

Extending the reach of ab initio approaches using tensor factorization

Lars Zurek

with Thomas Duguet, Jean-Paul Ebran, and Mikael Frosini

ECT* next generation ab initio workshop, July 16, 2025

Outline

- ullet H^{40} as driver of correlation energy and singular spectrum
- Need for cost reduction in BMBPT
- SVD-BMBPT

 This talk: Bogoliubov many-body perturbation theory, but ideas general

Duguet, Signoracci, JPG **44** (2016) Tichai et al., PLB **786** (2018) Arthuis et al., CPC **240** (2019)

- This talk: Bogoliubov many-body perturbation theory, but ideas general
- Normal-order grand potential $\Omega = H \lambda_A A$ and split

$$\Omega = \Omega^{00} + \Omega^{11} + H^{22} + H^{31} + H^{13} + H^{40} + H^{04}$$
 HFB via (perturbative) corrections

Normal-ordered components

$$H^{40} = \frac{1}{4!} \sum_{k_1 \dots k_4} H^{40}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta^{\dagger}_{k_4}$$

Duguet, Signoracci, JPG **44** (2016) Tichai et al., PLB **786** (2018) Arthuis et al., CPC **240** (2019)

 This talk: Bogoliubov many-body perturbation theory, but ideas general

Duguet, Signoracci, JPG **44** (2016) Tichai et al., PLB **786** (2018) Arthuis et al., CPC **240** (2019)

• Normal-order grand potential $\Omega = H - \lambda_A A$ and split

$$\Omega = \Omega^{00} + \Omega^{11} + H^{22} + H^{31} + H^{13} + H^{40} + H^{04}$$
 HFB via (perturbative) corrections

Normal-ordered components

$$H^{40} = \frac{1}{4!} \sum_{k_1 \dots k_4} H^{40}_{k_1 k_2 k_3 k_4} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} \beta^{\dagger}_{k_3} \beta^{\dagger}_{k_4}$$

• 3N interaction treated through rank reduction

Frosini et al., EPJA **57** (2021)

• First corrections to HFB ground state energy:

$$e_{\text{BMBPT}}^{(2)} = \frac{1}{4!} \sum_{k_1 \dots k_4} \frac{H_{k_1 k_2 k_3 k_4}^{04} H_{k_1 k_2 k_3 k_4}^{40}}{E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4}} \qquad H_{k_1 k_2 k_3 k_4}^{04} = H_{k_1 k_2 k_3 k_4}^{40*}$$

$$e_{\text{BMBPT}}^{(3)} = \frac{1}{8} \sum_{k_1 \dots k_6} \frac{H_{k_1 k_2 k_3 k_4}^{04} H_{k_3 k_4 k_5 k_6}^{22} H_{k_5 k_6 k_1 k_2}^{40}}{(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4})(E_{k_5} + E_{k_6} + E_{k_1} + E_{k_2})}$$

• Eckart-Young theorem: truncated SVD gives best possible rank-r approximation of H (measured in terms of Frobenius norm)

Truncated SVD makes matrix products cheaper

- Contraction cost: $N^3 \rightarrow N^2 r$
- Maximal gain only when full matrices are never reconstructed

 $\bullet \ {\rm Decompose} \ H^{40} \ {\rm using} \ {\rm SVD} \\$

$$H^{40}_{\underline{k_1 k_2}}_{\underline{k_3 k_4}} = \sum_{\mu} F^{\mu}_{\underline{k_1 k_2}} s_{\mu} G^{\mu}_{\underline{k_3 k_4}}$$

form collective indices

ullet Decompose H^{40} using SVD

$$H^{40}_{\underline{k_1k_2}\underline{k_3k_4}} = \sum_{\mu} F^{\mu}_{\underline{k_1k_2}} s_{\mu} G^{\mu}_{\underline{k_3k_4}}$$
 form collective indices

 72 Kr, oblate, $e_{\sf max}=10$, H^{40} PPPP NNNN Singular values (MeV) PPNN 500 1000 1500 2000 2500 3000 • Here and in following: EM (1.8/2.0), $e_{3max} = 16$, $\omega = 12$ MeV

