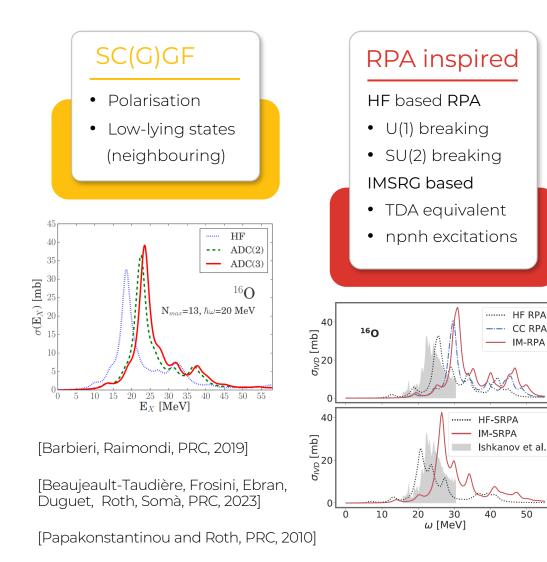
[Barbieri, Raimondi, PRC, 2019]

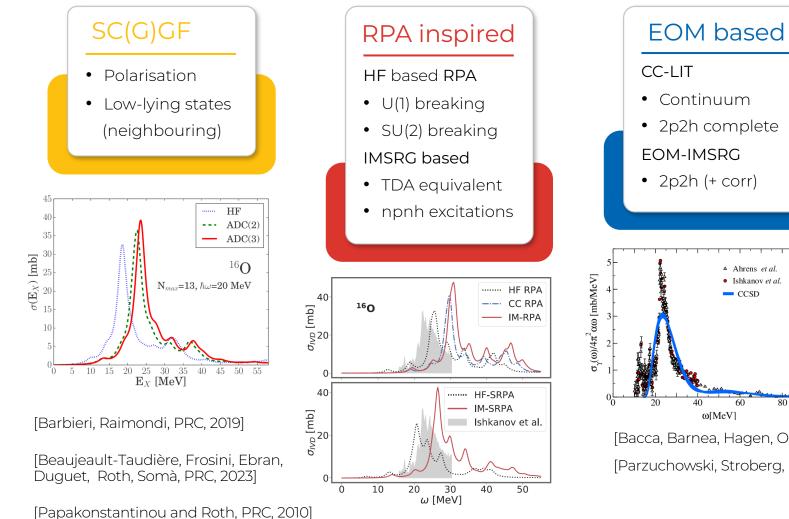
HF RPA

CC RPA

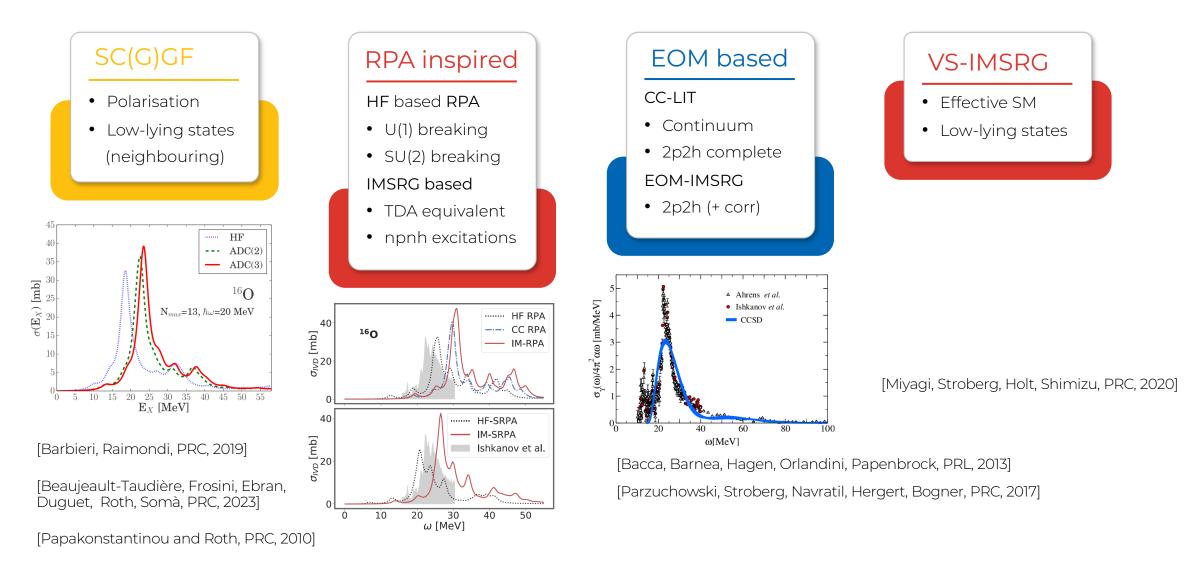
IM-RPA

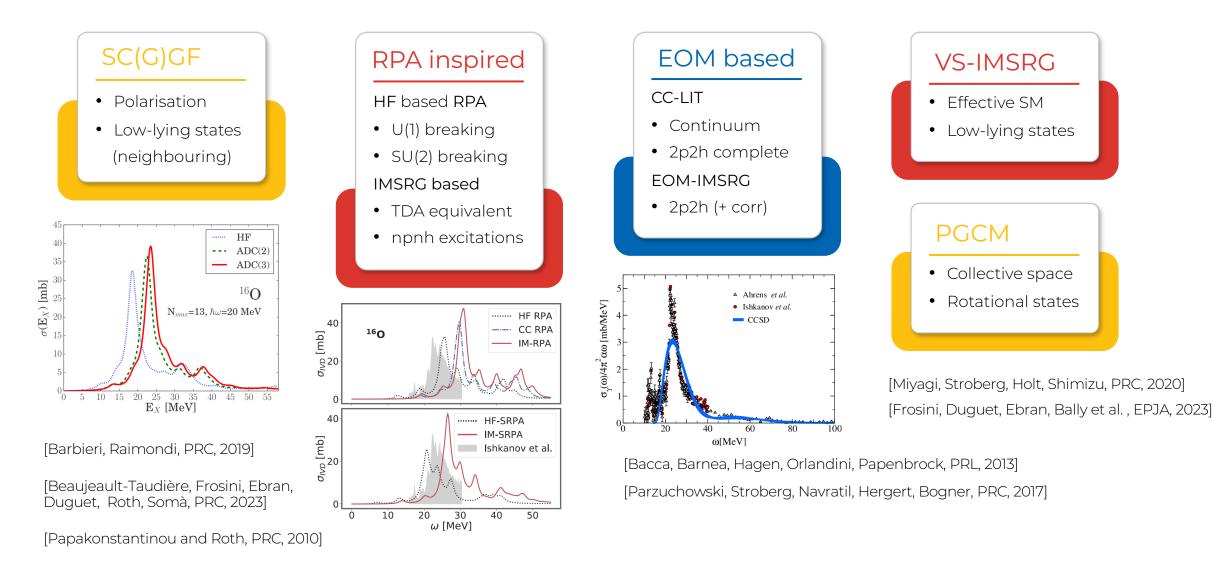
50

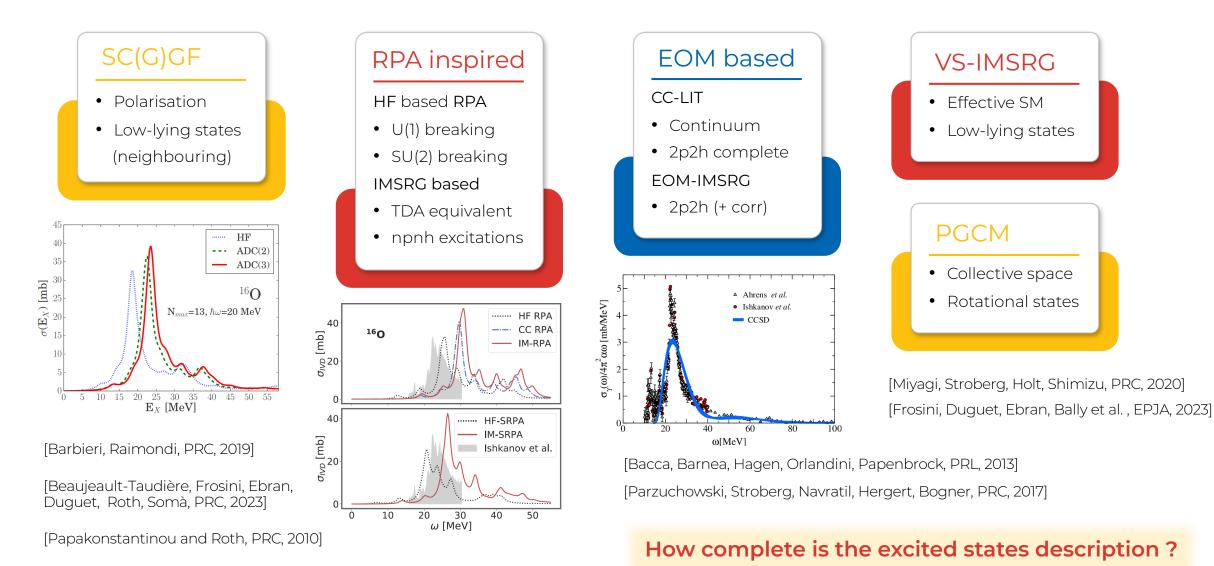




(a) Ahrens et al. (a) Ahrens et al. (b) Ahrens et al. (c) CCSD (c) CCSD







Uncertainty quantification / benchmark

Introduction

- Physics case
- Existing ab initio methods

IMSRG multipole moments

- Moments of the strength
- IMSRG implementation
- Model-space convergence

Numerical results

- Interaction sensitivity
- Comparison to experiment
- Comparison to sum rules

Challenges and opportunities

$$S(Q_{\lambda}, E) \equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \,\delta(E_{\nu} - E_{0} - E)$$

Studied quantity: multipole response

$$S(Q_{\lambda}, E) \equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \,\delta(E_{\nu} - E_{0} - E)$$

