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OUTLINE

Quick overview of Self-Consistent Green’s Function 
(SCGF) Theory.

Diagrammatic Monte Carlo: 

- Nuclear pairing model

- Chiral interaction in a small space

SCGF calculations for nuclei in large model spaces: 

- Shell inversion in Argon 46



SELF-CONSISTENT GREEN’S FUNCTION THEORY

Mattuck, A Guide to Feynman Diagrams in the 
Many-Body Problem (1992)
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STRUCTURE INFORMATION

Cipollone et al., Phys. Rev. C, 92, 014306 (2015)

Hebeler et al., Annu. Rev. Nucl. Part. Sci. (2015)
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Idini et al., Phys. Rev. Lett., 123, 092501 (2019)

• We do not include ISCs beyond 
2𝑝1ℎ and the cross section is 
overestimated.

• We need to include high order 
diagrams (≫ 3).

Notable work towards high order 
diagrams:

C. Drischler et al., Phys. Rev. 
Lett. 122, 042501 (2019)

P. Arthuis et al., Comp. Phys. Comm. 
240, 202 (2019)



SAMPLING THE DIAGRAMMATIC SPACE



DIAGRAMMATIC MONTE CARLO

Diagrammatic Monte Carlo was developed for condensed matter systems.

• It can sum up (very) high order Feynman diagrams of the self-energy expansion1. 
• Applied for infinite systems at finite temperature. 

How does it work?

• Each diagram (at fixed internal frequencies and quantum numbers) is assigned a weight.
• This creates a probability distribution w over the space of diagrams.
• We build a Markov chain with carefully tuned Metropolis-Hastings update ratios designed to reproduce the PDF w. 
• The Markov chain “moves” thanks to updates on the topology and quantum numbers of the diagrams.

Can it work for nuclear physics?

1. DiagMC included diagrams up to order 9 for the unitary Fermi gas, see K. Van Houcke et al., Phys. Rev. B., 99, 035140 (2019)
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Diagrams of the self-energy expansion

A BIT OF MATHEMATICAL MACHINERY

Basis functions



DEALING WITH 𝒁𝜶𝜷
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If the weight of a subset 𝑆ே of diagrams is known (𝑍ேఈఉ), we can use the number of times 𝑆ே is visited (𝒩) to compute 

the normalization.
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NORMALIZATION SECTOR
Self-closing propagators need convergence factors 𝑒ఠభఎ.

They can be included automatically at all orders by using a HF reference propagator. 

≝
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We choose as normalization sector: + ⋯ ++



BASIS FUNCTIONS

Σఈఉ
 = 𝑍ேഀഁ

lim
ே→ஶ

1

𝒩
 𝐵 𝜔 𝑒 ୟ୰[ഀഁ(ఠೕ,ೕ)]1𝒯ೕ∈ௌಂ

ே

ୀଵ

𝐵 𝑥 are normalized Legendre polynomials. 

• Now we expand up to order ∼ 25 with bins of size 5 MeV. 

• Currently exploring higher orders and other basis functions. Maybe other polynomial basis (e.g. Chebyshev) have 
better performance. 

Recursion formulas are used to generate higher order Σఈఉ
  during the sampling. 

𝐴 ≝ 𝑒 ୟ୰ [ഀഁ(ఠೕ,ೕ)]1𝒯ೕ∈ௌಂ

 (𝑛 + 1)𝐴𝐵ାଵ 𝜔 = 2𝑛 + 1 𝜔𝐴𝐵 𝜔 − 𝑛𝐵ିଵ(𝜔)



RICHARDSON MODEL
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RICHARDSON MODEL: SELF-ENERGY

𝑔 = 0.3
𝜂 = 0.1
𝐷 = 10

SB, C. Barbieri, and E. Vigezzi, Phys. Rev. Lett. 134, 182502 (2025)



RICHARDSON MODEL: FINITE REGULATOR ERROR

SB, C. Barbieri, and E. Vigezzi, Phys. Rev. Lett. 134, 182502 (2025)



RICHARDSON MODEL: GROUND STATE ENERGY

𝑔 = 0.3
𝜂 = 0.1

SB, C. Barbieri, and E. Vigezzi, Phys. Rev. Lett. 134, 182502 (2025)

(state of the art in NP)

(at half filling)

(Dimension of the model space)



CHIRAL POTENTIALS
• To our knowledge DiagMC calculations with such difficult potentials have never been attempted.

• They require a much more complicated updating scheme that can keep track of all the conservation laws at 
each vertex (to avoid sampling too many zero diagrams).



SECOND ORDER RESULTS

N3LO-srg (𝜆 = 1.8 fmିଵ)
ℏΩ = 20 MeV

[EMN(500)]

𝑁௫ = 2

16O



THIRD ORDER RESULTS

N3LO-srg (𝜆 = 1.8 fmିଵ)
ℏΩ = 20 MeV

[EMN(500)]
𝑁௫ = 2

16O



FOURTH ORDER RESULTS

𝑁௫ = 2

16O

N3LO-srg (𝜆 = 1.8 fmିଵ)
ℏΩ = 20 MeV

[EMN(500)]



There are ways to recover the causality principle from the perturbation theory expansion:

• Resummation techniques (Borel resummation)

• ADC-like schemes natively retain causality

RECOVERING CAUSALITY

Already used in solid state physics 

State of the art techniques in nuclear physics, never 
integrated with DiagMC
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SHELL INVERSION IN ARGON 46

The 𝐴𝑟 𝐻𝑒ଷ , 𝑑 𝐾ସସ reaction shows a smaller-
than-expected exclusive cross section for the 𝑙 = 2
component and a larger 𝑙 = 0 component.

This points toward shell inversion. 

SCGF calculations with the interactions 𝑁𝑁𝐿𝑂௦௧, Δ𝑁𝑁𝐿𝑂ீை(394, 450) and 
1.8/2.0(EM7.5) [1, 2, 3] all confirm this shell inversion.

D. Brugnara et al., arXiv:2506.23228v2 (2025)

1: A. Ekström et al., Phys. Rev. C 91, 051301 (2015)
2: A. Ekström et al., Phys. Rev. C 97, 024332 (2018)
3: P. Arthuis et al., arXiv: 2401.06675 (2024) 



CHARGE BUBBLE IN ARGON 46

D. Brugnara et al., arXiv:2506.23228v2 (2025)
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