 \bullet Decompose ${\cal H}^{40}$ using SVD

$$H^{40}_{\underline{k_1k_2}\underline{k_3k_4}} = \sum_{\mu} F^{\mu}_{\underline{k_1k_2}} s_{\mu} G^{\mu}_{\underline{k_3k_4}}$$
 form collective indices

- Here and in following: EM (1.8/2.0), e_{3max} = 16, ω = 12 MeV
- Singular values fall off quickly
 → low-rank approximation possible

 $\bullet \ {\rm Decompose} \ H^{40} \ {\rm using} \ {\rm SVD} \\$

$$H^{40}_{\underline{k_1k_2}\underline{k_3k_4}}pprox \sum_{\mu=1}^{\mu}F^{\mu}_{\underline{k_1k_2}}s_{\mu}G^{\mu}_{\underline{k_3k_4}}$$

form collective indices

- Here and in following: EM (1.8/2.0), e_{3max} = 16, ω = 12 MeV
- Singular values fall off quickly
 → low-rank approximation possible

• Singular values converge with increasing e_{max}

- Singular values converge with increasing e_{max}
- H^{40} norm error strongly linked to BMBPT(2) accuracy
- \rightarrow Need only r ~ 2500 singular values to reach desired accuracy

• Singular spectra very similar for HFB minima of different deformation

• Singular spectra very similar for HFB minima of different deformation

BMBPT(2) cost

ullet Necessary memory scales as N^4

BMBPT(2) cost

- Necessary memory scales as N^4
- Construction of H^{40} scales as N^5

$$H^{40}_{k_1k_2k_3k_4} = \sum_{\alpha\cdots\delta} H_{\alpha\beta\gamma\delta} U^*_{\alpha k_1} U^*_{\beta k_2} V^*_{\gamma k_3} V^*_{\delta k_4} +$$

→ storage (and computation) cost needs to be reduced for heavy deformed calculations

Required accuracy

BMBPT as formal power series

$$E^{[P]} = \langle \Phi | H \sum_{p=0}^{P-1} (R_0 \, \Omega_1^{(P)})^p | \Phi \rangle_{c}$$

Demol et al., EPJA **61** (2025) Svensson et al., 2507.09079

Required accuracy

BMBPT as formal power series

$$E^{[P]} = \langle \Phi | H \sum_{p=0}^{P-1} (R_0 \ \Omega_1^{(P)})^p | \Phi \rangle_{
m c}$$
 Demol et al., EPJA **61** (2025) Svensson et al., 2507.09079

Conservative estimate of missing next-order contribution

$$\left| e_{\text{BMBPT}}^{(4)} \right| \sim \frac{1}{10} \left| e_{\text{BMBPT}}^{(3)} \right| \sim \frac{1}{100} \left| e_{\text{BMBPT}}^{(2)} \right|$$

Required accuracy

BMBPT as formal power series

$$E^{[P]} = \langle \Phi | H \sum_{p=0}^{P-1} (R_0 \, \Omega_1^{(P)})^p | \Phi \rangle_{
m c}$$
 Demol et al., EPJA **61** (2025) Svensson et al., 2507.09079

Conservative estimate of missing next-order contribution

$$\left| e_{\text{BMBPT}}^{(4)} \right| \sim \frac{1}{10} \left| e_{\text{BMBPT}}^{(3)} \right| \sim \frac{1}{100} \left| e_{\text{BMBPT}}^{(2)} \right|$$

→ Defines calculation accuracy goal at BMBPT(3) level

Required accuracy: needed basis size

Required accuracy: needed basis size

• Need $e_{max} \sim 14$ for BMBPT(2), ~ 10 for BMBPT(3)

Required accuracy: needed basis size

• Need $e_{max} \sim 14$ for BMBPT(2), ~ 10 for BMBPT(3)

Computed with SVD-BMBPT

Halko et al., SIREV **53** (2011) Martinsson, Tropp, ActaNum **403** (2020)

