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Neural Network Quantum States (NQS):

And the NQS is….   a VMC with a NN trial wave function!

emerge from a leading-order pionless effective field theory
(EFT) Hamiltonian, containing consistent two- and three-
body potentials. Specifically, we develop a novel VMC
algorithm based on an ANN representation of the spin-
isospin dependent correlator that captures the vast majority
of nuclear correlations and scales favorably with the
number of nucleons. We benchmark our results against a
more conventional parametrization of the variational wave
function in terms of two- and three-body Jastrow functions,
and virtually exact GFMC calculations.
Hamiltonian.—We employ nuclear Hamiltonians derived

within pionless EFT, which is based on the tenet that the
typical momentum of nucleons in nuclei is much smaller
than the pionmassmπ [3,31]. Under this assumption, largely
justified for studying the structure and long-range properties
of A ≤ 4 nuclei, pion exchanges are unresolved contact
interactions and nucleons are the only relevant degrees of
freedom. The singularities of the contact terms are con-
trolled introducing a Gaussian regulator that suppresses
transferred momenta above the ultraviolet cutoff Λ. This
regulator choice directly leads to a Gaussian radial depend-
ence of the potential, which is local in coordinate [32,33].
The leading-order (LO) Hamiltonian reads
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where mN is the mass of the nucleon, σ⃗i is the Pauli matrix
acting on nucleon i, and

P
cyc stands for the cyclic

permutation of i, j, and k.
Following Ref. [34], the low-energy constants C1 and C2

are fit to the deuteron binding energy and to the neutron-
neutron scattering length. In Eq. (1) we picked the operator
basis 1 and σ⃗i · σ⃗j, but this choice can be replaced by any
other form equivalent under Fierz transformations in SU(2).
Solving A ≥ 3 nuclei with purely attractive two-nucleon
potentials leads to the “Thomas collapse” [35], which can
be avoided promoting a contact three-nucleon force to LO
[36]. The values of the low-energy constants’ adopted in
this work can be found in Ref. [34]; since C1ðΛÞ is much
larger than C2ðΛÞ, the LO Hamiltonian has an approximate
SU(4) symmetry.
Variational wave function.—A fundamental ingredient

of the VMC method is the choice of a suitable variational
wave function ΨV , whose parameters are found exploiting
the variational principle

hΨV jHjΨVi
hΨV jΨVi

¼ EV ≥ E0 ð2Þ

where E0 is exact the ground-state energy:
HjΨ0i ¼ E0jΨ0i. The metropolis Monte Carlo algorithm

is used to evaluate the variational energy EV by sampling
the spatial and spin-isospin coordinates. We introduce the
following ANN representation of the variational wave
function:

jΨANN
V i ¼ eUðr1;…;rAÞ tanh½Vðs1; r1;…; rA; sAÞ&jΦi ð3Þ

where fr1;…; rAg and fs1;…; sAg denote the set of
single-particle spatial three-dimensional coordinates
and the z projection of the spin-isospin degrees of
freedom si ¼ fszi ; tzig, respectively. For the s-shell nuclei
considered in this work, we take jΦ2Hi ¼ Aj↑p↑ni,
jΦ3Hei ¼ Aj↑p↓p↑ni, and jΦ4Hei ¼ Aj↑p↓p↑n↓ni, with
A being the antisymmetrization operator [37].
The real-valued correlating factors Uðr1;…; rAÞ

and Vðs1; r1;…; rA; sAÞ are parametrized in terms of
permutation-invariant ANNs, so that the total wave func-
tion is antisymmetric. To achieve this goal, we make use
of the Deep Sets architecture [38,39], and map each of
the single-particle inputs separately to a latent-space
representation. We then apply a sum operation to destroy
the ordering of the information and ensure permutation
invariance

F ðx1;…;xAÞ ¼ ρF

!X

xi

ϕF ðxiÞ
"
; F ¼ U;V: ð4Þ

Both ϕU and ρU are represented by ANNs comprised of
four fully connected layers with 32 nodes each, while ϕV
and ρV are made of two fully connected layers, again
with 32 nodes, for total of 13 058 trainable parameters.
The calculation of the kinetic energy requires using dif-
ferentiable activation functions. We find that tanh and
softplus [40] yield fully consistent results. The single-
particle inputs are xi ≡ fr̄ig and xi ≡ fr̄i; sig for U and V,
respectively, where we defined intrinsic spatial coordinates
as r̄i ¼ ri −RCM, with RCM being the center-of-mass
coordinate. This procedure automatically removes spurious
center-of-mass contributions from all observables [41].
Since the parameters of the network are randomly
initialized, in the initial phases of the training, during
the metropolis walk, the nucleons can drift away from
RCM. To control this behavior, a Gaussian function is
added to confine the nucleons within a finite volume
Uðr1;…; rAÞ → Uðr1;…; rAÞ − α

P
i r̄

2
i where we take

α ¼ 0.05.
The choice of correcting a mean-field state jΦi with a

flexible ANN correlator factor is similar in spirit to neural-
network correlators introduced recently in condensed-
matter [16,24] and chemistry applications [26], but it is
more general as it encompasses spin-isospin dependent
correlations. An appealing feature of the ANN ansatz is that
it is more general than the more conventional product of
two- and three-body spin-independent Jastrow functions
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which is commonly used for nuclear Hamiltonians that do
not contain tensor and spin-orbit terms [33,42].
Analogously to standard VMC calculations, as well as

ML applications, the optimal set of weights and biases
of the ANN is found minimizing a suitable cost function.
Specifically, we exploit the variational principle of Eq. (2)
and minimize the expectation value of the energy. The
gradient components Gi ¼ ∂iEðpÞ of the energy with
respect to the variational parameters pi read

Gi ¼ 2

!
h∂iΨV jHjΨVi
hΨV jΨVi

− EV
h∂iΨV jΨVi
hΨV jΨVi

"
ð6Þ

and can be efficiently estimated through Monte Carlo
sampling. While stochastic gradient descent can be readily
used to compute parameters updates, for VMC applications
it has been found that using a preconditioner based on the
quantum Fisher information

Sij ¼
h∂iΨV j∂jΨVi
hΨV jΨVi

−
h∂iΨV jΨVihΨV j∂jΨVi
hΨV jΨVihΨV jΨVi

ð7Þ

is significantly more efficient. During the optimization,
then parameters at step s are updated as psþ1 ¼ ps −
ηðSþ ΛÞ−1G, where η is the learning rate and Λ is a small
positive diagonal matrix that is added to stabilize the method.
This approach, known as the stochastic-reconfiguration (SR)
algorithm [43,44] is equivalent to performing imaginary-
time evolution in the variational manifold and it is in turn
related to the natural gradient descent method [45] in
unsupervised learning. Our computational techniques are
based on the general ML framework TensorFlow [46], and it
is scalable across more than 100 GPUs. We also maintain an
additional developmental repository written in JAX [47] for
fast prototyping of new features. More information about the
architecture and performance of the software is available in
the Supplemental Material [48].
Figure 1 displays the convergence pattern as a

function of the optimization step of the 2H energy for
the LO pionless EFT Hamiltonians with Λ ¼ 4 fm−1 and
Λ ¼ 6 fm−1. In the initial phase of the optimization, the
softer cutoff exhibits a faster convergence than the stiffer
one. However, the asymptotic value of the energy is
reached after about 300 iterations for both values of the
regulator. These results have been obtained using an
adaptive learning rate in the range 10−7 ≤ η ≤ 10−2, which
has proven to yield robust convergence patterns for all the
nuclei and regulator choices that we have analyzed. The
adaptive schedule of this AdaptiveEta algorithm is selected
performing heuristic tests on the parameter change, similar
to the ones introduced in Refs. [33,41] for regularizing the
linear optimization method [58].

Results and discussion.—We analyze the accuracy of the
ANN wave function ansatz by computing the ground-state
energies of 2H, 3H, and 4He. In Table I we benchmark the
ANN representation of ΨT (VMC-ANN) against conven-
tional VMC calculations carried out using a spline para-
metrization for the Jastrow functions [33] (VMC-JS), and
virtually exact GFMC results.
The three methods provide fully compatible energies

for 2H nucleus, within statistical errors, showing the
flexibility of the ANN to accurately represent the
ground-state wave function of the deuteron, consistent
with the findings of Ref. [30]. Note that, since the LO
pionless EFT Hamiltonian does not contain tensor or spin-
orbit terms, the VMC-JS ansatz is exact. The perfect
agreement with the experimental value is not surprising,
as the potential has been fit to the deuteron binding energy
using numerically exact few-body methods [32].
The VMC-ANN noticeably improves upon the VMC-JS

energies of 3H, by ≃0.5 MeV for both Λ ¼ 4 fm−1 and
Λ ¼ 6 fm−1. On the other hand, the GFMC results are
≃0.1 MeV more bound than the VMC-ANN ones. This
difference is due to spin-dependent correlations that are
automatically generated by the GFMC imaginary-time
propagation, but are not fully accounted for by the
correlator ansatz of Eq. (3). To better quantify the
spin-independent correlations entailed in the ANN, we
have considered a simplified “ANNc” ansatz jΨANNc

V i ¼
eUðr1;…;rAÞjΦi. In this case, the NN potential of Eq. (1) is
equivalent to the SUð4Þ-symmetric interaction ṽcðrijÞ ¼
vcðrijÞ − vσðrijÞ. For Λ ¼ 4 fm−1 and Λ ¼ 6 fm−1 ANNc
yields −7.85ð2Þ and −7.85ð4Þ MeV, respectively. These
numbers are in excellent agreement with the GFMCc
calculations reported in Table I, which have also been
carried out using ṽcðrijÞ.
A similar pattern emerges for 4He, with ANN wave

functions outperforming the JS ones: the energy is
improved by about 0.8 and 1.0 MeV for Λ ¼ 4 fm−1

and Λ ¼ 6 fm−1, respectively. The small discrepancies

FIG. 1. Convergence pattern of the 2H variational energy for
Λ ¼ 4 fm−1 and Λ ¼ 6 fm−1 as a function of the number of
optimization steps of the SR AdaptiveEta algorithm. The dashed
line denotes the asymptotic value.
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(a) State-connected network with a single hidden layer.
For this network, the number of parameters is N = 4Nhid,
with Nhid denoting the number of hidden nodes. Note that
the first layer includes a bias.
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(b) State-connected network with two hidden layers, with
N = 1

8Nhid(Nhid + 12) parameters.