Related moments

$$m_k(Q_\lambda) \equiv \int_0^\infty E^k S(Q_\lambda, E) dE$$
$$= \sum_{\mu\nu} (E_\nu - E_0)^k |\langle \Psi_\nu | Q_{\lambda\mu} | \Psi_0 \rangle|^2$$

Studied quantity: multipole response

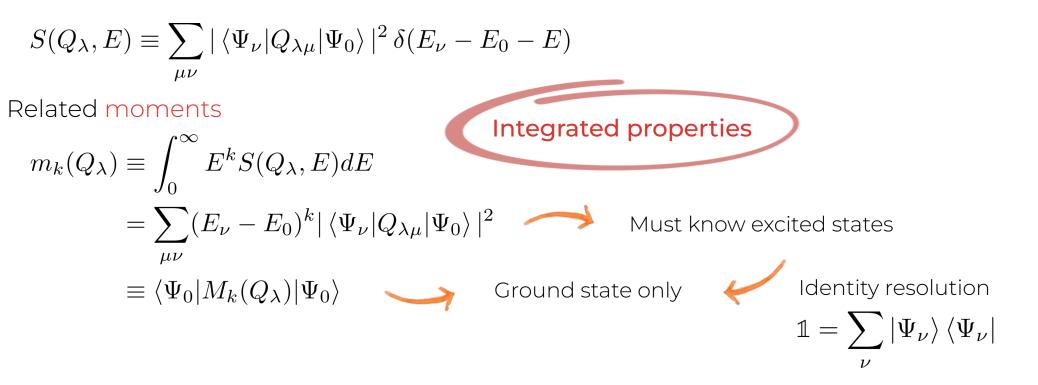
$$S(Q_{\lambda}, E) \equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \,\delta(E_{\nu} - E_{0} - E)$$

Related moments

$$m_k(Q_\lambda) \equiv \int_0^\infty E^k S(Q_\lambda, E) dE$$
$$= \sum_{\mu\nu} (E_\nu - E_0)^k |\langle \Psi_\nu | Q_{\lambda\mu} | \Psi_0 \rangle|^2$$

$$\begin{split} S(Q_{\lambda}, E) &\equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \,\delta(E_{\nu} - E_{0} - E) \\ \text{Related moments} \\ m_{k}(Q_{\lambda}) &\equiv \int_{0}^{\infty} E^{k} S(Q_{\lambda}, E) dE \\ &= \sum_{\mu\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} & \text{Must know excited states} \end{split}$$

$$\begin{split} S(Q_{\lambda}, E) &\equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle |^{2} \, \delta(E_{\nu} - E_{0} - E) \\ \text{Related moments} \\ m_{k}(Q_{\lambda}) &\equiv \int_{0}^{\infty} E^{k} S(Q_{\lambda}, E) dE \\ &= \sum_{\mu\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle |^{2} \\ &= \sum_{\mu\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle |^{2} \\ &\equiv \langle \Psi_{0} | M_{k}(Q_{\lambda}) | \Psi_{0} \rangle \qquad \qquad \text{Ground state only} \end{split}$$



Studied quantity: multipole response

$$S(Q_{\lambda}, E) \equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \,\delta(E_{\nu} - E_{0} - E)$$
Related moments
$$m_{k}(Q_{\lambda}) \equiv \int_{0}^{\infty} E^{k} S(Q_{\lambda}, E) dE$$

$$= \sum_{\mu\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2}$$
Must know excited states
$$\equiv \langle \Psi_{0} | M_{k}(Q_{\lambda}) | \Psi_{0} \rangle$$
Ground state only
$$\mathbb{1} = \sum_{\nu} |\Psi_{\nu} \rangle \langle \Psi_{\nu} |$$

 ν

Complexity shifted to operator structure

$$M_0(Q_\lambda) \equiv \sum_{\mu} (-1)^{\mu} Q_{\lambda,-\mu} Q_{\lambda\mu}$$
$$M_1(Q_\lambda) = \frac{1}{2} \sum_{\mu} (-1)^{\mu} [Q_{\lambda,-\mu}, [H, Q_{\lambda\mu}]]$$

Studied quantity: multipole response

$$S(Q_{\lambda}, E) \equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \,\delta(E_{\nu} - E_{0} - E)$$
Related moments
$$m_{k}(Q_{\lambda}) \equiv \int_{0}^{\infty} E^{k} S(Q_{\lambda}, E) dE$$

$$= \sum_{\mu\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2}$$
Must know excited states
$$\equiv \langle \Psi_{0} | M_{k}(Q_{\lambda}) | \Psi_{0} \rangle$$
Ground state only
$$1 = \sum_{\nu} |\Psi_{\nu}\rangle \langle \Psi_{\nu}|$$
Complexity shifted to constant structure

Complexity shifted to operator structure

$$M_0(Q_\lambda) \equiv \sum_{\mu} (-1)^{\mu} Q_{\lambda,-\mu} Q_{\lambda\mu}$$
$$M_1(Q_\lambda) = \frac{1}{2} \sum_{\mu} (-1)^{\mu} [Q_{\lambda,-\mu}, [H, Q_{\lambda\mu}]]$$

• Exact treatment for exc states

 ν

• Many-body truncation only GS

"Exact sum rules with approximate ground states"

[Johnson et al., JPG, 2020]

Studied quantity: multipole response

Exact implementation up to m₁

$$S(Q_{\lambda}, E) \equiv \sum_{\mu\nu} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2} \delta(E_{\nu} - E_{0} - E)$$
Effective two-body Hamiltonian
$$H = H^{[1]} + H^{[2]}$$
Spherical tensor operators
$$m_{k}(Q_{\lambda}) \equiv \int_{0}^{\infty} E^{k} S(Q_{\lambda}, E) dE$$

$$= \sum_{\mu\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | Q_{\lambda\mu} | \Psi_{0} \rangle|^{2}$$
Must know excited states
$$\equiv \langle \Psi_{0} | M_{k}(Q_{\lambda}) | \Psi_{0} \rangle$$
Ground state only
$$1 = \sum_{\nu} |\Psi_{\nu} \rangle \langle \Psi_{\nu}|$$
Complexity shifted to operator structure
$$Effective two-body Hamiltonian
H = H^{[1]} + H^{[2]}$$
Spherical tensor operators
$$Q_{\lambda\mu}^{\dagger} = (-1)^{\mu}Q_{\lambda,-\mu}$$

$$1 = \sum_{\nu} |\Psi_{\nu} \rangle \langle \Psi_{\nu}|$$

$$M_0(Q_\lambda) \equiv \sum_{\mu} (-1)^{\mu} Q_{\lambda,-\mu} Q_{\lambda\mu}$$
$$M_1(Q_\lambda) = \frac{1}{2} \sum_{\mu} (-1)^{\mu} [Q_{\lambda,-\mu}, [H, Q_{\lambda\mu}]]$$

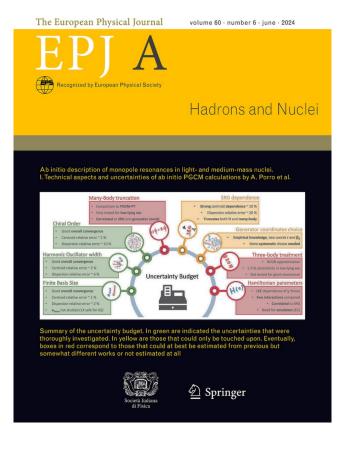
Exact treatment for exc states •

Many-body truncation only GS

"Exact sum rules with approximate ground states"

[Johnson et al., JPG, 2020]

Previous PGCM study



- I. [EPJA (2024) 60, 133]
- II. [EPJA (2024) 60, 134]
- III. [EPJA (2024) 60, 155]
- IV. [EPJA (2024) 60, 233]

Eur. Phys. J. A (2024) 60:155	
https://doi.org/10.1140/epja/s10050-024-01377-5	

Regular Article - Theoretical Physics

Ab initio description of monopole resonances in light- and medium-mass nuclei

III. Moments evaluation in ab initio PGCM calculations

A. Porro^{1,2,3,a}, T. Duguet^{3,4}, J.-P. Ebran^{5,6}, M. Frosini⁷, R. Roth^{1,8}, V. Somà³

Previous PGCM study

D Springer

- [EPJA (2024) 60, 133] Ι. 11. [EPJA (2024) 60, 134]
- |||. [EPJA (2024) 60, 155]
- IV. [EPJA (2024) 60, 233]

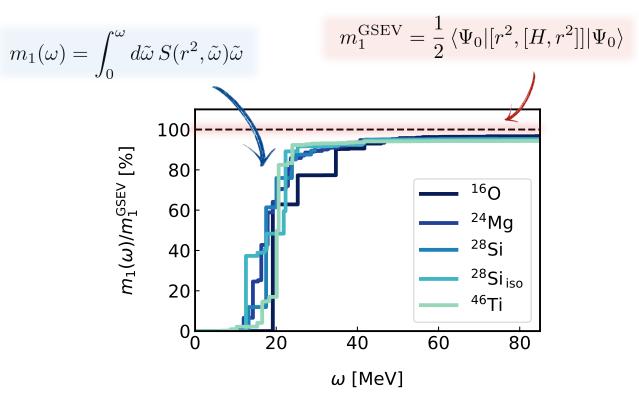
Eur. Phys. J. A (2024) 60:155
https://doi.org/10.1140/epja/s10050-024-01377-5

Regular Article - Theoretical Physics

Ab initio description of monopole resonances in light- and medium-mass nuclei

III. Moments evaluation in ab initio PGCM calculations

A. Porro^{1,2,3,a}, T. Duguet^{3,4}, J.-P. Ebran^{5,6}, M. Frosini⁷, R. Roth^{1,8}, V. Somà³



Previous PGCM study

Ab initio description of monopole resonances in light- and medium-mass nuclei. I. Technical aspects and uncertainties of ab initio PGCM calculations by A. Porro et al

thoroughly investigated. In yellow are those that could only be touched upon. Eventually, boxes in red correspond to those that could at best be estimated from previous but somewhat different works or not estimated at all

