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• as driver of correlation energy and singular spectrum

• Need for cost reduction in BMBPT

• SVD-BMBPT

Outline
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• This talk: Bogoliubov many-body perturbation theory, 
but ideas general

• Normal-order grand potential                             and split

• Normal-ordered components

• 3N interaction treated through rank reduction

: driver of correlation energy

HFB via (perturbative) corrections

Frosini et al., EPJA 57 (2021)

Duguet, Signoracci, JPG 44 (2016)
Tichai et al., PLB 786 (2018)

Arthuis et al., CPC 240 (2019)



• First corrections to HFB ground state energy:

: driver of correlation energy
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• Eckart-Young theorem: truncated SVD gives best possible rank-
approximation of     (measured in terms of Frobenius norm)
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• Truncated SVD makes matrix products cheaper

• Contraction cost:

• Maximal gain only when full matrices are never reconstructed 
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• Singular values converge with increasing emax

• norm error strongly linked to BMBPT(2) accuracy

→ Need only     ~ 2500 singular values to reach desired accuracy

singular spectrum



• Singular spectra very similar for HFB minima of different deformation
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• Singular spectra very similar for HFB minima of different deformation

singular spectrum

72Kr, emax = 10
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• Necessary memory scales as

• Construction of           scales as

→ storage (and computation) cost needs
to be reduced for heavy deformed 
calculations

BMBPT(2) cost

Frosini et al., EPJA 60 (2024)

200 GB
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• BMBPT as formal power series

• Conservative estimate of missing next-order contribution

Required accuracy

Demol et al., EPJA 61 (2025)

→ Defines calculation accuracy goal at BMBPT(3) level

Svensson et al., 2507.09079
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• Need emax ~ 14 for BMBPT(2), ~ 10 for BMBPT(3)

• Computed with SVD-BMBPT

Required accuracy: needed basis size



• Lanczos-type algorithm to find largest singular values

• Number of necessary singular values determined on the fly using stochastic 
estimator of decomposition quality

• Based on matrix-vector products 

Randomized SVD Halko et al., SIREV 53 (2011)
Martinsson, Tropp, ActaNum 403 (2020)

Tropp, Webber, 2306.12418 (2023)



• To circumvent        construction and        storage of consider 
instead only “matrix-vector” products

• Implicit FAM-like products 

1. transform         to underlying spherical HO basis

2. calculate product in that basis

3. transform back

• → cost of one implicit product:

Implicit product
Frosini et al., EPJA 60 (2024)

Carlsson et al., PRC 86 (2012)



BMBPT(2)



• For denominators:
discretized inverse Laplace transform

SVD-BMBPT(2)
Frosini et al., EPJA 60 (2024)

Braess, Hackbusch, IMAJNA 25 (2005)



• For denominators:
discretized inverse Laplace transform

• Form intermediates by doing expensive sums first

SVD-BMBPT(2)
Frosini et al., EPJA 60 (2024)

Braess, Hackbusch, IMAJNA 25 (2005)
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• Next correction to HFB ground state energy:

• Evaluation of energy scales as

BMBPT(3)
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• initially falls off a bit faster than

• does not converge with increasing emax

Singular spectrum
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• Project          to both sides on subspace spanned              by singular vectors

• Singular vectors form unitary matrices

SVD-BMBPT(3)



singular spectrum

• projected on subspace spanned              by singular vectors falls off
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• Tensor factorization allows to make computationally unfeasible calculations 
tractable

• Low-rank structure of          allows for efficient evaluation of correlation 
energy (at least) in BMBPT(2, 3)

• SVD-BMBPT is subspace-projected BMBPT (apparently with a good 
subspace)

• Memory usage: 

• CPU time:

Summary



• Particle number constraint at BMBPT(3) level

Outlook

Frosini et al., EPJ Conf 302 (2024)

emax=12

Demol et al., AOP 424 (2021)
Demol et al., EPJA 61 (2025)
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• Tensor decomposition for Coupled Cluster:
as starting point

• Runtime reduction through improved rSVD algorithm
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Outlook

Tropp, Webber, 2306.12418 (2023)

Parrish et al., JChemPhys 150 (2019)

Thanks for your attention

and to
Thomas Duguet, Jean-Paul Ebran, and Mikael Frosini

Demol et al., AOP 424 (2021)
Demol et al., EPJA 61 (2025)
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