(c) State-disconnected network with a single hidden layer,
with N = 3Nhid parameters.

(d) State-disconnected network with two hidden layers,
with N = 1

4Nhid (Nhid + 8) parameters.

Fig. 1 Neural network architectures used in this work.

each network configuration. One-layer networks have a
linear N(Nhid) relation, whereas the relation for two-
layer networks is quadratic. In other words, for the same
Nhid, two-layer networks will usually involve a much
larger number of parameters than one-layer models, and
one may expect overfitting to become an issue. Whereas
for the 1sc architecture the number of hidden nodes is
unrestricted so long as Nhid > 2, the 2sc architecture
must have Nhid > 4 with Nhid even. Likewise, the 1sd
network must have an even Nhid. In contrast, for the
2sd network, Nhid is a multiple of 4.

2.2 Learning process

We minimise the energy cost function using RMSprop [1]
with hyperparameters ✏ = 10�8 and a smoothing con-
stant ↵ = 0.9. We set the learning rate to 10�2 and

explore the Nhid dependence using the values Nhid 2
{20, 30, 40, 60, 80, 100} (in the 2sc architecture we change
Nhid = 30 ! Nhid = 32). To explore the full flexibility
of the wavefunction ansätze, we optimise the networks
by mimising the overlap loss function for 2⇥103 epochs
of pre-training, followed by 2.5 ⇥ 105 epochs of energy
minimisation. Rather than doing this a single time, we
use 20 di↵erent random initializations and display mean
values and (Bessel-corrected) standard deviations ob-
tained with all these runs1. With this, we explore the
out-of-sample bias of the network and we attempt to
draw generic conclusions for the network architecture,
rather than for a single, specific network model.

In fact, we perform 150 minimisations for each ar-
chitecture (other than for a specific 2sd model, as we
discuss in the following). Not all of these runs converge

1This is to be compared to the 50 runs shown for the 1sc
architecture in Ref. [21].
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Fig. B.6. Same as Fig. 4, but for increasing values of Nhid from Nhid = 20 (top row) 
to Nhid = 100 (bottom row).

Fig. B.7. Top panels: standard deviation of the S-state wavefunction obtained after 
50 minimisation runs as a function of momentum for the sigmoid (left) and softplus 
(right) activation functions. Different lines correspond to different values of Nhid. 
Bottom panels: the same for the D-state.

asymptotic properties at large values of input are reflected in this 
region. We stress that the local variability at low q would not be 
identified in any of the global, integrated physical measures, like 
the energy, the fidelity or the D-state probability.

We provide proof of this behaviour in Fig. B.6, where we show 
the equivalent to Fig. 4 for a range of values of Nhid. The top panel 
corresponds to Nhid = 20, and Nhid increases towards the bottom, 
which shows the extreme case of Nhid = 100. The wavefunction 
above q ≈ 0.10 fm−1 is reproduced by both the sigmoid and soft-
plus ansätze to the wavefunctions. Towards the origin, however, 
both trial wavefunction struggle to reproduce the correct asymp-
totics. The low-momentum ANN predictions with sigmoid activa-
tion functions are much closer to the exact S-state wavefunctions 
than the corresponding softplus ANN. For the D-state, the soft-
plus ANN generally misses the low-momentum asymptotics and 
undershoots the wavefunction linearly. The centroid of the sig-
moid also misses the boundary condition at the origin, and in fact 
shows an increase in curvature as Nhid grows. These different be-
haviours towards the origin seem to reflect the bounded (sigmoid) 
or unbounded (softplus) nature of the activation functions at large 
values of input.

Our arguments relate to the size of the bands towards the ori-
gin, shown in the insets. These figures demonstrate that the vari-
ance in the low-momentum values of the wavefunction increases 
with Nhid. As opposed to global integrated measures, local regions 
of the wavefunction are subject to a bias-variance trade-off. We 
take this as an indication that, above a certain threshold value of 
Nopt

hid , an increase in ANN complexity does not bring in an increase 
in wavefunction quality.

More details are provided in Fig. B.7. Rather than showing the 
wavefunction itself, we focus here on the standard deviation of the 
wavefunction, σψ L , i.e. the width of the bands in Fig. B.6. This is 
shown as a function of momentum in a log-log scale, to magnify 
the differences. Left (right) panels correspond to sigmoid (softplus) 
activation functions, and top (bottom) panels show results for the 
S- (D-)state. Different lines correspond to different values of Nhid. 
First, we reiterate the message that the variance of the wavefunc-
tion is maximal at the lowest momenta. In fact, the variance de-
creases sharply above q ≈ 1 fm−1. Second, the Nhid dependence is 
also rather informative, as it indicates that the minimal variance in 
all the models is reached around Nopt

hid ≈ 20. Values of Nhid below 
or above the optimum value provide larger variances in wavefunc-
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Some example of NQS in quantum chemistry 

And many other architectures for correlated fermions: see e.g.,  J. Hermann et al., Nature Reviews Chemistry 7, 692–709 (2023)

D. Pfau et al., Phys. Rev. Res. 2, 033429 (2020)
FermiNet NQS:
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FIG. 1. The Fermionic neural network (FermiNet). Top: Global architecture. Features of one or two electron positions are inputs to different
streams of the network. These features are transformed through several layers, a determinant is applied, and the wave function at that position
is given as output. Bottom: Detail of a single layer. The network averages features of electrons with the same spin together, then concatenates
these features to construct an equivariant function of electron position at each layer.

single determinant made up of these permutation-equivariant
functions is sufficient to represent any antisymmetric function
(see Appendix B); however, the practicality of approximat-
ing an antisymmetric function will depend on the choice
of permutation-equivariant function class; we hence use a
small linear combination of nk determinants in this work.
The construction of a set of these permutation-equivariant
functions with a neural network is the main innovation of
the FermiNet. We emphasize that determinants constructed
from permutation-equivariant functions are substantially more
expressive than conventional Slater determinants. Figure 1
contains a schematic of the network and Algorithm I pseu-
docode for evaluating the network.

The Fermionic neural network takes features of single
electrons and pairs of electrons as input. As input to the single-
electron stream of the network, we include both the difference
in position between each electron and nucleus ri − RI and
the distance |ri − RI |. The input to the two-electron stream
is similarly the differences ri − r j and distances |ri − r j |.
Adding the absolute distances between particles directly as
input removes the need to include a separate Jastrow factor
after a determinant. As the distance is a nonsmooth func-
tion at zero, the neural network is capable of expressing the
nonsmooth behavior of the wave function when two particles
coincide—the wave-function cusps. Accurately modeling the
cusps is critical for correctly estimating the energy and other
properties of the system. The quality of the wave-function

cusps for the helium atom are investigated in Appendix F. We
denote the concatenation of all features for one electron h0

i ,
or h0α

i if we explicitly index its spin α ∈ {↑,↓}; the features
of two electrons are denoted h0

i j or h0αβ
i j . If the system has n↑

spin-up electrons and n↓ spin down electrons, then without
loss of generality we can reorder the electrons so that σ j =↑
for j ∈ 1, . . . , n↑ and σ j =↓ for j ∈ n↑ + 1, . . . , n.

To satisfy the overall antisymmetry constraint for a
fermionic wave function, intermediate layers of the Fermionic
Neural Network must mix information together in a
permutation-equivariant way. Permutation-equivariant neural
network layers like self-attention have gained success in re-
cent years in natural language processing [29] and protein
folding [30], but we pursue a simpler yet effective ap-
proach. Permutation-equivariant layers have also been widely
adopted in the computational chemistry and machine learn-
ing community for modeling energies and force fields from
atomic configurations [3,31,32]. The Fermionic Neural Net-
work shares some architectural details with these models, such
as the use of pairwise distances as inputs and parallel streams
of feature vectors, one per particle, through the network, but
is tailored specifically for mapping electronic configurations
to wave-function values with fixed atomic positions, rather
than mapping atomic positions to total energies and other
properties.

In our intermediate layers, we take the mean of activations
from different streams of the network, concatenate these mean

033429-3

FermiNet for excited states:
D. Pfau et al., Science 385, 6711 (2024)
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FIG. 5: Excited states of larger double excitation systems. NES-VMC with FermiNet and Psiformer for singlet (blue) and
triplet (gray) systems are compared against results from the QUEST database39 (singlet single excitations in blue, triplets in
grey, singlet double excitations in red), including “unsafe” results (dashed lines). For systems where the QUEST results are

“unsafe”, more accurate results from DMC (orange)59 or with a CASPT3 correction (purple)60 are given. NES-VMC closely
matches the more accurate double excitation calculations on the largest and most challenging systems. Complete numerical

results are given in Table S9.

correctly predict the ordering of the states, but matches the
TBE from QUEST to within 92 and 60 meV respectively for
the 11Bu state and 62 and 9 meV respectively for the 21Ag ,
a remarkably high degree of agreement for such a notorious
system.

On all double excitation systems with the Psiformer, and
4 out of 5 systems with the FermiNet, NES-VMC is in ex-
cellent agreement with the best computational results. The
one exception for the FermiNet, glyoxal, is at the scale where
the FermiNet is known to perform worse than the Psiformer
at ground state calculations36, so it is not surprising that it
struggles on some systems of this size. The FermiNet and Psi-
former achieve a mean absolute error relative to the TBE of 15
and 21 meV on nitrosomethane, 84 and 38 meV on butadiene,
167 and 28 meV on glyoxal, 45 and 54 meV on tetrazine, and
92 and 66 meV on cyclopentadienone respectively. For the
Psiformer, this is within chemical accuracy (43 meV) for all
systems except tetrazine and cyclopentadienone. On tetrazine,
the Psiformer is within 0.1 eV of the best estimates of the
21Ag vertical excitation energy, while the previous TBE in
QUEST was off by nearly 1 eV. On cyclopentadienone, even
the best current estimates of the 21A1 and 31A1 excitation en-
ergies disagree by 0.1-0.15 eV, a range which the Psiformer is
within. This demonstrates that NES-VMC is among the state
of the art in challenging excited state calculations, where even
other top methods disagree by more than chemical accuracy.