- I. [EPJA (2024) 60, 133] II. [EPJA (2024) 60, 134]
- III. [EPJA (2024) 60, 155]
- IV. [EPJA (2024) 60, 233]

Eur. Phys. J. A (2024) 60:155	
https://doi.org/10.1140/epja/s10050-024-01377-5	

Regular Article - Theoretical Physics

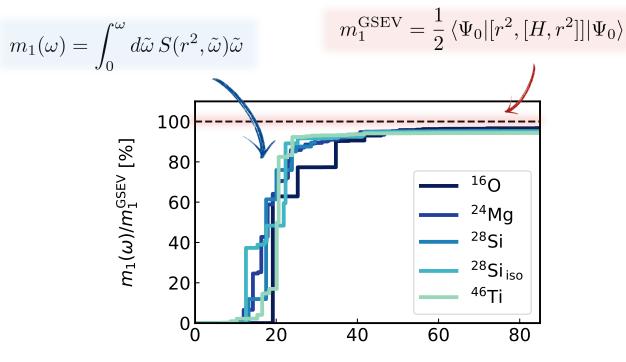
Ab initio description of monopole resonances in light- and medium-mass nuclei

III. Moments evaluation in ab initio PGCM calculations

A. Porro^{1,2,3,a}, T. Duguet^{3,4}, J.-P. Ebran^{5,6}, M. Frosini⁷, R. Roth^{1,8}, V. Somà³

Check fo

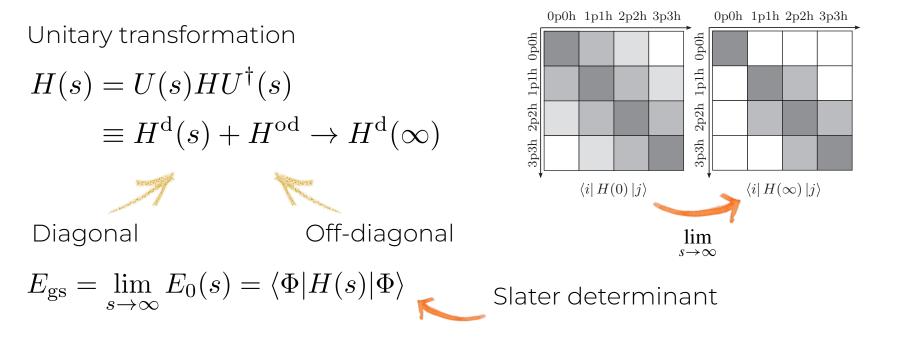
updates



 ω [MeV]

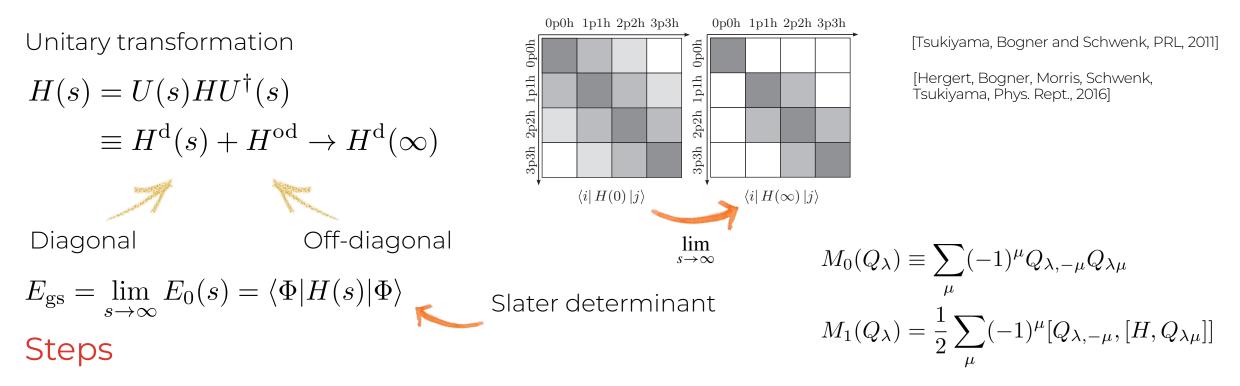
THE EUROPEAN

PHYSICAL JOURNAL A

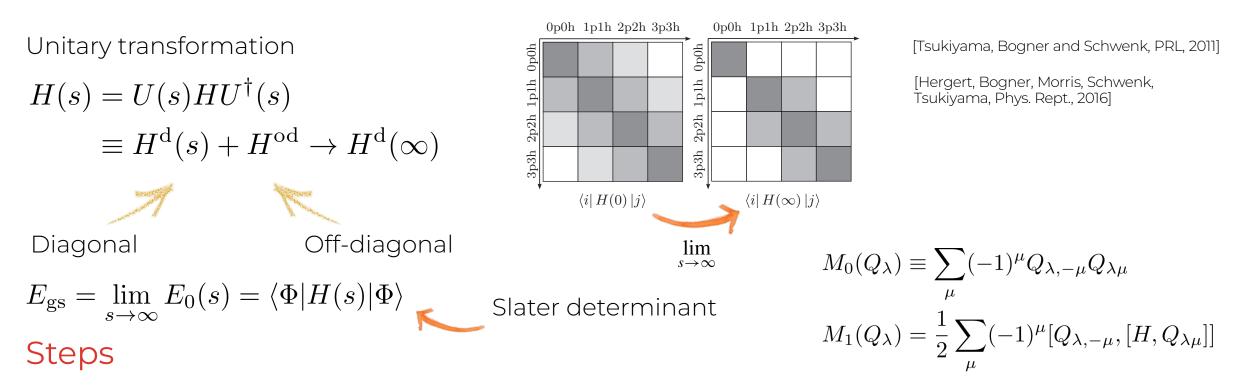


[Tsukiyama, Bogner and Schwenk, PRL, 2011]

[Hergert, Bogner, Morris, Schwenk, Tsukiyama, Phys. Rept., 2016]

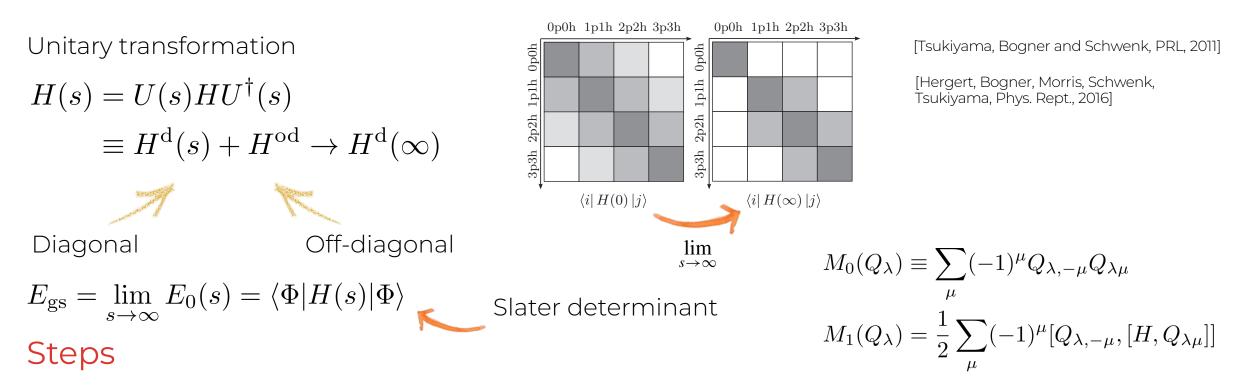


Start from the moment operator in the HO basis



Start from the moment operator in the HO basis

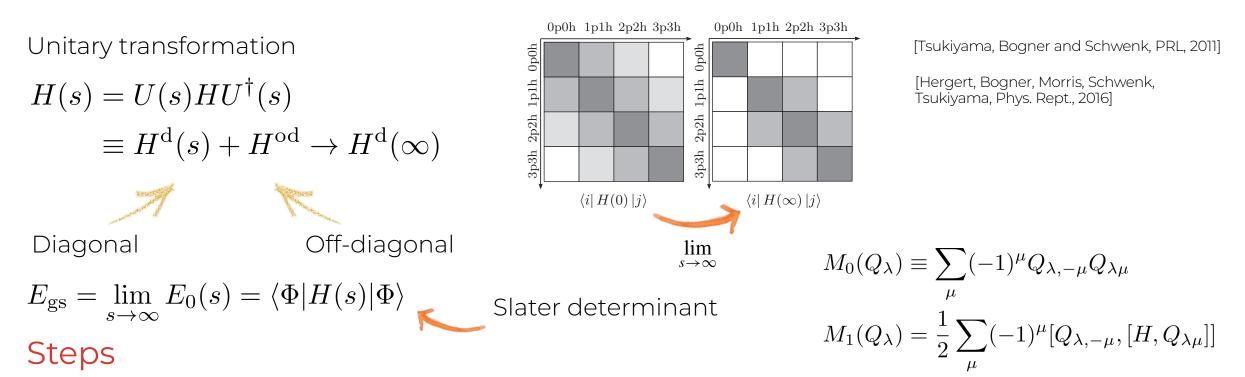
J-scheme expressions of m_0 and m_1 [Lu and Johnson, PRC 97 (2018) 3, 034330]



Start from the moment operator in the HO basis

J-scheme expressions of m_0 and m_1 [Lu and Johnson, PRC 97 (2018) 3, 034330]

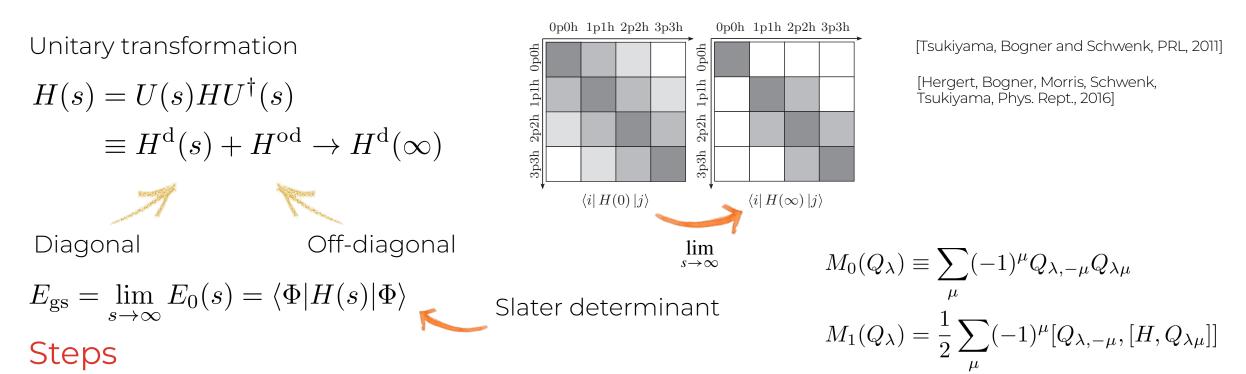
Implemented within imsrg++ code
[github.com/ragnarstroberg/imsrg]