- Lanczos-type algorithm to find largest singular values
- Number of necessary singular values determined on the fly using stochastic estimator of decomposition quality

 Tropp, Webber, 2306.12418 (2023)
- Based on matrix-vector products

Implicit product

Frosini et al., EPJA 60 (2024)

• To circumvent N^5 construction and N^4 storage of $H^{40}_{k_1k_2k_3k_4}$ consider instead only "matrix-vector" products

$$\sum_{k_3k_4} H^{40}_{\underline{k_1k_2}\underline{k_3k_4}} X^{02}_{\underline{k_3k_4}}$$

- Implicit FAM-like products Carlsson et al., PRC 86 (2012)
 - 1. transform X^{02} to underlying spherical HO basis
 - 2. calculate product in that basis
 - 3. transform back
 - \rightarrow cost of one implicit product: $N^{4-\delta}$

BMBPT(2)

$$e_{\text{BMBPT}}^{(2)} = \frac{1}{4!} \sum_{k_1 \cdots k_4} \frac{H_{k_1 k_2 k_3 k_4}^{04} H_{k_1 k_2 k_3 k_4}^{40}}{E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4}}$$

SVD-BMBPT(2)

Frosini et al., EPJA 60 (2024)

$$H^{40}_{\underline{k_1 k_2} \underline{k_3 k_4}} pprox \sum_{\mu=1}^{r} F^{\mu}_{\underline{k_1 k_2}} s_{\mu} G^{\mu}_{\underline{k_3 k_4}}$$

• For denominators: discretized inverse Laplace transform Braess, Hackbusch, IMAJNA 25 (2005)

$$\frac{1}{(E_{k_1} + E_{k_2}) + (E_{k_3} + E_{k_4})} = \sum_{i=1}^{n_d \sim 10} d_{\underline{k_1 k_2}}^i d_{\underline{k_3 k_4}}^i$$

SVD-BMBPT(2)

Frosini et al., EPJA 60 (2024)

$$H^{40}_{\underline{k_1 k_2} \underline{k_3 k_4}} pprox \sum_{\mu=1}^{r} F^{\mu}_{\underline{k_1 k_2}} s_{\mu} G^{\mu}_{\underline{k_3 k_4}}$$

• For denominators: discretized inverse Laplace transform Braess, Hackbusch, IMAJNA 25 (2005)

$$\frac{1}{(E_{k_1} + E_{k_2}) + (E_{k_3} + E_{k_4})} = \sum_{i=1}^{n_d \sim 10} d_{\underline{k_1 k_2}}^i d_{\underline{k_3 k_4}}^i$$

Form intermediates by doing expensive sums first

BMBPT(3)

Next correction to HFB ground state energy:

$$e_{\text{BMBPT}}^{(3)} = \frac{1}{8} \sum_{k_1 \dots k_6} \frac{H_{k_1 k_2 k_3 k_4}^{04} H_{k_3 k_4 k_5 k_6}^{22} H_{k_5 k_6 k_1 k_2}^{40}}{(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4})(E_{k_5} + E_{k_6} + E_{k_1} + E_{k_2})}$$

• Evaluation of energy scales as N^6

BMBPT(3)

• Next correction to HFB ground state energy:

$$-C_{k_5k_6k_1k_2}^{40}(2)$$

$$e_{\text{BMBPT}}^{(3)} = \frac{1}{8} \sum_{k_1 \dots k_6} \frac{H_{k_1 k_2 k_3 k_4}^{04} H_{k_3 k_4 k_5 k_6}^{22} H_{k_5 k_6 k_1 k_2}^{40}}{(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4})(E_{k_5} + E_{k_6} + E_{k_1} + E_{k_2})}$$

• Evaluation of energy scales as N^6

Singular spectrum

• $C^{40}(2)$ initially falls off a bit faster than H^{40}

Singular spectrum

- $C^{40}(2)$ initially falls off a bit faster than H^{40}
- H^{22} does not converge with increasing $e_{\rm max}$

SVD-BMBPT(3)