VIII. BENZENE

Finally, we applied NES-VMC with both the FermiNet and
Psiformer to benzene. While benzene is the same size as
tetrazine and cyclopentadienone, it is a common benchmark
for medium-sized molecules, so there is more abundant data
for us to compare against. For VMC, in addition to the penalty
method of Entwistle et al.11, there is also the penalty method
of Pathak et al.19, which is used with a traditional Slater-
Jastrow Ansatz, and uses a different penalty function which
allows for unbiased gradients. On top of VMC results and
coupled-cluster-based TBEs from QUEST, we also compare
against CASPT264 and TD-DFT with the PBE0 functional63.
Results are shown in Fig. 6, with complex numerical results in
Table S10. For our calculations, we used the same geometry
as in QUEST42.

To better understand the nature of the excitations computed,
we inspected the density matrices of the respective states, sim-
ilarly to the analysis of C2 in Figs. 3d and 3e. The density ma-
trices in the Hartree-Fock basis are nearly diagonal. All five
excited states for benzene we computed are single excitations
from a ⇡ to ⇡⇤ orbital, but they are best described by exciting
half an electron from two distinct ⇡g orbitals into two distinct
⇡⇤
u orbitals. These orbitals are visualized in Fig 6b.
NES-VMC with the Psiformer comes very close to reach-

ing the TBE for all computed states. The FermiNet is not
quite as accurate, and struggles with the highest energy 3B2u

state. The highest excited state of the FermiNet converges to
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FIG. 4: Excited states and conical intersection of ethylene (C2H4). (a) Potential energy curve of the first two singlet states of
ethylene under torsion around the C-C bond. Our results (blue) are compared against TD-DFT55 (purple), MR-CI56 (green) and

a penalty method used with the PauliNet, without the variance matching correction11 (red). (b) Potential energy curve of the
first two singlet states of ethylene under pyramidalization of the C-H bonds. The best estimate of the location of the conical

intersection of the V and N states for each method is given by the vertical line. Our method is in close agreement with MR-CI
up to a constant shift, and agrees with the location of the conical intersection better than the PauliNet penalty method. Note that

the � = 0 geometry in Fig. 4b differs slightly from the ⌧ = 90 geometry in Fig. 4a, as in Barbatti et al.56. All results are
normalized so that the ground state energy at the equilibrium geometry is 0. Complete numerical results are given in Table S8.

and 3B3u states, and so we calculated K = 3 excited states
for all geometries, which we found was enough to find two
singlet states for all geometries except at equilibrium, where
we used K = 5 and took the highest state, as the 1B3u state
has lower energy exclusively at equilibrium. We did not find
a significant difference between the FermiNet and Psiformer,
and show the Psiformer results here. For comparison, in ad-
dition to TD-DFT55 and MR-CI, we also compare against the
PauliNet penalty method11.

Qualitatively, the results from NES-VMC closely match
MR-CI. The spurious cusp when the torsion angle is 90� is
avoided, and the error in the ground state relative to MR-CI
is smaller than for the PauliNet penalty method across tor-
sion angles. The non-parallelity error in the V state relative
to MR-CI is lower for our method than the PauliNet penalty
method, and our predicted location for the conical intersection
(⇠97.5 degrees) is closer to the MR-CI value (⇠96 degrees)
than the predicted PauliNet penalty method value (⇠100 de-
grees). There is a nearly constant shift in the energy of the V
state on the order of several tenths of an eV relative to MR-
CI, and a shift in the energy of the N state which grows as the
pyramidalization angle grows. Increasing the number of ex-
cited states and using a different Ansatz did not seem to make
a difference. We note that when using the equilibrium geom-
etry for ethylene from QUEST in Sec IV as opposed to the
geometry from MR-CI, our results agreed with the theoretical
best estimates to within chemical accuracy. The overall agree-
ment with experimentally relevant quantities like the location
of the conical intersection is in excellent agreement with other
highly accurate theoretical studies, and NES-VMC is able to
capture the important behavior of this system across the po-
tential energy surface.

VII. DOUBLE EXCITATIONS

Accurate calculation of double excitations is known to be
far more challenging than single excitations41. We already
demonstrated that NES-VMC is effective at computing the
double excitations of nitroxyl and the carbon dimer. To see
how well NES-VMC scales to larger systems, we investigated
five systems with 24-42 electrons known to have low-lying
full or partial double excitations: nitrosomethane, butadiene,
glyoxal, tetrazine and cyclopentadienone. For the last two
systems, both of which have the same number of electrons
as benzene, the original TBEs from QUEST39,41 were known
to be unsafe for double excitations, and only very recently did
more accurate calculations from QMC59 and CASPT360 re-
solve discrepancies as large as almost 1 eV for some states.
For these especially challenging two systems, we added an
extra term to the Hamiltonian to push up the energy of triplet
states so that the excitations of interest could be resolved with
a reasonable computational budget (see Sec. S5). Results on
all systems are shown in Fig. 5 and Table S9.

Butadiene is of particular interest, as it is the smallest con-
jugated organic molecule, a class of molecules whose photo-
chemistry is relevant to vision, photosynthesis, dyes and pho-
tovoltaics. The exact ordering of the two lowest-lying singlet
transitions, the bright 11Ag ! 11Bu and dark 11Ag ! 21Ag

transitions, have been the subject of controversy for many
years61, only being resolved in the last decade or so62 after
extensive study. While the 11Bu state is a single excitation,
the 21Ag is known to have roughly 30% double excitation
character, making it especially challenging to compute. For
the FermiNet and Psiformer, NES-VMC is able to not only

DMC/GFMC accuracy 
at the cost of VMC !

Slater determinants of 
permutation-equivariant 
functions: 
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but the electron spin matters because the wave function
must obey Fermi-Dirac statistics—it must be antisymmetric
under the simultaneous exchange of the position and spin
coordinates of any two electrons: ψ (. . . , xi, . . . , x j, . . .) =
−ψ (. . . , x j, . . . , xi, . . .).

Many approaches in quantum chemistry start from a finite
set of one-electron orbitals φ1, . . . , φN and approximate the
many-electron wave function as a linear combination of an-
tisymmetrized tensor products (Slater determinants) of those
functions:

∑

P
sign(P )

∏

i

φk
i (xPi ) =

∣∣∣∣∣∣∣

φk
1 (x1) . . . φk

1 (xn)
...

...
φk

n (x1) . . . φk
n (xn)

∣∣∣∣∣∣∣

= det
[
φk

i (x j )
]

= det[!k], (2)

ψ (x1, . . . , xn) =
∑

k

ωk det[!k], (3)

where {φk
1, . . . , φ

k
n} is a subset of n of the N orbitals, the sum

in Eq. (3) is taken over all permutations P of the electron
indices, and the sum in Eq. (4) is over all subsets of n orbitals.
The difficulty is that the number of possible Slater deter-
minants rises exponentially with the system size, restricting
this “full configuration-interaction” (FCI) approach to tiny
molecules, even with recent advances [11].

To address problems of practical interest, a more compact
representation of the wave function is needed. The choice
of function class used to approximate the wave function is
known as the wave-function Ansatz. For most applications of
quantum Monte Carlo (QMC) methods to quantum chemistry,
the default choice is the Slater-Jastrow Ansatz [12], which
takes a truncated linear combination of Slater determinants
and adds a multiplicative term—the Jastrow factor—to cap-
ture close-range correlations. The Jastrow factor is normally a
product of functions of the distances between pairs and triplets
of particles. Additionally, a backflow transformation [13] is
sometimes applied before the orbitals are evaluated, shifting
the position of every electron by an amount dependent on
the positions of nearby electrons. There are many alternative
Ansatz [14,15], but for continuous-space many-electron prob-
lems in three dimensions the Slater-Jastrow-backflow form
remains the default.

Here, we greatly improve the accuracy of the Slater-
Jastrow-backflow variational quantum Monte Carlo (VMC)
method by using a neural network we dub the Fermionic
Neural Network, or FermiNet, as a more flexible Ansatz.
This avoids the use of a finite basis set, a significant source
of error for other Ansatz, and models higher-order electron-
electron interactions compactly. The use of neural networks as
a compact wave-function Ansatz has been studied before for
spin systems [16–20] and many-electron systems on a lattice
[19,21] as well as small systems of bosons in continuous
space [22]. Applications of neural network Ansatz to chemical
systems have been limited to date, presumably due to the
complexity of Fermi-Dirac statistics. Existing work has been
restricted to very small numbers of electrons [23], or has been
of very low accuracy [24]. Unlike these other approaches, we
use the Slater determinant as the starting point for our Ansatz,

and then extend it by generalizing the single-electron or-
bitals to include generic exchangeable nonlinear interactions
of all electrons. In a conventional backflow transformation,
the electron positions r j at which the one-electron orbitals in
the Slater determinants are evaluated are replaced by collec-
tive coordinates r j +

∑
i( ̸= j) η(ri j )(ri − r j ), but the orbitals

remain functions of a single three-dimensional variable. The
FermiNet wave function goes much further, replacing the
one-electron orbitals φk

i (x j ) by functions of 3n independent
variables. Every “orbital” in every determinant now depends
both on x j and (in a general symmetric way) on the position
and spin coordinates of every other electron.

Our approach is similar in spirit to the neural network
backflow transform [21] that has been applied to discrete
systems. Certain simplifications in the discrete case allow the
use of conventional neural networks, while the continuous
case requires a novel architecture to handle antisymmetry
constraints, boundary conditions and cusps. The closest prior
work we are aware of in continuous space is the iterative
backflow transform [25,26], which has been applied to su-
perfluid 3He. While that work uses intermediate layers of
the same dimensionality as the input, the FermiNet can use
intermediate layers of arbitrary dimensionality, increasing the
representational capacity [27].