- Start from the moment operator in the HO basis
- Perform an IMSRG(2) calculation

J-scheme expressions of m_0 and m_1 [Lu and Johnson, PRC 97 (2018) 3, 034330]

Implemented within imsrg++ code
[github.com/ragnarstroberg/imsrg]

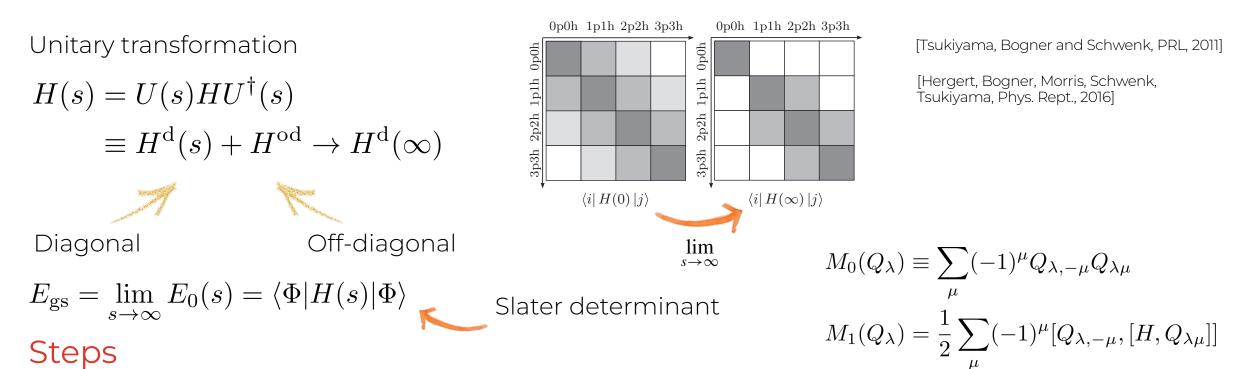


- Start from the moment operator in the HO basis
- Perform an IMSRG(2) calculation
- Evolve moment operators using Magnus $U(s)\equiv e^{\Omega(s)}$

J-scheme expressions of m_0 and m_1 [Lu and Johnson, PRC 97 (2018) 3, 034330]

Implemented within imsrg++ code
[github.com/ragnarstroberg/imsrg]

Strategy in the IMSRG framework



- Start from the moment operator in the HO basis
- Perform an IMSRG(2) calculation
- Evolve moment operators using Magnus $U(s)\equiv e^{\Omega(s)}$

Benchmarks

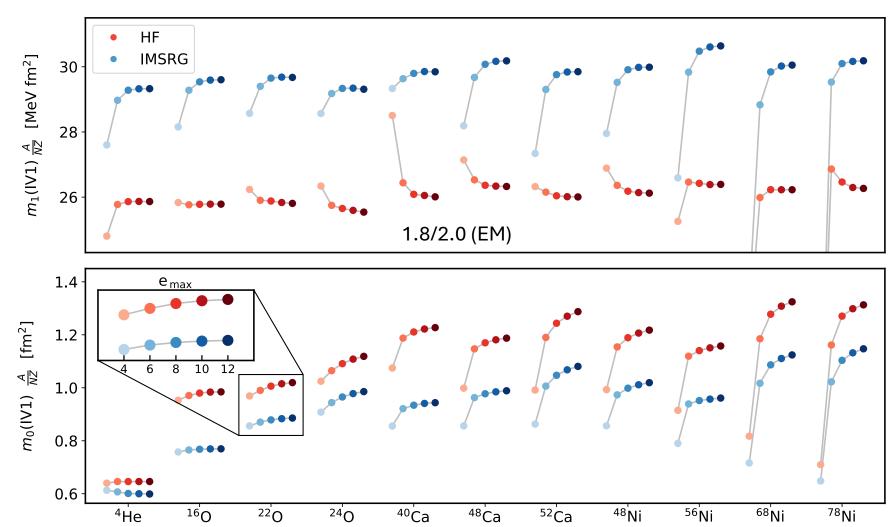
- HF value of m₀ against TDA
- HF value of m₁ against RPA

J-scheme expressions of m_0 and m_1 [Lu and Johnson, PRC 97 (2018) 3, 034330]

Implemented within imsrg++ code
[github.com/ragnarstroberg/imsrg]

$$Q_{1\mu}^{\rm IV} = \frac{N}{A} \sum_{i=1}^{Z} r_i Y_{1\mu}(\hat{r}_i) - \frac{Z}{A} \sum_{i=1}^{N} r_i Y_{1\mu}(\hat{r}_i)$$

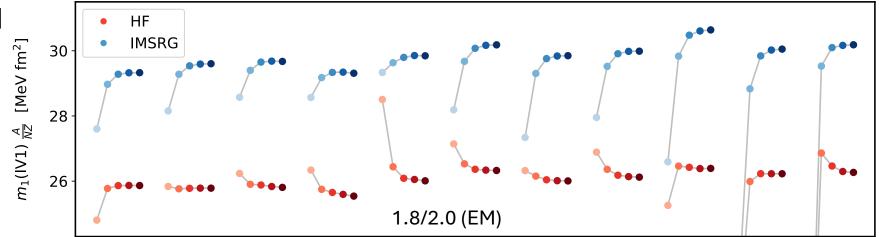
$$Q_{1\mu}^{\rm IV} = \frac{N}{A} \sum_{i=1}^{Z} r_i Y_{1\mu}(\hat{r}_i) - \frac{Z}{A} \sum_{i=1}^{N} r_i Y_{1\mu}(\hat{r}_i)$$

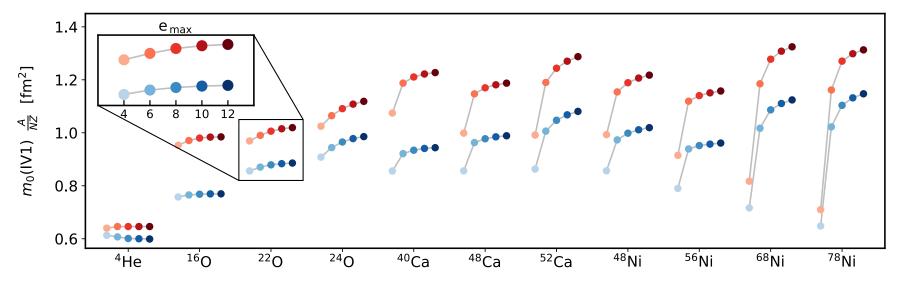


$$M_1(Q_{\lambda}) = \frac{1}{2} \sum_{\mu} (-1)^{\mu} [Q_{\lambda,-\mu}, [H, Q_{\lambda\mu}]]$$

- Large correlation impact
- Relative difference ~0.2%
- Similar error for $\hbar\omega$ variations

$$Q_{1\mu}^{\rm IV} = \frac{N}{A} \sum_{i=1}^{Z} r_i Y_{1\mu}(\hat{r}_i) - \frac{Z}{A} \sum_{i=1}^{N} r_i Y_{1\mu}(\hat{r}_i)$$





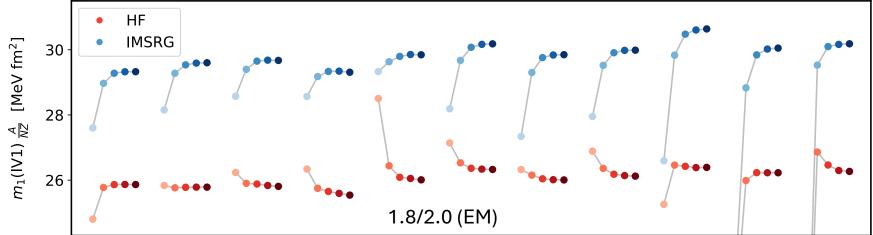
$$M_1(Q_{\lambda}) = \frac{1}{2} \sum_{\mu} (-1)^{\mu} [Q_{\lambda,-\mu}, [H, Q_{\lambda\mu}]]$$

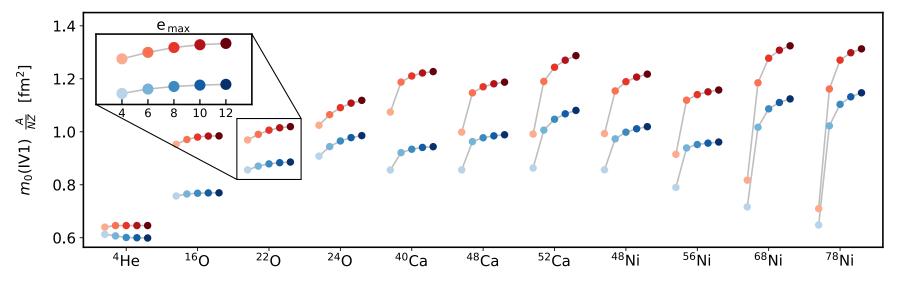
- Large correlation impact
- Relative difference ~0.2%
- Similar error for $\hbar\omega$ variations

$$M_0(Q_\lambda) \equiv \sum_{\mu} (-1)^{\mu} Q_{\lambda,-\mu} Q_{\lambda\mu}$$

- Slower convergence
- Relative difference ~1.3%
- 2% error for $\hbar\omega$ variations

$$Q_{1\mu}^{\rm IV} = \frac{N}{A} \sum_{i=1}^{Z} r_i Y_{1\mu}(\hat{r}_i) - \frac{Z}{A} \sum_{i=1}^{N} r_i Y_{1\mu}(\hat{r}_i)$$