• Project H^{22} to both sides on subspace spanned $C^{40}(2)$ by singular vectors

$$s'_{\mu\nu} = \sum_{k_1...k_4} F^{\mu*}_{k_1k_2} H^{22}_{k_1k_2k_3k_4} F^{\nu}_{k_3k_4}$$

SVD-BMBPT(3)

• Project H^{22} to both sides on subspace spanned $C^{40}(2)$ by singular vectors

$$s_{\mu
u}' = \sum_{k_1...k_4} F_{k_1k_2}^{\mu*} H_{k_1k_2k_3k_4}^{22} F_{k_3k_4}^{
u}$$

SVD-BMBPT(3)

• Project H^{22} to both sides on subspace spanned $C^{40}(2)$ by singular vectors

$$s'_{\mu
u} = \sum_{k_1 \dots k_4} F^{\mu*}_{k_1 k_2} H^{22}_{k_1 k_2 k_3 k_4} F^{
u}_{k_3 k_4}$$

• Singular vectors form unitary matrices $\sum F_{k_1k_2}^{\mu*}F_{k_1k_2}^{\nu}=\delta_{\mu\nu}$

$$\sum F_{k_1 k_2}^{\mu *} F_{k_1 k_2}^{\nu} = \delta_{\mu \nu}$$

H^{40} singular spectrum

ullet H^{22} projected on subspace spanned $C^{40}(2)$ by singular vectors falls off

Tensor factorization allows to make computationally unfeasible calculations

tractable

• Tensor factorization allows to make computationally unfeasible calculations

tractable

 e_{max}

larger e_{max} requires preparing talk earlier

 Tensor factorization allows to make computationally unfeasible calculations tractable

- Tensor factorization allows to make computationally unfeasible calculations tractable
- Low-rank structure of H^{40} allows for efficient evaluation of correlation energy (at least) in BMBPT(2, 3)
- SVD-BMBPT is subspace-projected BMBPT (apparently with a good subspace)

- Tensor factorization allows to make computationally unfeasible calculations tractable
- Low-rank structure of H^{40} allows for efficient evaluation of correlation energy (at least) in BMBPT(2, 3)
- SVD-BMBPT is subspace-projected BMBPT (apparently with a good subspace)
- Memory usage: $\mathcal{O}(rN^2) \ll \mathcal{O}(N^4)$
- CPU time: $\mathcal{O}(rN^{4-\delta}) \ll \mathcal{O}(N^5, N^6)$

• Particle number constraint at BMBPT(3) level

Demol et al., AOP **424** (2021) Demol et al., EPJA **61** (2025)

Particle number constraint at BMBPT(3) level

Demol et al., AOP **424** (2021) Demol et al., EPJA **61** (2025)

 ${\, \bullet \,}$ Tensor decomposition for Coupled Cluster: $C^{40}(2)$ as starting point

Parrish et al., JChemPhys 150 (2019)

Runtime reduction through improved rSVD algorithm

Tropp, Webber, 2306.12418 (2023)

Particle number constraint at BMBPT(3) level

Demol et al., AOP **424** (2021) Demol et al., EPJA **61** (2025)

• Tensor decomposition for Coupled Cluster: $C^{40}(2)$ as starting point

Parrish et al., JChemPhys 150 (2019)

- Runtime reduction through improved rSVD algorithm
- Tropp, Webber, 2306.12418 (2023)

- Treatment of 3N interaction (through factorization?)
- How would higher orders in BMBPT scale?

Particle number constraint at BMBPT(3) level

Demol et al., AOP **424** (2021) Demol et al., EPJA **61** (2025)

• Tensor decomposition for Coupled Cluster: $C^{40}(2)$ as starting point

Parrish et al., JChemPhys 150 (2019)

Runtime reduction through improved rSVD algorithm

Tropp, Webber, 2306.12418 (2023)

- Treatment of 3N interaction (through factorization?)
- How would higher orders in BMBPT scale?

Thanks for your attention

and to
Thomas Duguet, Jean-Paul Ebran, and Mikael Frosini