The FermiNet is not only an improvement over exist-
ing Ansatz for VMC, but is competitive with and in some
cases superior to more sophisticated quantum chemistry algo-
rithms. Projector methods such as diffusion quantum Monte
Carlo (DMC) [12] and auxiliary field quantum Monte Carlo
(AFQMC) [28] generate stochastic trajectories that sample the
ground-state wave function without the need for an explicit
representation, although accurate explicit trial wave functions
are still required for good performance and numerical sta-
bility. We find the FermiNet is competitive with projector
methods on all systems investigated, in contrast with the con-
ventional wisdom that VMC is less accurate. Coupled cluster
methods [8] use an Ansatz that multiplies a reference wave
function by an exponential of a truncated sum of creation
and annihilation operators. This proves remarkably accurate
for equilibrium geometries, but conventional reference wave
functions are insufficient for systems with many low-lying
excited states. We evaluate the FermiNet on a variety of
stretched systems and find that it outperforms coupled cluster
in all cases.

II. FERMIONIC NEURAL NETWORKS

A. Fermionic neural network architecture

To construct an expressive neural network Ansatz, we note
that nothing requires the orbitals in the matrix in Eq. (3) to
be functions of the coordinates of a single electron. The only
requirement for the determinant of a matrix-valued function of
x1, x2, . . ., xn to be antisymmetric is that exchanging any two
input variables, xi and x j , exchanges two rows or columns of
the output matrix, leaving the rest invariant. This observation
allows us to replace the single-electron orbitals φk

i (x j ) by
multielectron functions φk

i (x j ; x1, . . . , x j−1, x j+1, . . . , xn) =
φk

i (x j ; {x/ j}), where {x/ j} denotes the set of all electron states
except x j , so long as these functions are invariant to any
change in the order of the arguments after x j . In theory, a
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Restricted Boltzmann Machines:

obtaining state-of-the-art accuracy in both ground-
state and out-of-equilibrium dynamics.

Neural-network quantum states

Consider a quantum system with N discrete-
valued degrees of freedom S ¼ ðS1;S2;… ;SN Þ,
which may be spins, bosonic occupation numbers,
or similar. The many-body wave function is a map-
ping of the N-dimensional set S to (exponentially
many) complex numbers that fully specify the
amplitude and the phase of the quantum state.
The point of view we take here is to interpret
the wave function as a computational black box
which, given an input many-body configuration
S, returns a phase and an amplitude according
to YðSÞ. Our goal is to approximate this compu-
tational black box with a neural network, trained
to best representYðSÞ. Different possible choices
for the artificial neural-network architectures
have been proposed to solve specific tasks, and
the best architecture to describe a many-body
quantum system may vary from one case to an-
other. For the sake of concreteness, we henceforth
specialize our discussion to restricted Boltzmann
machine (RBM) architectures and apply them to
describe spin-½ quantum systems. In this case,
RBM artificial networks are constituted by one
visible layer of N nodes, corresponding to the
physical spin variables in a chosen basis (e.g.,
S ¼ sz1 ;… ; szN ) and a single hidden layer of M
auxiliary spin variables ðh1;… ; hM Þ (Fig. 1). This
description corresponds to a variational expres-
sion for the quantum states

YM ðS;WÞ¼
X

fhig
e

X

j

ajszjþ
X

i

bihiþ
X

ij

Wijhiszj

where hi ¼ f−1; 1g is a set ofM hidden spin varia-
bles and the network parametersW ¼ fa; b;Wg
fully specify the response of the network to a
given input state S. Because this architecture fea-
tures no intralayer interactions, the hidden varia-
bles can be explicitly traced out, and the wave

function reads YðS;WÞ ¼ e
P
j

aj s
z
j % PM

i¼1FiðSÞ,
where FiðSÞ¼2cosh½biþP

j

W ijszj '. The network
weights are, in general, to be taken complex-
valued to provide a complete description of both
the amplitude and the phase of the wave function.
The mathematical foundations for the ability

of NQS to describe intricate many-body wave
functions are the established representability
theorems (27–29), which guarantee the existence
of network approximates of sufficiently smooth
and regular high-dimensional functions. If these
conditions are satisfied by the many-body wave
function, we can reasonably expect the NQS form
to be a sensible choice. One of the practical ad-
vantages of this representation is that its quality
can, in principle, be systematically improved by
increasing the number of hidden variables. The
numberM (or, equivalently, the density a =M/N)
then plays a role analogous to the bond dimension
for the MPS. However, the correlations induced
by the hidden units are intrinsically nonlocal in
space and are therefore well suited to describe
quantum systems in arbitrary dimension. Another

convenient point of the NQS representation is
that it can be formulated in a way that conserves
some specific symmetries. For example, lattice trans-
lation symmetry can be used to reduce the number
of variational parameters of the NQS ansatz, in the
spirit of shift-invariant RBMs (30, 31). Concretely,
for integer hidden-variable density a = 1,2,…, the
weight matrix takes the form of feature filters
W ð f Þ

j for f ∈½1;a'. These filters have a total of aN
variational elements in lieu of the aN2 elements of
the asymmetric case (see supplementary materials).
Given a general expression for the quantum

many-body state, we are now left with the task of
solving the many-body problem by using machine
learning to optimize the network parameters W.
In the most interesting applications, the exact

many-body state is unknown, and it is typically
found upon solving either the static Schrödinger
equationHjYi ¼ EjYi or the time-dependent one
HjYðtÞi ¼ i d

dt jYðtÞi for a given HamiltonianH.
In the absence of samples drawn according to the
exact wave function, supervised learning of Y is
therefore not a viable option. Instead, we derive
a consistent reinforcement learning approach in
which either the ground-state wave function or
the time-dependent one is learned on the basis
of feedback from variational principles.

Ground state

To demonstrate the accuracy of the NQS in
the description of complex many-body quantum
states, we first focus on the goal of finding the
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Fig. 2. Neural-network representation of the many-body ground states. Results for prototypical
spin models in one and two dimensions are shown. In the top group of panels, we show the feature maps for
the 1D transverse-field Ising (TFI) model at the critical point h = 1, as well as for the antiferromagnetic
Heisenberg (AFH) model. In both cases, the hidden-unit density is a = 4 and the lattices comprise 80 sites.

Each horizontal colormap shows the values that the fth featuremapW ð f Þ
j takes on the jth lattice site (horizontal

axis, broadened along the vertical direction for clarity). In the bottom group of panels, we show the feature
maps for the 2D Heisenberg model on a square lattice, for a = 16. In this case, the horizontal (or vertical) axis
of the colormaps corresponds to the x (or y) coordinates on a 10-by-10 square lattice. Each of the feature
maps acts as an effective filter on the spin configurations, capturing themost important quantum correlations.

RESEARCH | RESEARCH ARTICLE

on M
arch 11, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

obtaining state-of-the-art accuracy in both ground-
state and out-of-equilibrium dynamics.

Neural-network quantum states

Consider a quantum system with N discrete-
valued degrees of freedom S ¼ ðS1;S2;… ;SN Þ,
which may be spins, bosonic occupation numbers,
or similar. The many-body wave function is a map-
ping of the N-dimensional set S to (exponentially
many) complex numbers that fully specify the
amplitude and the phase of the quantum state.
The point of view we take here is to interpret
the wave function as a computational black box
which, given an input many-body configuration
S, returns a phase and an amplitude according
to YðSÞ. Our goal is to approximate this compu-
tational black box with a neural network, trained
to best representYðSÞ. Different possible choices
for the artificial neural-network architectures
have been proposed to solve specific tasks, and
the best architecture to describe a many-body
quantum system may vary from one case to an-
other. For the sake of concreteness, we henceforth
specialize our discussion to restricted Boltzmann
machine (RBM) architectures and apply them to
describe spin-½ quantum systems. In this case,
RBM artificial networks are constituted by one
visible layer of N nodes, corresponding to the
physical spin variables in a chosen basis (e.g.,
S ¼ sz1 ;… ; szN ) and a single hidden layer of M
auxiliary spin variables ðh1;… ; hM Þ (Fig. 1). This
description corresponds to a variational expres-
sion for the quantum states

YM ðS;WÞ¼
X

fhig
e

X

j

ajszjþ
X

i

bihiþ
X

ij

Wijhiszj

where hi ¼ f−1; 1g is a set ofM hidden spin varia-
bles and the network parametersW ¼ fa; b;Wg
fully specify the response of the network to a
given input state S. Because this architecture fea-
tures no intralayer interactions, the hidden varia-
bles can be explicitly traced out, and the wave

function reads YðS;WÞ ¼ e
P
j

aj s
z
j % PM

i¼1FiðSÞ,
where FiðSÞ¼2cosh½biþP

j

W ijszj '. The network
weights are, in general, to be taken complex-
valued to provide a complete description of both
the amplitude and the phase of the wave function.
The mathematical foundations for the ability

of NQS to describe intricate many-body wave
functions are the established representability
theorems (27–29), which guarantee the existence
of network approximates of sufficiently smooth
and regular high-dimensional functions. If these
conditions are satisfied by the many-body wave
function, we can reasonably expect the NQS form
to be a sensible choice. One of the practical ad-
vantages of this representation is that its quality
can, in principle, be systematically improved by
increasing the number of hidden variables. The
numberM (or, equivalently, the density a =M/N)
then plays a role analogous to the bond dimension
for the MPS. However, the correlations induced
by the hidden units are intrinsically nonlocal in
space and are therefore well suited to describe
quantum systems in arbitrary dimension. Another

convenient point of the NQS representation is
that it can be formulated in a way that conserves
some specific symmetries. For example, lattice trans-
lation symmetry can be used to reduce the number
of variational parameters of the NQS ansatz, in the
spirit of shift-invariant RBMs (30, 31). Concretely,
for integer hidden-variable density a = 1,2,…, the
weight matrix takes the form of feature filters
W ð f Þ

j for f ∈½1;a'. These filters have a total of aN
variational elements in lieu of the aN2 elements of
the asymmetric case (see supplementary materials).
Given a general expression for the quantum

many-body state, we are now left with the task of
solving the many-body problem by using machine
learning to optimize the network parameters W.
In the most interesting applications, the exact

many-body state is unknown, and it is typically
found upon solving either the static Schrödinger
equationHjYi ¼ EjYi or the time-dependent one
HjYðtÞi ¼ i d

dt jYðtÞi for a given HamiltonianH.
In the absence of samples drawn according to the
exact wave function, supervised learning of Y is
therefore not a viable option. Instead, we derive
a consistent reinforcement learning approach in
which either the ground-state wave function or
the time-dependent one is learned on the basis
of feedback from variational principles.