Introduction

- Physics case
- Existing ab initio methods

IMSRG multipole moments

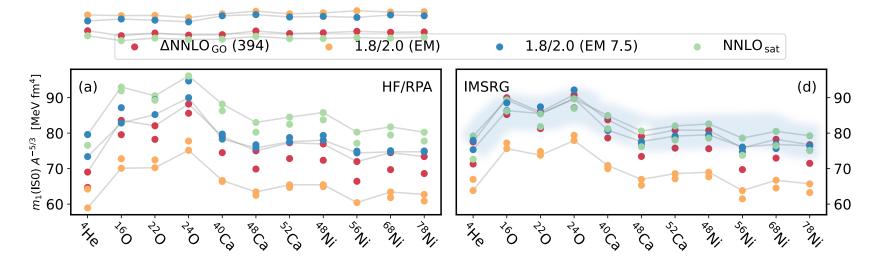
- Moments of the strength
- IMSRG implementation
- Model-space convergence

Numerical results

- Interaction sensitivity
- Comparison to experiment
- Comparison to sum rules

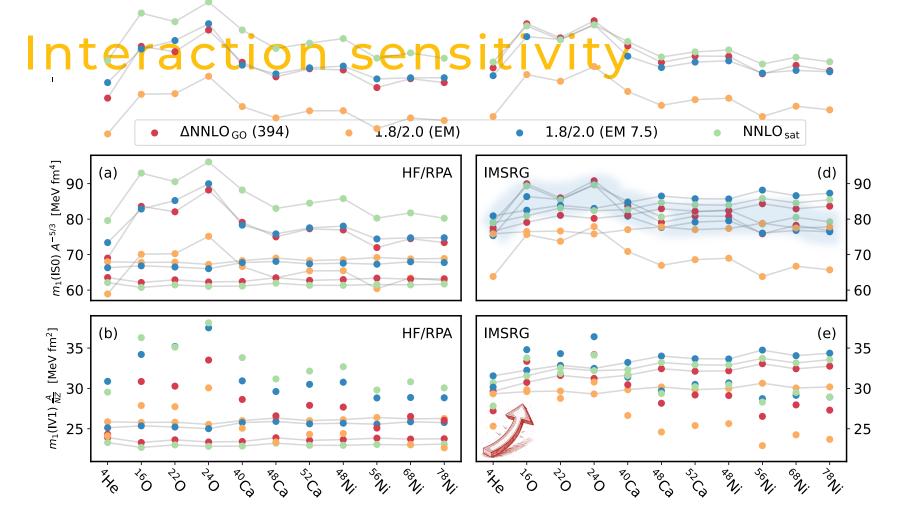
Challenges and opportunities

Interaction sensitivity



Monopole

- Reduced spread
- ~5% correlations effect



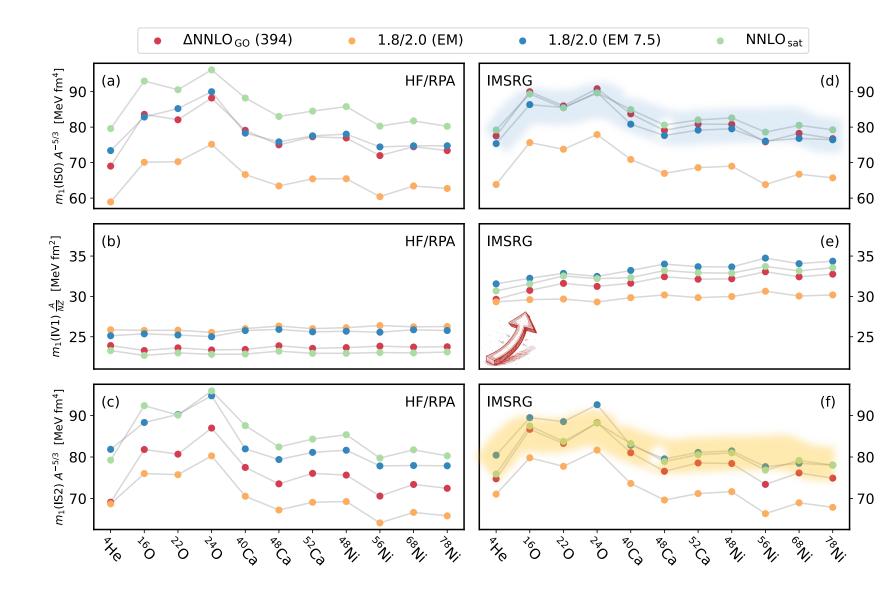
Monopole

- Reduced spread
- ~5% correlations effect

Dipole

- Increase up to 40%
- 2% spread (w/o 1.8/2.0(EM))

Interaction sensitivity



Monopole

- Reduced spread
- ~5% correlations effect

Dipole

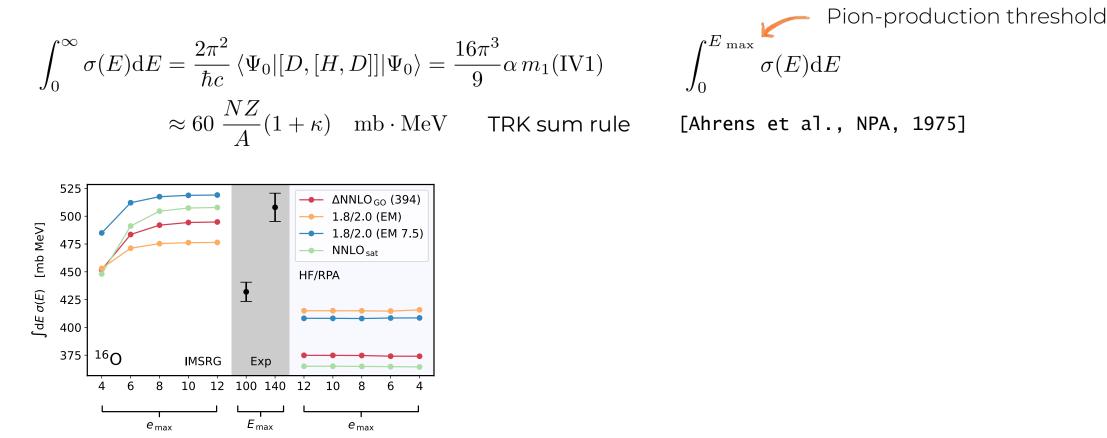
- Increase up to 40%
- 2% spread (w/o 1.8/2.0(EM))

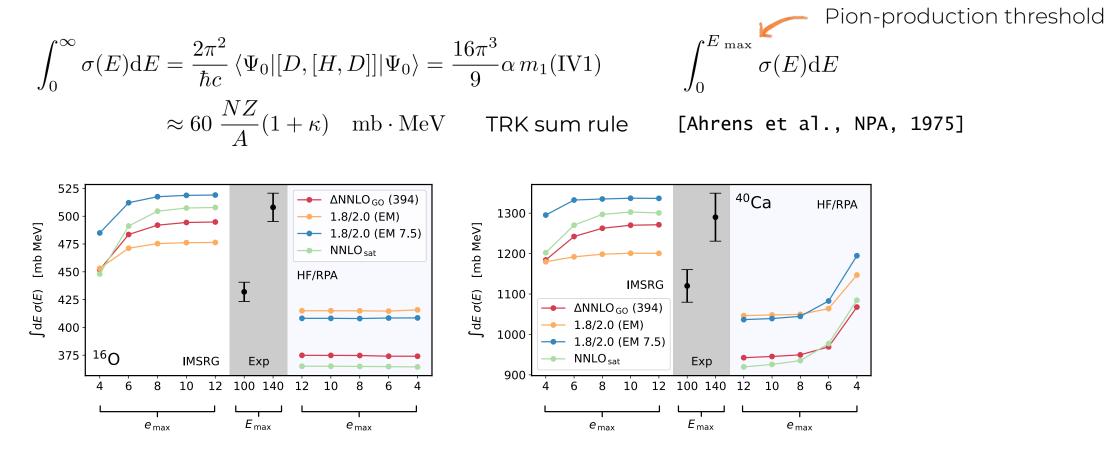
Quadrupole

- Reduced spread
- ~5% correlations effect

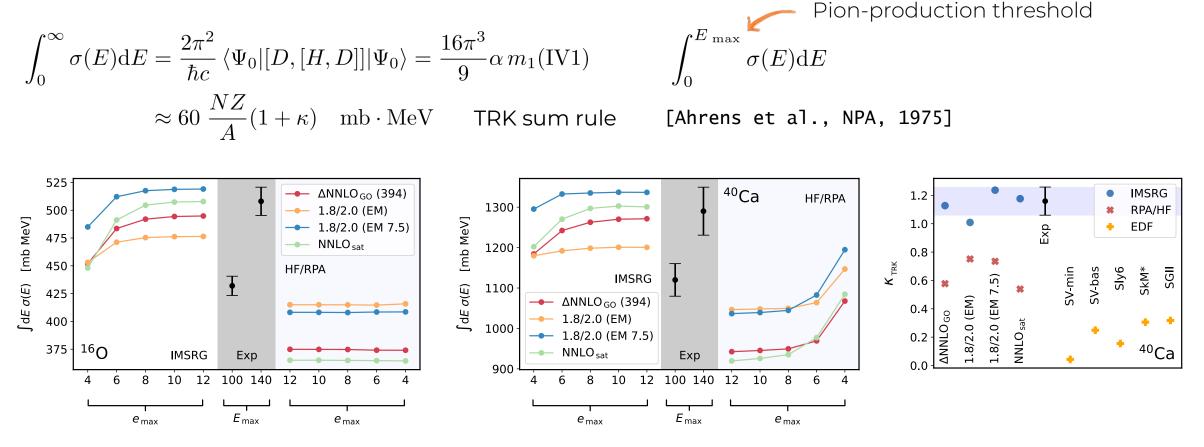
$$\int_0^\infty \sigma(E) dE = \frac{2\pi^2}{\hbar c} \langle \Psi_0 | [D, [H, D]] | \Psi_0 \rangle = \frac{16\pi^3}{9} \alpha \, m_1(\text{IV1})$$
$$\approx 60 \, \frac{NZ}{A} (1+\kappa) \quad \text{mb} \cdot \text{MeV} \qquad \text{TRK sum rule}$$

$$\int_{0}^{\infty} \sigma(E) dE = \frac{2\pi^{2}}{\hbar c} \langle \Psi_{0} | [D, [H, D]] | \Psi_{0} \rangle = \frac{16\pi^{3}}{9} \alpha m_{1} (IV1) \qquad \int_{0}^{E_{\max}} \sigma(E) dE \\ \approx 60 \frac{NZ}{A} (1 + \kappa) \text{ mb} \cdot \text{MeV} \quad \text{TRK sum rule} \qquad \text{[Ahrens et al., NPA, 1975]}$$