Ground state

To demonstrate the accuracy of the NQS in
the description of complex many-body quantum
states, we first focus on the goal of finding the
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Fig. 2. Neural-network representation of the many-body ground states. Results for prototypical
spin models in one and two dimensions are shown. In the top group of panels, we show the feature maps for
the 1D transverse-field Ising (TFI) model at the critical point h = 1, as well as for the antiferromagnetic
Heisenberg (AFH) model. In both cases, the hidden-unit density is a = 4 and the lattices comprise 80 sites.

Each horizontal colormap shows the values that the fth featuremapW ð f Þ
j takes on the jth lattice site (horizontal

axis, broadened along the vertical direction for clarity). In the bottom group of panels, we show the feature
maps for the 2D Heisenberg model on a square lattice, for a = 16. In this case, the horizontal (or vertical) axis
of the colormaps corresponds to the x (or y) coordinates on a 10-by-10 square lattice. Each of the feature
maps acts as an effective filter on the spin configurations, capturing themost important quantum correlations.
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best neural-network representation of the un-
known ground state of a given Hamiltonian H.
In this context, reinforcement learning is realized
through minimization of the expectation value
of the energy EðWÞ ¼ hYM jHjYM i=hYM jYM i
with respect to the network weights W. In the
stochastic setting, this is achieved with an iterative
scheme. At each iteration k, a Monte Carlo sampl-
ing of jYM ðS;WkÞj2 is realized for a given set of
parametersWk. At the same time, stochastic esti-
mates of the energy gradient are obtained. These
are then used to propose a next set of weights
Wkþ1 with an improved gradient-descent optimi-
zation (32). The overall computational cost of
this approach is comparable to that of standard
ground-state QMC simulations (see supplemen-
tary materials).
To validate our scheme, we consider the prob-

lem of finding the ground state of two prototyp-
ical spin models, the transverse-field Ising (TFI)
model and the antiferromagnetic Heisenberg
(AFH) model. Their Hamiltonians are

HTFI ¼ −h
X

i

sxi −
X

ij

szi s
z
j

and

HAFH ¼
X

ij

sxi s
x
j þ syi s

y
j þ szi s

z
j

respectively, where sx; sy; and sz are Pauli matrices.
In the following, we consider the case of both

one- and two-dimensional (1D and 2D) lattices
with periodic boundary conditions (PBCs). In
Fig. 2, we show the optimal network structure
of the ground states of the two spin models for
hidden-variable density a = 4 and with imposed
translational symmetries. We find that each fil-
ter f ¼ ½1;… ; a& learns specific correlation features
emerging in the ground-state wave function. For
example, in the 2D case (Fig. 2, rightmost panels)
the neural network learns patterns correspond-
ing to antiferromagnetic correlations. The gen-
eral behavior of the NQS is completely analogous
to that observed in convolutional neural networks,
where different layers learn specific structures of
the input data.
In Fig. 3, we show the accuracy of the NQS,

quantified by the relative error on the ground-
state energy Drel ¼ ðENQSðaÞ−EexactÞ=jEexactj, for
several values of a and model parameters. In Fig.
3A, we compare the variational NQS energies with
the exact result obtained by the fermionization of
the TFI model, on a 1D chain with PBCs. The
most notable result is that NQS achieve a con-
trollable and arbitrary accuracy that is compatible
with a power-law behavior in a. The hardest-to-
learn ground state is at the quantum critical point
h = 1, where nonetheless a notable accuracy of
one part per million can be easily achieved with
a relatively modest density of hidden units. The
same accuracy is obtained for the more complex
1D AFH model (Fig. 3B). In this case, we also ob-
serve a systematic drop in the ground-state energy

error, which, for a small a = 4, attains the same
high precision obtained for the TFI model at the
critical point. The accuracy of our model is sev-
eral orders of magnitude higher than the spin-
Jastrow ansatz (dashed line in Fig. 3B). It is also
interesting to compare the value of a with the
MPS bond dimension M needed to reach the
same level of accuracy. For example, on the AFH
model with PBCs, we find that with a standard
density matrix renormalization group (DMRG)
implementation (33), we need M ~ 160 to reach
the accuracy NQS have at a = 4. This points
toward a more compact representation of the
many-body state in the NQS case, which fea-
tures about three orders of magnitude fewer var-
iational parameters than the corresponding MPS
ansatz.
We next studied the AFH model on a 2D

square lattice (for a comparison with QMC re-
sults, see Fig. 3C) (34). As expected from en-
tanglement considerations, the 2D case proves
harder for the NQS. Nonetheless, we always
find a systematic improvement of the variational

energy upon increasing a, qualitatively similar
to the 1D case. The increased difficulty of the
problem is reflected in a slower convergence. We
still obtain results at the level of existing state-
of-the-art methods or better. In particular, with
a relatively small hidden-unit density (a ~ 4), we
already obtain results at the same level as the
best-known variational ansatz for finite clusters
[the entangled plaquette states (EPS) of (35)
and the projected entangled pair states (PEPS)
of (36)]. Further increasing a then leads to a siz-
able improvement and, consequently, yields the
best variational results reported to date for this
2D model on finite lattices.

Unitary dynamics

NQS are not limited to ground-state problems
but can be extended to the time-dependent
Schrödinger equation. For this purpose, we de-
fine complex-valued and time-dependent network
weights WðtÞ that, at each time t, are trained to
best reproduce the quantum dynamics, in the sense
of the Dirac-Frenkel time-dependent variational
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Fig. 3. Finding the many-body ground-state energy with neural-network quantum states (NQS).
The error of the NQS ground-state energy relative to the exact value is shown for several test cases.
Arbitrary precision on the ground-state energy can be obtained upon increasing the hidden-unit density a.
(A) Accuracy for the 1D TFI model, at a few values of the field strength h and for an 80-spin chain with
periodic boundary conditions (PBCs). Points below 10–8 are not shown to enhance readability. (B) Accuracy
for the 1D AFH model, for an 80-spin chain with PBCs, compared with the Jastrow ansatz (horizontal
dashed line). (C) Accuracy for the AFH model on a 10-by-10 square lattice with PBCs, compared with the
precision obtained by EPS [upper dashed line (35)] and PEPS [lower dashed line (36)]. For all cases
considered here, the NQS approach reaches MPS-grade accuracies in one dimension and systematically
improves the best known variational states for 2D finite lattice systems.

0 1 2
t

0.2

0.6

1.0

h →

h / →

0 1 2 3
t

0.20

0.15

0.10

Jz →

Jz → /

A B

⟨σ
x
⟩(

t)

|⟨σ
z i
σ

z i
⟩|(

t)

Fig. 4. Many-body unitary time evolution with NQS. NQS results (solid lines) for the time evolution
induced by a quantum quench in the microscopic parameters of the models we study (the transverse
field h for the TFI model and the coupling constant Jz in the AFH model) are shown. (A) Time-dependent
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obtaining state-of-the-art accuracy in both ground-
state and out-of-equilibrium dynamics.

Neural-network quantum states

Consider a quantum system with N discrete-
valued degrees of freedom S ¼ ðS1;S2;… ;SN Þ,
which may be spins, bosonic occupation numbers,
or similar. The many-body wave function is a map-
ping of the N-dimensional set S to (exponentially
many) complex numbers that fully specify the
amplitude and the phase of the quantum state.
The point of view we take here is to interpret
the wave function as a computational black box
which, given an input many-body configuration
S, returns a phase and an amplitude according
to YðSÞ. Our goal is to approximate this compu-
tational black box with a neural network, trained
to best representYðSÞ. Different possible choices
for the artificial neural-network architectures
have been proposed to solve specific tasks, and
the best architecture to describe a many-body
quantum system may vary from one case to an-
other. For the sake of concreteness, we henceforth
specialize our discussion to restricted Boltzmann
machine (RBM) architectures and apply them to
describe spin-½ quantum systems. In this case,
RBM artificial networks are constituted by one
visible layer of N nodes, corresponding to the
physical spin variables in a chosen basis (e.g.,
S ¼ sz1 ;… ; szN ) and a single hidden layer of M
auxiliary spin variables ðh1;… ; hM Þ (Fig. 1). This
description corresponds to a variational expres-
sion for the quantum states

YM ðS;WÞ¼
X

fhig
e

X

j

ajszjþ
X

i

bihiþ
X

ij

Wijhiszj

where hi ¼ f−1; 1g is a set ofM hidden spin varia-
bles and the network parametersW ¼ fa; b;Wg
fully specify the response of the network to a
given input state S. Because this architecture fea-
tures no intralayer interactions, the hidden varia-
bles can be explicitly traced out, and the wave

function reads YðS;WÞ ¼ e
P
j

aj s
z
j % PM

i¼1FiðSÞ,
where FiðSÞ¼2cosh½biþP

j

W ijszj '. The network
weights are, in general, to be taken complex-
valued to provide a complete description of both
the amplitude and the phase of the wave function.
The mathematical foundations for the ability

of NQS to describe intricate many-body wave
functions are the established representability
theorems (27–29), which guarantee the existence
of network approximates of sufficiently smooth
and regular high-dimensional functions. If these
conditions are satisfied by the many-body wave
function, we can reasonably expect the NQS form
to be a sensible choice. One of the practical ad-
vantages of this representation is that its quality
can, in principle, be systematically improved by
increasing the number of hidden variables. The
numberM (or, equivalently, the density a =M/N)
then plays a role analogous to the bond dimension
for the MPS. However, the correlations induced
by the hidden units are intrinsically nonlocal in
space and are therefore well suited to describe
quantum systems in arbitrary dimension. Another

convenient point of the NQS representation is
that it can be formulated in a way that conserves
some specific symmetries. For example, lattice trans-
lation symmetry can be used to reduce the number
of variational parameters of the NQS ansatz, in the
spirit of shift-invariant RBMs (30, 31). Concretely,
for integer hidden-variable density a = 1,2,…, the
weight matrix takes the form of feature filters
W ð f Þ

j for f ∈½1;a'. These filters have a total of aN
variational elements in lieu of the aN2 elements of
the asymmetric case (see supplementary materials).
Given a general expression for the quantum

many-body state, we are now left with the task of
solving the many-body problem by using machine
learning to optimize the network parameters W.
In the most interesting applications, the exact

many-body state is unknown, and it is typically
found upon solving either the static Schrödinger
equationHjYi ¼ EjYi or the time-dependent one
HjYðtÞi ¼ i d

dt jYðtÞi for a given HamiltonianH.
In the absence of samples drawn according to the
exact wave function, supervised learning of Y is
therefore not a viable option. Instead, we derive
a consistent reinforcement learning approach in
which either the ground-state wave function or
the time-dependent one is learned on the basis
of feedback from variational principles.

Ground state

To demonstrate the accuracy of the NQS in
the description of complex many-body quantum
states, we first focus on the goal of finding the
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Fig. 2. Neural-network representation of the many-body ground states. Results for prototypical
spin models in one and two dimensions are shown. In the top group of panels, we show the feature maps for
the 1D transverse-field Ising (TFI) model at the critical point h = 1, as well as for the antiferromagnetic
Heisenberg (AFH) model. In both cases, the hidden-unit density is a = 4 and the lattices comprise 80 sites.

Each horizontal colormap shows the values that the fth featuremapW ð f Þ
j takes on the jth lattice site (horizontal

axis, broadened along the vertical direction for clarity). In the bottom group of panels, we show the feature
maps for the 2D Heisenberg model on a square lattice, for a = 16. In this case, the horizontal (or vertical) axis
of the colormaps corresponds to the x (or y) coordinates on a 10-by-10 square lattice. Each of the feature
maps acts as an effective filter on the spin configurations, capturing themost important quantum correlations.
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Why a NQS on the Lattice?

Advantages of a lattice-NQS for nuclei:

- It is hopeless — too costly to work in practice.

- Fermi-Pauli statistics comes for free (Fock space).

- Not tied to spherical or partially deformed 
     ansätze (full deformation, etc…).

- Transfer learning (train few-nucleon first).

- Many-body dynamics.

FISSION DYNAMICS OF 240Pu FROM SADDLE … PHYSICAL REVIEW C 100, 034615 (2019)

FIG. 4. The left three columns shows the induced fission of 240Pu with normal pairing strength, which lasts up to 14 000 fm/c (≈47 ×
10−21 s) from saddle to scission. The columns show sequential frames of the density (first column), the magnitude of the pairing field (second
column), and the phase of the corresponding pairing field (third column). The upper and lower parts of each frame show the neutron and proton
densities, the magnitudes of neutron and proton pairing fields, and the phase of the pairing field, respectively [62]. The right three columns
show the corresponding snapshots of the induced fission of 240Pu with enhanced pairing strength, which lasts about 1 400 fm/c.

variance of 7.9 and 1.7 MeV in the neighborhood of the outer
saddle point, which can be reached in low-energy neutron
induced fission. The other set of initial conditions (SeaLL1-2)
corresponds to a mean excitation energy and variance of 2.6
and 1.8 MeV, which can be reached either in spontaneous
fission or with photoexcitation excitation of 240Pu. The third
set of initial conditions (SkM*-1) is similar to SeaLL1-1, with
mean excitation energy and variance of 8.2 and 3.0 MeV, but
with an increased pairing strength. The fourth set (SkM*-
2) was characterized by a realistic pairing strength. In the
simulations with SLy4 NEDF [63] and SkM*, we neglected
the correction term 1/A for the center-of-mass kinetic energy
in the sp kinetic energy 1 − 1/A. Without this correction
term, these NEDFs satisfy local Galilean invariance. We have
checked that this term has a negligible influence on the profile
of the potential energy surface.

A. Fission fragments properties

The most surprising outcome of these simulations is that in
all these sets of initial conditions, which correspond to vastly
different initial values of Q20, Q30, we observed a very strong
focusing effect and the final states are remarkably similar; see
Fig. 5. The heavy fragments have neutron and proton numbers
between those of the double magic 132Sn (N = 82, Z = 50)
and of the octupole shaped 144Ba (Z = 56, N = 88), and has
a shape quite close to spherical. The lighter fragment has an

elongated shape (see also Table II). Simenel and Scamps [86]
have recently shown that the octupole shell stabilization of
nuclei close to 144Ba with Z = 56 drive the fission dynamics
toward proton numbers larger than 50, as we also appear to
confirm. As we show below, see Sec. V D and Fig. 10, at
scission both FFs have a significant octupole deformation,
which, however, relaxes after the FFs separate. The neutron
and proton numbers (and thus the mass) of the FFs match
pretty well to the mean values of the experimental systematics
but show a very small dispersion; see Table I.

The strong focusing effect we have establish in the present
study is in stark contrast with the results of Tanimura
et al. [49]. The authors of that study generated an ensemble
of initial conditions according to the stochastic mean field
model of Ayik [87]. In the stochastic mean-field model, the
nucleon single-particle wave functions (spwfs) are evolved
using the old-fashion TDHF method and the only difference
is in considering an ensemble of different initial conditions
for the one-body density matrix [49,87] and Appendix E,
which result in an ensemble of initial states with different
initial energies and quadrupole Q20 and octupole Q30 mo-
ments. In this respect, our choice of various initial conditions
spread over a significant area of the potential energy surface,
the choice chosen by Tanimura et al. [49], and the subse-
quent time-dependent evolution of the nucleonic spwfs are
qualitatively similar but the final results are qualitatively
different. We attribute these differences to the fact that the

034615-7

Fission of 240Pu:  
- time dependent DFT inspired, in 3D 
- 30 x 30 x 60 fm3 box 
- 24 x 24 x 48 = 27,000 pts mesh

Bulgac et al.,  
Phys Rev C 100, 034615 (2019)

Mean-field simulations of Es-254
+ Ca-48 heavy-ion reactions
Paul D. Stevenson*

Department of Physics, University of Surrey, Guildford, United Kingdom

Einstenium-254 (Z = 99, N = 155), can be prepared as a target for research into
nuclear reaction studies. This work presents structure and reaction calculations
of Es-254 and Ca-48 (Z = 20, N = 28), using the Skyrme-(Time-Dependent)-
Energy-Density-Functional formalism. The reaction calculations show the
initial parts of the heavy-ion reaction between the nuclei which, depending
on the interaction parameters, can lead to capture to a compound nucleus of
element 119. For collisions with the spherical 48Ca impinging on the tip of the
prolate 254Es no fusion events are found. For collisions where the calcium
approaches the belly of the einsteinium, capture occurs with the compound
nucleus outlasting the lifetime of the calculation, indicating a possible fusion
candidate. For a sample center-of-mass collision energy of 220 MeV, slightly
non-central collisions, up to an impact parameter of 1 fm, also form long-lived
compound nuclei.

KEYWORDS

nuclear reactions, superheavy elements, time-dependent methods, Skyrme forces,
einsteinium

1 Introduction

Einsteinium-254 (Z = 99, N = 155, J = 7 ground state [1]), with a half-life of 276 days
[2], is a transuranic actinide which can be produced in sufficient quantities to prepare as a
target in nuclear reaction experiments. Previous experimental studies of heavy-ion
induced reactions on Es-254 include with 16,18O and 22Ne beams [3, 4], as well as in
searches for superheavy elements with Ca-48 [5].

The theoretical study of the best reaction mechanisms and beam-target combinations
is an important part of superheavy element (SHE) research, going hand-in-hand with the
experimental efforts to understand SHE formation [6–8]. While many theoretical
methods are used, as shown and referenced in the just-cited arcticles, the present
work concentrates on calcualtions using the microscopic time-dependent Hartree-
Fock (TDHF) method. This has the benefit of being relaticely parameter-free, at least
in the reaction theory, using parameterised effective interactions fitted at the level of
(mainly) ground state structure and nuclear matter properties. TDHF is the basic mean-
field picture of nuclear dynamics and includes some significant effects not found in all
theories, like the ability of the reacting nuclear systems to exhibit significant
rearrangement of matter while accounting for shell structure and some correlation
effects (e.g. through the Pauli principle). On the other hand, the mean-field
approximation misses explicit two-body or higher collision terms, and is

OPEN ACCESS

EDITED BY

Antonio Di Nitto,
University of Naples Federico II, Italy

REVIEWED BY

Sait Umar,
Vanderbilt University, United States
Kyle Samuel Godbey,
Facility for Rare Isotope Beams,
Michigan State University, United States

*CORRESPONDENCE

Paul D. Stevenson,
p.stevenson@surrey.ac.uk

SPECIALTY SECTION

This article was submitted to Nuclear
Physics,
a section of the journal
Frontiers in Physics

RECEIVED 14 August 2022
ACCEPTED 14 October 2022
PUBLISHED 25 October 2022

CITATION

Stevenson PD (2022), Mean-field
simulations of Es-254 + Ca-48 heavy-
ion reactions.
Front. Phys. 10:1019285.
doi: 10.3389/fphy.2022.1019285

COPYRIGHT

© 2022 Stevenson. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 25 October 2022
DOI 10.3389/fphy.2022.1019285

dependence of direction of approach on the reaction dynamics.
Ground states for 254Es and 48Ca were calcualted with the SLy5t
interaction and placed on a coordinate space grid with grid
spacing in each cartesian direction of 1 fm. Each nucleus was
moved in units of 1 fm, with centres along each coordinate axis to
produce potential energies for approach along each of these three
directions. For each of the three sets of data, spline interpolation
is used to produce a smooth potential.