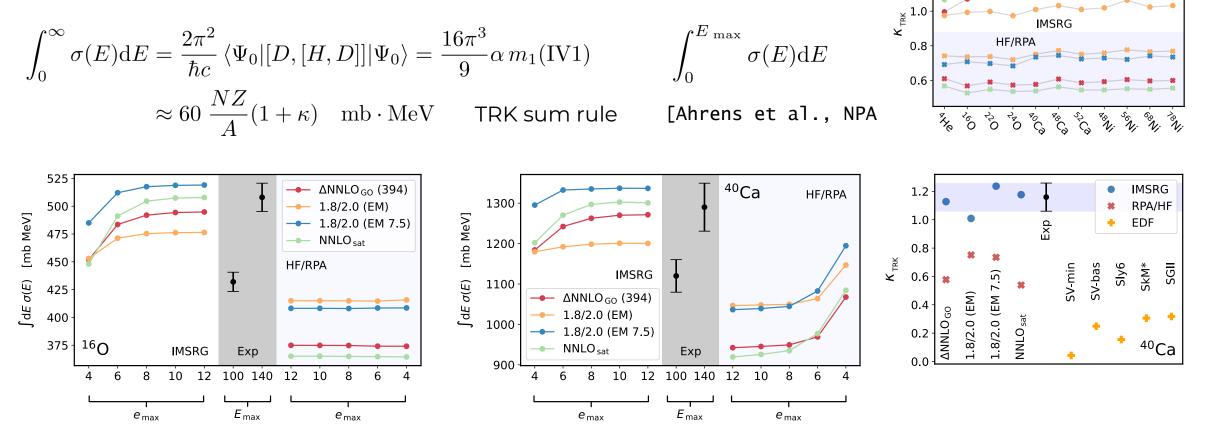
Comparison to exp only makes sense for integrated quantities



Comparison to EDF calculations

[Courtesy of P.-G. Reinhard]

Comparison to exp only makes sense for integrated quantities



Comparison to EDF calculations

• * ΔNNLO_{GO} (394)

• * 1.8/2.0 (EM)

1.4

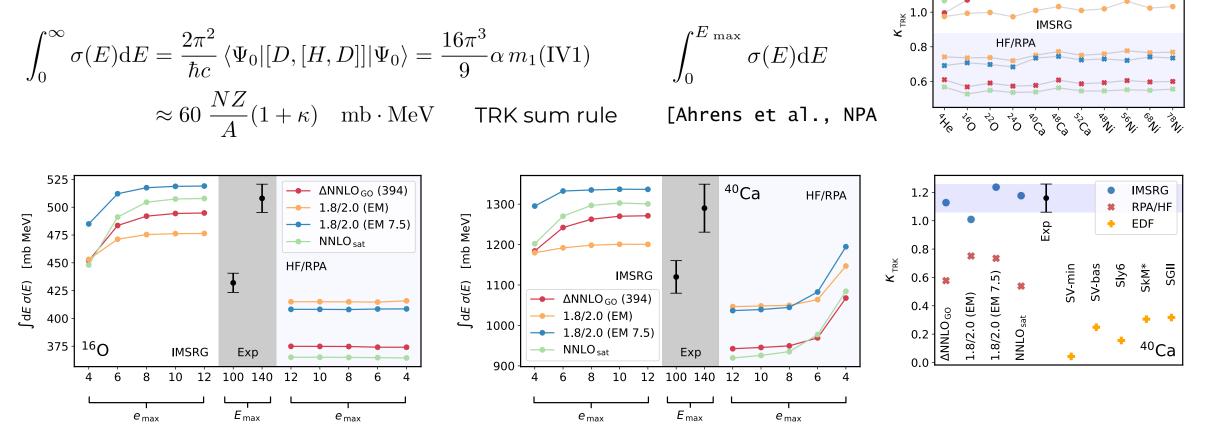
1.2

• * 1.8/2.0 (EM 7.5)

NNLO_{sat}

[Courtesy of P.-G. Reinhard]

Comparison to exp only makes sense for integrated quantities



Both needed for consistent description

- Ground-state correlations
- Commutator expression generates 2-body currents

Comparison to EDF calculations

• * ΔNNLO_{GO} (394)

• * 1.8/2.0 (EM)

1.4

1.2

14

• * 1.8/2.0 (EM 7.5)

NNLO_{sat}

[Courtesy of P.-G. Reinhard]

Sum rules extensively studied in the past

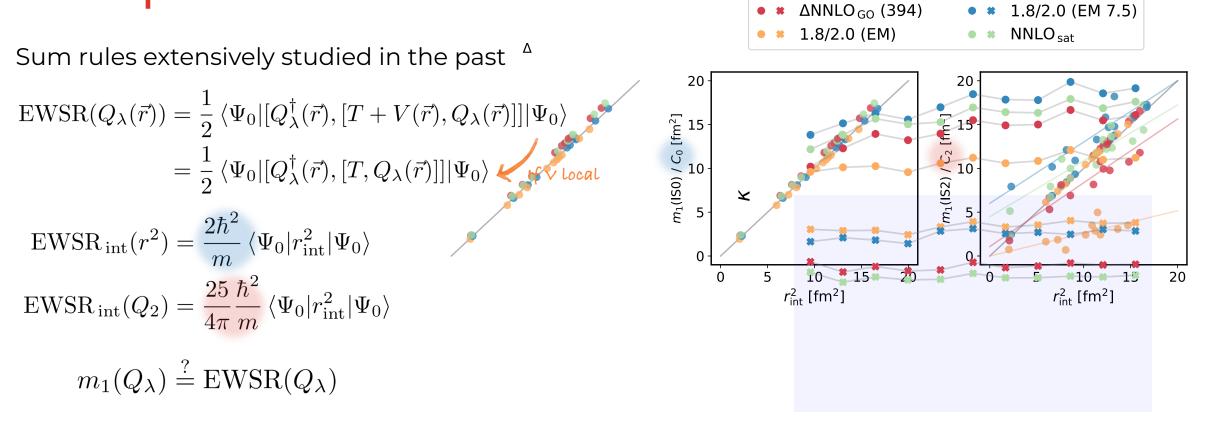
$$\begin{split} \mathrm{EWSR}(Q_{\lambda}(\vec{r})) &= \frac{1}{2} \langle \Psi_{0} | [Q_{\lambda}^{\dagger}(\vec{r}), [T + V(\vec{r}), Q_{\lambda}(\vec{r})]] | \Psi_{0} \rangle \\ &= \frac{1}{2} \langle \Psi_{0} | [Q_{\lambda}^{\dagger}(\vec{r}), [T, Q_{\lambda}(\vec{r})]] | \Psi_{0} \rangle \checkmark_{\mathrm{if}} \mathsf{v} \mathsf{local} \end{split}$$

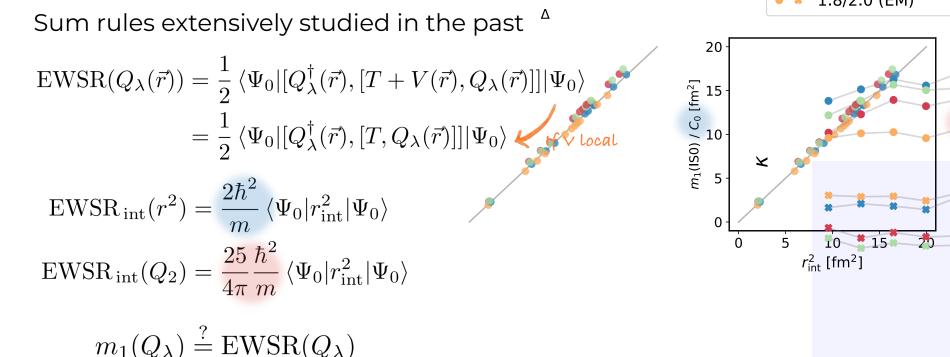
Sum rules extensively studied in the past

$$\begin{aligned} \operatorname{EWSR}(Q_{\lambda}(\vec{r})) &= \frac{1}{2} \langle \Psi_{0} | [Q_{\lambda}^{\dagger}(\vec{r}), [T + V(\vec{r}), Q_{\lambda}(\vec{r})]] | \Psi_{0} \rangle \\ &= \frac{1}{2} \langle \Psi_{0} | [Q_{\lambda}^{\dagger}(\vec{r}), [T, Q_{\lambda}(\vec{r})]] | \Psi_{0} \rangle \checkmark \mathsf{from local} \end{aligned}$$
$$\begin{aligned} \operatorname{EWSR}_{\mathrm{int}}(r^{2}) &= \frac{2\hbar^{2}}{m} \langle \Psi_{0} | r_{\mathrm{int}}^{2} | \Psi_{0} \rangle \\ \operatorname{EWSR}_{\mathrm{int}}(Q_{2}) &= \frac{25}{4\pi} \frac{\hbar^{2}}{m} \langle \Psi_{0} | r_{\mathrm{int}}^{2} | \Psi_{0} \rangle \end{aligned}$$