Figure 2 shows the curves for separation along each Cartesian
axis. The x-direction is labelled “tip” since the tip of the deformed

einsteinium nucleus is oriented in this direction. The y- and z-
directions are labelled “belly-y” and “belly-z” respectively. One
can see from the plot that the two belly curves are nearly equal
since the einsteinium nucleus is nearly axially symmetric (while
the calcium is spherical).

From the spline interpolation, the barrier heights are Vtip =
198.6 MeV in the tip direction andVbelly = 213.0 MeV in the belly
direction. As a general rule, these should be upper limits of the
fusion barrier in TDHF calcualtions which allows for dynamic
lowering of the barrier through shape changes as the nuclei

FIGURE 1
Convergence of total energy (left frame), β2 quadrupole deformation (middle frame) and γ deformation (right frame) as a function of Hartree-
Fock iteration for three different Skyrme parameterisations, as discussed in the text.

FIGURE 2
Frozen Hartree-Fock potentials of 254Es+48Ca showing orientation-dependence of potential barriers. Snapshots of the density slices in the z= 0
plane are shown in insets whose axis units are fm. The interaction used is SLy5t.
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NQS for  
fermions confined in a box



Confined fermions w/ a discrete coordinate space mesh
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- Discretise coordinate space
- Use occupation number to locate particles

- Use a Fock space basis to represent particle configurations:
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- Can be mapped into a system of  
  spins (with fixed magnetisation): Can be solved as in 

Carleo and Troyer, 
Science 355, 602 (2017)
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= |n0=0, n1=1, n2=0, n3=0, n4=0, n5=1, . . . nL=0i

no need to worry about 
antisymmetrization!



NQS representation
- Use a Restricted Boltzmann Machine with complex parameter to represent the w.f.: 
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⎛

⎜⎜⎜⎜⎜⎝

Ģࡹ,Ǯ

Ģࡽ,Ǯ
ࣖࣖ
ࣖ

Ģ�ˉ,Ǯ

⎞

⎟⎟⎟⎟⎟⎠
∈ C�ˉ ,

ωǮ(˙) = İ(Ǯ)ᵀ˙+ ŻǮ = ∑ȃ ĢȃǮˉȃ + ŻǮ,

ࣱ࢕࣯

˦Ƕƨțƕʌ
éƨʌʚɼǶƉʚƨƕ $Ʉțʚ˲ȭŗȳȳ ¡ŗƉǫǶȳƨ

P(˙) = �ǣࡽ exp
(
ŗ(ࡱ)ᵀ˙

) �ǣ
∏
Ǯ=ࡹ

[
exp

(
�(Ǯ) + ŗ(Ǯ)ᵀ˙

)
cosh(ωǮ(˙))

]
. ࣱ࢙࣯

ࢁ

�ŗʚʚǶƉƨ Ƕȳ ɼƨŗț ʌɱŗƉƨ

ɄƉƉʯɱŗʚǶɄȳ ȳʯȭſƨɼʌ

ƣ− ƣ−

˕
ࡱ �

⇐⇒ ,ࡱ) ,ࡹ ,ࡱ ,ࡱ ,ࡱ ,ࡹ ,ࡱ ,ࡱ (ࡱ

∆˕

İŗ˙ƨ ǑʯȳƉʚǶɄȳ ɼƨɱɼƨʌƨȳʚŗʚǶɄȳ

|ψ⟩ = ∏
Ǯ

ψ†(˕Ǯ) ⟨ࡱ| ࣱࡱࡹ࣯

⟨˕|ψ⟩ → ⟨ç|ψ⟩ ⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ƅ↑↑↑...
.
= ⟨↑↑↑ . . .|ψ⟩ = ψ(↑↑↑ . . . )

ƅ↓↑↑...
.
= ⟨↓↑↑ . . .|ψ⟩ = ψ(↓↑↑ . . . )

ࣖࣖ
ࣖ

ƅ↓↓↓...
.
= ⟨↓↓↓ . . .|ψ⟩ = ψ(↓↓↓ . . . )

ࣱࡹࡹ࣯

ࢅ

- Marginalize w.r.t. the hidden nodes:

yȳʚƨǖɼŗʚǶȳǖ Ʉʯʚ ǫǶƕƕƨȳ ˙ŗɼǶŗſțƨʌࣖࣖࣖ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŗ = ŗ(ࡱ) + ∆ŗ = ŗ(ࡱ) + ∑�ǣ
Ǯ=ࡹ ŗ(Ǯ)

Z/ࡹ = exp
(

∑�ǣ
Ǯ=ࡹ �

(Ǯ)
)

İ(Ǯ) =

⎛

⎜⎜⎜⎜⎜⎝

Ģࡹ,Ǯ

Ģࡽ,Ǯ
ࣖࣖ
ࣖ

Ģ�ˉ,Ǯ

⎞

⎟⎟⎟⎟⎟⎠
∈ C�ˉ ,

ωǮ(˙) = İ(Ǯ)ᵀ˙+ ŻǮ = ∑ȃ ĢȃǮˉȃ + ŻǮ,

ࣱ࢕࣯

˦Ƕƨțƕʌ
éƨʌʚɼǶƉʚƨƕ $Ʉțʚ˲ȭŗȳȳ ¡ŗƉǫǶȳƨ

P(˙) = �ǣࡽ exp
(
ŗ(ࡱ)ᵀ˙

) �ǣ
∏
Ǯ=ࡹ

[
exp

(
�(Ǯ) + ŗ(Ǯ)ᵀ˙

)
cosh(ωǮ(˙))

]
. ࣱ࢙࣯

ࢁ

<latexit sha1_base64="nFUo/orppbFFiuBeQ7rBK3jx96U=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9mVoh6LXjxWsB/QXUo2zbah2WxMsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5oeRMG9f9dtbWNza3tgs7xd29/YPD0tFxSyepIrRJEp6oTog15UzQpmGG045UFMchp+1wdDfz22OqNEvEo5lIGsR4IFjECDZWCnypWSXzwwiNpxe9UtmtunOgVeLlpAw5Gr3Sl99PSBpTYQjHWnc9V5ogw8owwum06KeaSkxGeEC7lgocUx1k86On6NwqfRQlypYwaK7+nshwrPUkDm1njM1QL3sz8T+vm5roJsiYkKmhgiwWRSlHJkGzBFCfKUoMn1iCiWL2VkSGWGFibE5FG4K3/PIqaV1Wvatq7aFWrt/mcRTgFM6gAh5cQx3uoQFNIPAEz/AKb87YeXHenY9F65qTz5zAHzifPx+NkbA=</latexit>

 (v)

<—  Note that a(i) are site dependent 
and no hidden nodes are necessary for 
a single particle (Nh=0).



Energy minimization
- The Hamiltonian for Nv fermions fermions will be: 

- Sample Eloc from                                 using 
MCMC:

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ = ⟨BHQ+⟩|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ⟩ ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ

+ appropriate conditions at the walls.

Use gradient descent w/ SR:

óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ⟨H⟩ψ = ⟨aȋ⟩|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− ⟨BHQ+⟩|ψ(˥)|ࡽ

)]
. ࣱ࢑ࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ ⟨H⟩ψ, ࣱ࢕ࡹ࣯

çǮȃ = ⟨3∗Ǯ ⟩⟨3ȃ⟩ − ⟨3∗Ǯ 3ȃ⟩, ࣱ࢙ࡹ࣯
࢑

óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ⟨H⟩ψ = ⟨aȋ⟩|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− ⟨BHQ+⟩|ψ(˥)|ࡽ

)]
. ࣱ࢑ࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ ⟨H⟩ψ, ࣱ࢕ࡹ࣯

çǮȃ = ⟨3∗Ǯ ⟩⟨3ȃ⟩ − ⟨3∗Ǯ 3ȃ⟩, ࣱ࢙ࡹ࣯
࢑

óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ⟨H⟩ψ = ⟨aȋ⟩|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− ⟨BHQ+⟩|ψ(˥)|ࡽ

)]
. ࣱ࢑ࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ ⟨H⟩ψ, ࣱ࢕ࡹ࣯

çǮȃ = ⟨3∗Ǯ ⟩⟨3ȃ⟩ − ⟨3∗Ǯ 3ȃ⟩, ࣱ࢙ࡹ࣯
࢑

óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ⟨H⟩ψ = ⟨aȋ⟩|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− ⟨BHQ+⟩|ψ(˥)|ࡽ

)]
. ࣱ࢑ࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ ⟨H⟩ψ, ࣱ࢕ࡹ࣯

çǮȃ = ⟨3∗Ǯ ⟩⟨3ȃ⟩ − ⟨3∗Ǯ 3ȃ⟩, ࣱ࢙ࡹ࣯
࢑

óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ⟨H⟩ψ = ⟨aȋ⟩|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− ⟨BHQ+⟩|ψ(˥)|ࡽ

)]
. ࣱ࢑ࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ ⟨H⟩ψ, ࣱ࢕ࡹ࣯

çǮȃ = ⟨3∗Ǯ ⟩⟨3ȃ⟩ − ⟨3∗Ǯ 3ȃ⟩, ࣱ࢙ࡹ࣯
࢑

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ = ⟨BHQ+⟩|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ⟩ ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ = ⟨BHQ+⟩|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ⟩ ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ = ⟨BHQ+⟩|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ⟩ ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ
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Two fermions — optimization

Convergence with Nv=10
,Ʉȳ˙ƨɼǖƨȳƉƨ ǑɄɼ ࡽ ǑƨɼȭǶɄȳʌ

bǶǖʯɼƨ ࣘࡹ óɄțʯʚǶɄȳ ǑɄɼ ʚǫƨ ʚ˝Ʉ ɱŗɼʚǶƉțƨʌ ȳɄȳࣽǶȳʚƨɼŗƉʚǶȳǖ ɱɼɄſțƨȭ ˝Ƕʚǫ ŗȳ é$¡
ſʯǶțʚ ˝Ƕʚǫ Ʉȳț˦ ࡱࡹ ǫǶƕƕƨȳ ȳɄƕƨʌࣖ ÿǫǶʌ ʌǶȭʯțŗʚǶɄȳ ɱɼɄ˙ƨʌ ʚǫŗʚ Ƕʚ Ƕʌ ɱɄʌʌǶſțƨ ʚɄ
ǫŗ˙ƨ ŗ ʌŗʚǶʌǑ˦Ƕȳǖ ŗɱɱɼɄ˥ǶȭŗʚǶɄȳ ŗțʌɄ ˝Ƕʚǫ ɼƨțŗʚǶ˙ƨț˦ Ǒƨ˝ ǫ˦ɱƨɼ ɱŗɼŗȭƨʚƨɼʌࣖ

࢙

p˦ɱƨɼɱŗɼŗȭƨʚƨɼ ɄɱʚǶȭǶ˲ŗʚǶɄȳ

�ǣ ⟨ʋ⟩/ǶʚƨɼŗʚǶɄȳ ∆B/B

ࡴࢇ ࢋ࢓ࣖࡿ ȭǶȳ ৓ࡿ
ࡴࢃ ࢗࣖࡻ ȭǶȳ ৓࢏ࣖࡿ
ࡴࡿ ࡻ ȭǶȳ ৓ࢃࡴࣖࡴ
ࡴࡻ ࡿࣖ࢏ࡻ ʌ ৓ࢋࡴࣖࡴ
ࢋ ࢇ ʌ ৓ࡴ࢏

ÿŗſțƨ ࣘࡹ E˾ƉǶƨȳƉ˦ ŗȳƕ ɸʯŗțǶʚ˦ ɄǑ ƉɄȳ˙ƨɼǖƨȳƉƨ ɄǑ é$¡ʌ ˝Ƕʚǫ ˙ŗɼǶɄʯʌ �ǣ ʚɄ
ȭɄƕƨț ʚǫƨ ʚ˝Ʉ ȳɄȳࣽǶȳʚƨɼŗƉʚǶȳǖ ǑƨɼȭǶɄȳʌ Ƕȳ ŗ ſɄ˥ࣖ �ˉ Ƕʌ ʌƨʚ ʚɄ ࡱࡹ ǑɄɼ ƨ˙ƨɼ˦
ʌǶȭʯțŗʚǶɄȳࣖ

࢕

Hyperparameter optimization



Two fermions — NQS wave function
ÿǫƨ ȳƨʚ˝Ʉɼȕ țƨŗɼȳʌ

bǶǖʯɼƨ ࣘࡽ ×ǣ˖ɾǮƅŗȑ țƨŗɼȳǶȳǖ ɱɼɄƉƨʌʌ ɄǑ ŗȳ é$¡ ˝Ƕʚǫ �ǣ = ࡱࡽ ǑɼɄȭ ʚǫƨ ʌʚŗɼʚǶȳǖ ˝ŗ˙ƨ ǑʯȳƉʚǶɄȳ
࣯ʯɱɱƨɼ țƨǒʚࣱࣖ ÿǫƨ ¥¥ ʌƨƨȭʌ ʚɄ ſƨ țƨŗɼȳǶȳǖ ſɄʯȳƕŗɼǶƨʌ ŗȳƕ ŗȳʚǶʌǶȭȭƨʚɼ˦ Ƕȳ ʚǫƨ ǑɄțțɄ˝Ƕȳǖ ǶʚƨɼŗʚǶɄȳʌ
࣯ȳʯȭſƨɼ ࣗࢉࡹ ࡱࢁ ŗȳƕ ࡱࡱࢁ ŗɼƨ ɼƨɱɄɼʚƨƕࣱࣖ ࡹࡹ



3D lattice 1 and 2 electrons — finite size (FS) tests

Figure 7.2: Soft Shoulder potential with R = 2 and V0 = �10.

We tried with R = 2, V0 = �10 (7.3 and 7.2) and V0 = �30 (7.4 and 7.3), below we
show the results:

Figure 7.3: Energy as a function of NV, with di↵erent trap length values and with
V0 = �10.
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Soft-shoulder interactions (Ryberg atoms):

Figure 7.1: Energy as a function of the number of visible nodes for the hydrogen
atom, with di↵erent trap length values.

NV 27 125 343 729 1331
L = 5 -0.50397 -0.467237 -0.429941 -0.415233 -0.409394
L = 6 -0.524041 -0.528736 -0.493552 -0.475056 -0.466796
L = 7 -0.515937 -0.555156 -0.527066 -0.505331 -0.494152
L = 8 -0.496915 -0.563491 -0.547084 -0.523981 -0.509800
L = 9 -0.474092 -0.561376 -0.559347 -0.537685 -0.521025
L = 10 -0.450580 -0.552970 -0.565913 -0.548621 -0.530648
L = 11 -0.427757 -0.540813 -0.567824 -0.557203 -0.539525
L = 12 -0.406204 -0.526529 -0.565935 -0.563336 -0.547656
L = 13 -0.386126 -0.511168 -0.561057 -0.566946 -0.554745
L = 14 -0.367547 -0.495407 -0.553924 -0.568122 -0.560479
L = 15 -0.350403 -0.479679 -0.545159 -0.567097 -0.564652

Table 7.1: Energy values [Ha] for di↵erent values of L[a0] and NV for the hydrogen
atom.

We observe that the various lines do not converge to a single, consistent value.
This discrepancy can be attributed to the truncation of the Coulomb potential at
a finite point within our computational domain. To validate this hypothesis, we
employed an alternative potential that smoothly decays to zero at the boundaries of
the trap, eliminating the long-range tail characteristic of the Coulomb interaction.
The potential we used is:

V(r) =
V0�

r

R

�6
+ 1

(7.1)

This is called a Soft Shoulder potential, and it has the following form 7.2:
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Hydrogen atom (Coulomb force):

Good cusp and 1-body wave function 
in spite of finite size (FS) effects !!

Figure 7.5: Energy as a function of the number of iterations for the hydrogen atom,
with a lattice of 11⇥ 11⇥ 11 visible nodes, and a trap length of L = 7 [a0].

7.3.2 Wavefunction

To visualize the wavefunction, the following procedure was employed: the final val-
ues of the parameters were extracted from the last iteration of the training process,
and the value of the wavefunction,  (x, y, z), was computed at each point in the
lattice. In figure 7.7, the plot illustrates the x and y coordinates, with the z-axis
representing the magnitude of the wavefunction, | (x, y, z)|. The wavefunction is
presented in sections for various values of z.
From figure 7.7, it is apparent that at z = 0, the wavefunction remains flat, whereas
at z = 5, corresponding to the plane intersecting the nucleus’s position, the wave-
function attains its maximum magnitude.
Figure 7.6 shows sections of the wavefunction with two coordinates fixed at the nu-
cleus’s position. These sections demonstrate that the wavefunction exhibits a form
consistent with e�r, where r represents the radial distance from the nucleus, and
that the wavefunction computed using the parameters obtained from exact diago-
nalization is coherent with the simulated wavefunction.

Figure 7.6: Section of the wavefunction with two coordinates fixed at the position
of the nucleus, fitted with a f(r) = e�r and the diagonalized wavefunction.
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Long range interaction and cusps…



Examples with 2 electrons (Helium atoms)

Figure 7.20: Section of the wavefunction with two coordinates of one electron and
the coordinates of the other fixed at the position of the nucleus.

(a) Motion of a single electron on the equatorial
x� y plane: x1 = y1 = z1 = z2 = 5.

(b) Motion of a single electron on a shifted x�y
plane: x1 = y1 = z1 = 5, z2 = 7.

(c) Motion of two electrons on parallel lines:
y1 = y2 = 6, x1 = 5, x2 = 7.

(d) Motion of two electrons along the z-axis
with x1 = y1 = x2 = y2 = 5.

Figure 7.21: Helium ground state wavefunction.
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Figure 7.22: Wavefunction distribution in polar coordinates.

7.5.3 Radial probability density ⇢(r) and particle density ⇢(~r)

In these figures, 7.23 and 7.31, we can see almost the same trend as in the case
without a potential between the electrons.

Figure 7.23: Distribution of the radial probability density as a function of the radial
distance from the nucleus.
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7.6.3 Radial probability density ⇢(r) and particle density ⇢(~r)

In this figure 7.31, we can observe that the peak is no longer located at approximately
half the Bohr radius but is instead shifted closer to one, and additionally, the curve is
broader. In the other figure 7.33, we can see that the electrons continue to experience
the Coulomb potential, tending to remain close to the nucleus.

Figure 7.31: Distribution of the radial probability density as a function of the radial
distance from the nucleus.

Figure 7.32: Distribution of the probability density as a function of the radial dis-
tance from the nucleus.

7.6.4 Radial pair distribution function g(~r)

In this figure 7.33, we can observe that, unlike the case of two electrons with opposite
spins, there are no points at zero distance, since the electrons cannot occupy the
same position.
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Figure 7.29: Wavefunction distribution in polar coordinates.

(a) Motion of a single electron on the equatorial
x� y plane: x1 = y1 = z1 = z2 = 5.

(b) Motion of a single electron on a shifted x�y
plane: x1 = y1 = z1 = 5, z2 = 7.

(c) Motion of two electrons on parallel lines:
y1 = y2 = 6, x1 = 5, x2 = 7.

(d) Motion of two electrons along the z-axis
with x1 = y1 = x2 = y2 = 5.

Figure 7.30: Helium wavefunction with two spins up.
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Inverted spins (He g.s.): Two spins up (He g.s.):



Take home messages

  NQS on a laice are highly challenging. And sjll at the infancy stage, anyway. 

  BUT: they have great potenjals (exojc structures, dynamics, etc.) 

  Few fermions on small laices are under reach—proof of principle. 

  Transfer learning to heavy systems?? Maybe… 

  NQS based VMC only exploits the variajonal principle (…but see PINN, next talk). 

Thank you for your attention!!!

All merits goes to: 

L. Lazzarino, G. Paravizzini, E. Redaelli, G. Borroni  

(all BSc thesis projects…) 