Sum rules extensively studied in the past

$$\begin{aligned} \operatorname{EWSR}(Q_{\lambda}(\vec{r})) &= \frac{1}{2} \langle \Psi_{0} | [Q_{\lambda}^{\dagger}(\vec{r}), [T + V(\vec{r}), Q_{\lambda}(\vec{r})]] | \Psi_{0} \rangle \\ &= \frac{1}{2} \langle \Psi_{0} | [Q_{\lambda}^{\dagger}(\vec{r}), [T, Q_{\lambda}(\vec{r})]] | \Psi_{0} \rangle \checkmark \mathsf{free}_{\mathsf{Ifvecal}} \end{aligned}$$
$$\begin{aligned} \operatorname{EWSR}_{\mathrm{int}}(r^{2}) &= \frac{2\hbar^{2}}{m} \langle \Psi_{0} | r_{\mathrm{int}}^{2} | \Psi_{0} \rangle \\ \operatorname{EWSR}_{\mathrm{int}}(Q_{2}) &= \frac{25}{4\pi} \frac{\hbar^{2}}{m} \langle \Psi_{0} | r_{\mathrm{int}}^{2} | \Psi_{0} \rangle \\ m_{1}(Q_{\lambda}) \stackrel{?}{=} \operatorname{EWSR}(Q_{\lambda}) \end{aligned}$$

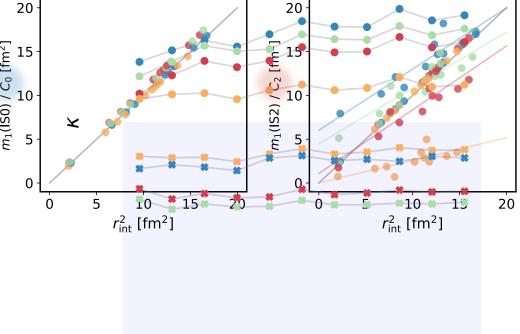


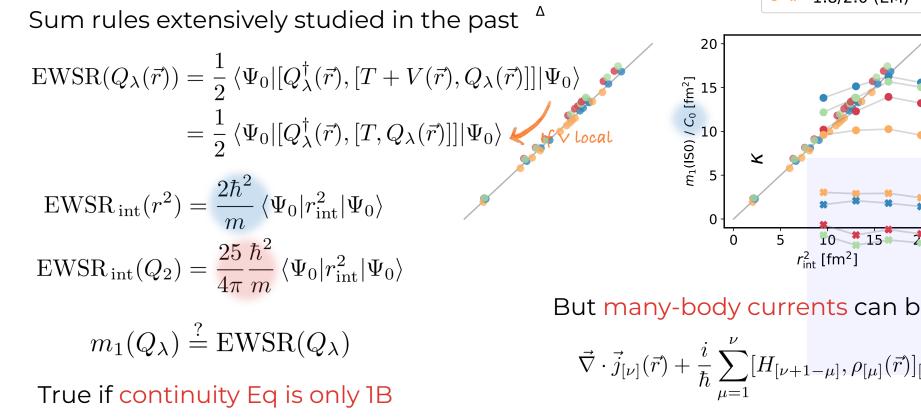


True if continuity Eq is only 1B

$$\vec{\nabla} \cdot \vec{j}(\vec{r}) + \frac{i}{\hbar} [H, \rho(\vec{r})] = 0$$

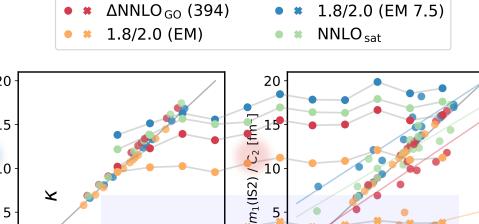
$$\vec{\nabla} \cdot \vec{j}_{[1]}(\vec{r}) + \frac{i}{\hbar} [T, \rho_{[1]}(\vec{r})] = 0$$
If v local





$$\vec{\nabla} \cdot \vec{j}(\vec{r}) + \frac{i}{\hbar} [H, \rho(\vec{r})] = 0$$

$$\vec{\nabla} \cdot \vec{j}_{[1]}(\vec{r}) + \frac{i}{\hbar} [T, \rho_{[1]}(\vec{r})] = 0$$
If \vee local



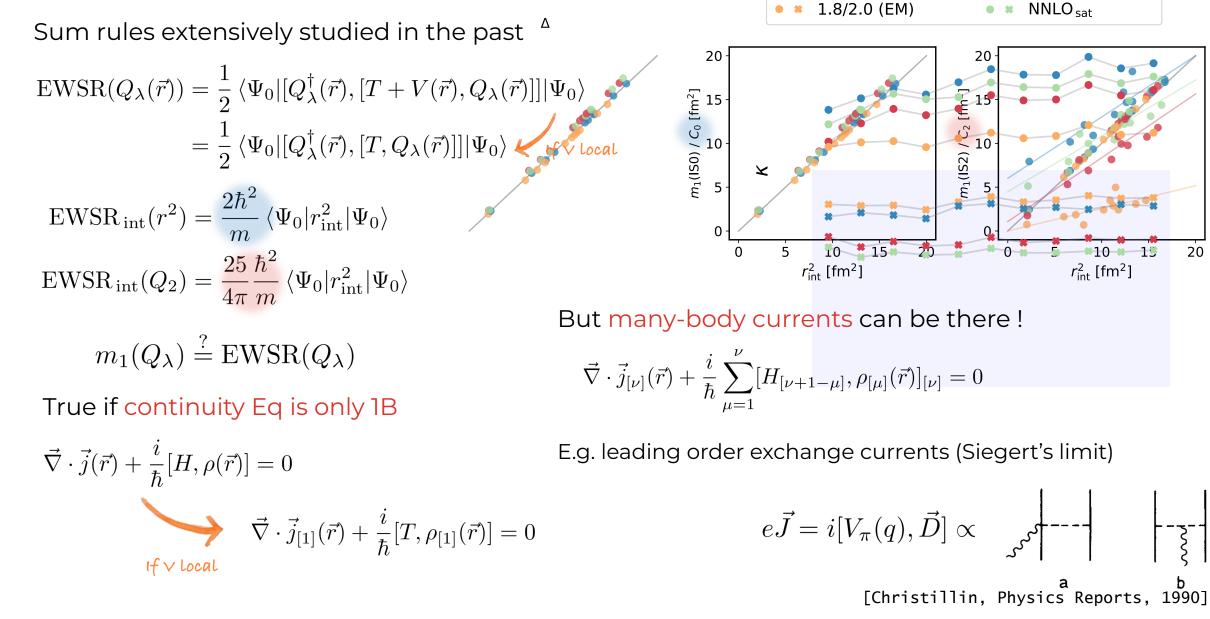
But many-body currents can be there !

$$\vec{\nabla} \cdot \vec{j}_{[\nu]}(\vec{r}) + \frac{i}{\hbar} \sum_{\mu=1}^{\nu} [H_{[\nu+1-\mu]}, \rho_{[\mu]}(\vec{r})]_{[\nu]} = 0$$

*10 × 15

 $r_{\rm int}^2$ [fm²]

20



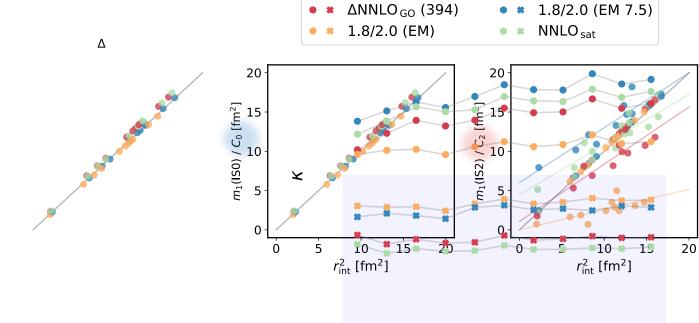
20

1.8/2.0 (EM 7.5)

 $\Delta NNLO_{GO}$ (394)

$$\operatorname{EWSR}_{\operatorname{int}}(r^{2}) = \frac{2\hbar^{2}}{m} \langle \Psi_{0} | r_{\operatorname{int}}^{2} | \Psi_{0} \rangle$$
$$\operatorname{EWSR}_{\operatorname{int}}(Q_{2}) = \frac{25}{4\pi} \frac{\hbar^{2}}{m} \langle \Psi_{0} | r_{\operatorname{int}}^{2} | \Psi_{0} \rangle$$
$$m_{1}(Q_{\lambda}) \stackrel{?}{=} \operatorname{EWSR}(Q_{\lambda})$$

Let's look more closely



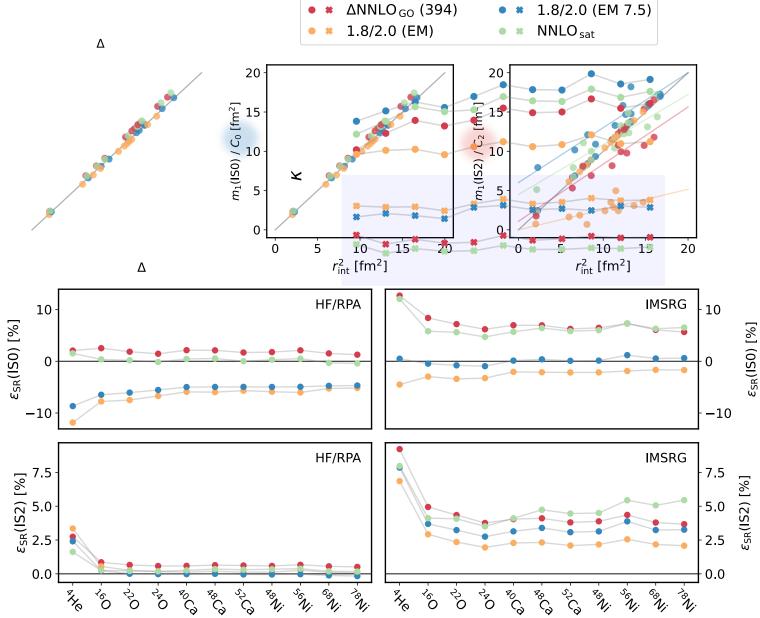
$$\text{EWSR}_{\text{int}}(r^2) = \frac{2\hbar^2}{m} \langle \Psi_0 | r_{\text{int}}^2 | \Psi_0 \rangle$$
$$\text{EWSR}_{\text{int}}(Q_2) = \frac{25}{4\pi} \frac{\hbar^2}{m} \langle \Psi_0 | r_{\text{int}}^2 | \Psi_0 \rangle$$

 $m_1(Q_\lambda) \stackrel{?}{=} \mathrm{EWSR}(Q_\lambda)$

Let's look more closely

Relative difference

$$\varepsilon_{\rm SR}(Q_{\lambda})[\%] \equiv \frac{m_1(Q_{\lambda}) - \mathrm{EWSR}(Q_{\lambda})}{\mathrm{EWSR}(Q_{\lambda})} \times 100$$



$$\text{EWSR}_{\text{int}}(r^2) = \frac{2\hbar^2}{m} \langle \Psi_0 | r_{\text{int}}^2 | \Psi_0 \rangle$$
$$\text{EWSR}_{\text{int}}(Q_2) = \frac{25}{4\pi} \frac{\hbar^2}{m} \langle \Psi_0 | r_{\text{int}}^2 | \Psi_0 \rangle$$

 $m_1(Q_\lambda) \stackrel{?}{=} \mathrm{EWSR}(Q_\lambda)$

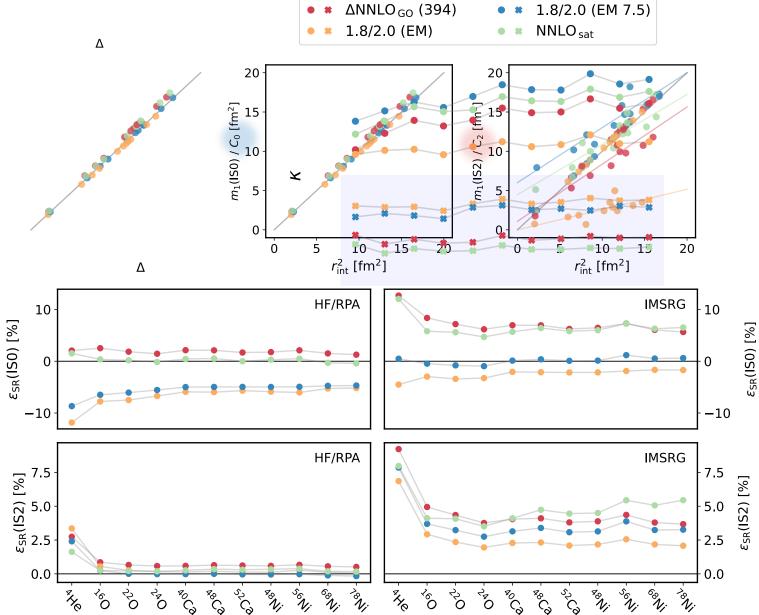
Let's look more closely

Relative difference

$$\varepsilon_{\rm SR}(Q_{\lambda})[\%] \equiv \frac{m_1(Q_{\lambda}) - \mathrm{EWSR}(Q_{\lambda})}{\mathrm{EWSR}(Q_{\lambda})} \times 100$$

Differences from EWSR

- Nonlocalities
- Two-body currents



$$\text{EWSR}_{\text{int}}(r^2) = \frac{2\hbar^2}{m} \langle \Psi_0 | r_{\text{int}}^2 | \Psi_0 \rangle$$
$$\text{EWSR}_{\text{int}}(Q_2) = \frac{25}{4\pi} \frac{\hbar^2}{m} \langle \Psi_0 | r_{\text{int}}^2 | \Psi_0 \rangle$$

 $m_1(Q_\lambda) \stackrel{?}{=} \mathrm{EWSR}(Q_\lambda)$

Let's look more closely

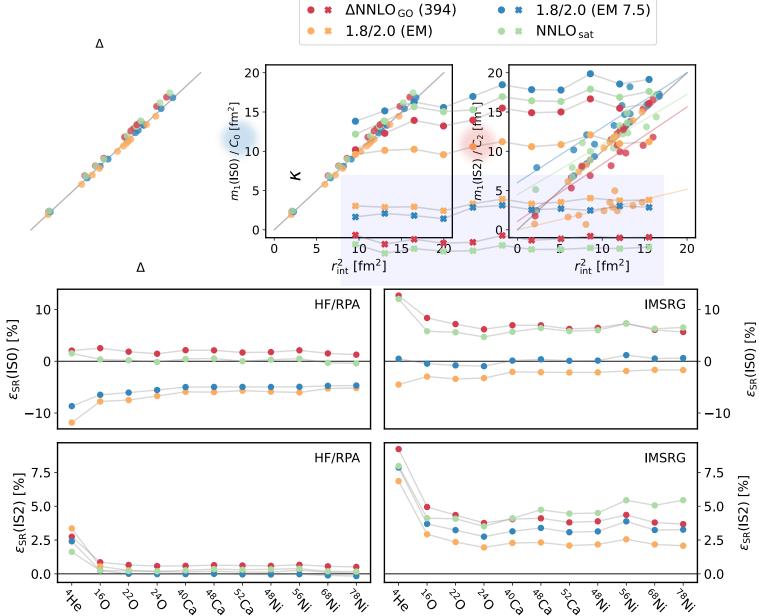
Relative difference

$$\varepsilon_{\rm SR}(Q_{\lambda})[\%] \equiv \frac{m_1(Q_{\lambda}) - {\rm EWSR}(Q_{\lambda})}{{\rm EWSR}(Q_{\lambda})} \times 100$$

Differences from EWSR

- Nonlocalities
- Two-body currents

m1 from moments is better!



Introduction

- Physics case
- Existing ab initio methods

IMSRG multipole moments

- Moments of the strength
- IMSRG implementation
- Model-space convergence

Numerical results

- Interaction sensitivity
- Comparison to experiment
- Comparison to sum rules

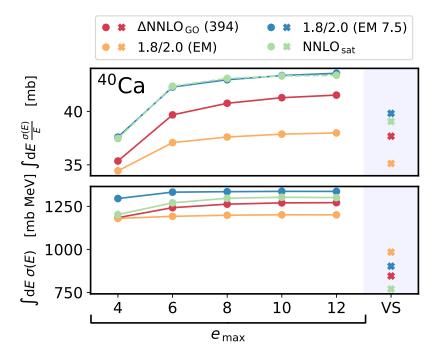
Challenges and opportunities

Going open-shell

Going open-shell

Comparison to VS calculation for ⁴⁰Ca with ²⁸Si core

- Large uncertainties for m_1 and m_0
- Two-step decoupling
- Is the core well described ? (deformation)



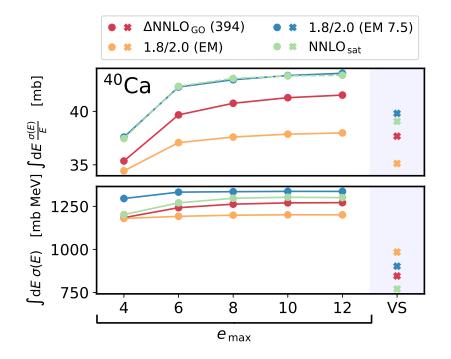
Going open-shell

Comparison to VS calculation for ⁴⁰Ca with ²⁸Si core

- Large uncertainties for m_1 and m_0
- Two-step decoupling
- Is the core well described ? (deformation)

Other possibilities within the IMSRG

- Multi-reference formulation
- Symmetry-breaking calculations



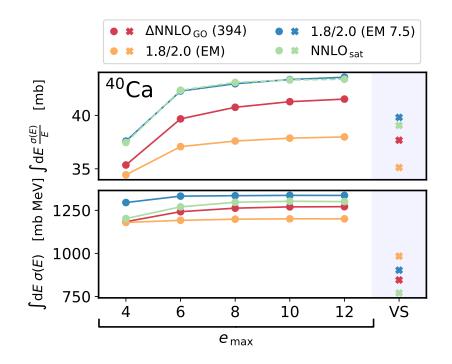
Going open-shell

- Comparison to VS calculation for ⁴⁰Ca with ²⁸Si core
- Large uncertainties for m_1 and m_0
- Two-step decoupling
- Is the core well described ? (deformation)
- Other possibilities within the IMSRG
- Multi-reference formulation
- Symmetry-breaking calculations

Benchmarks and uncertainty quantification

No limitation on the many-body method (and operators) of choice

- Exact treatment of excited states
- Can benchmark response calculations going through exc states EOM, LIT etc. (can send matrix elements)



Going open-shell

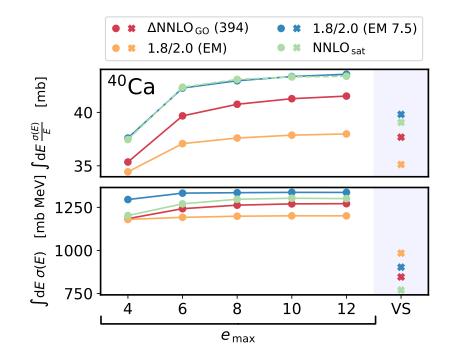
- Comparison to VS calculation for ⁴⁰Ca with ²⁸Si core
- Large uncertainties for m_1 and m_0
- Two-step decoupling
- Is the core well described ? (deformation)
- Other possibilities within the IMSRG
- Multi-reference formulation
- Symmetry-breaking calculations

Benchmarks and uncertainty quantification

No limitation on the many-body method (and operators) of choice

- Exact treatment of excited states
- Can benchmark response calculations going through exc states EOM, LIT etc. (can send matrix elements)

Systematic studies of H properties



Thank you for the attention

Robert Roth Achim Schwenk Alexander Tichai

Thomas Duguet Jean-Paul Ebran Mikael Frosini Vittorio Somà

Francesca Bonaiti

Summary

- Moment method useful for uncertainty quantification /benchmark of exc states
- Can be used for systematic studies of H properties
- Small finite-basis uncertainty
- Correlation effect ~5% in monopole and quadrupole
- Qualitative change (~40%) for dipole
- Better agreement with data and smaller interaction spread
- Comparison to EWSR diagnostic of non-localities and two-body currents

