

DIPARTIMENTO DI FISICA

On the lattice-based neural network quantum states

Next Generation Ab Initio Nuclear Theory — ECT*, July 14-18, 2025

Carlo Barbieri

Neural Network Quantum States (NQS):

$$\frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} = E_V \ge E_0 \qquad \qquad |\Psi_V^J \rangle = \prod_{i < j < k} \left(1 - \sum_{\text{cyc}} u(r_{ij}) u(r_{jk}) \right) \prod_{i < j} f(r_{ij}) | \Phi \rangle$$

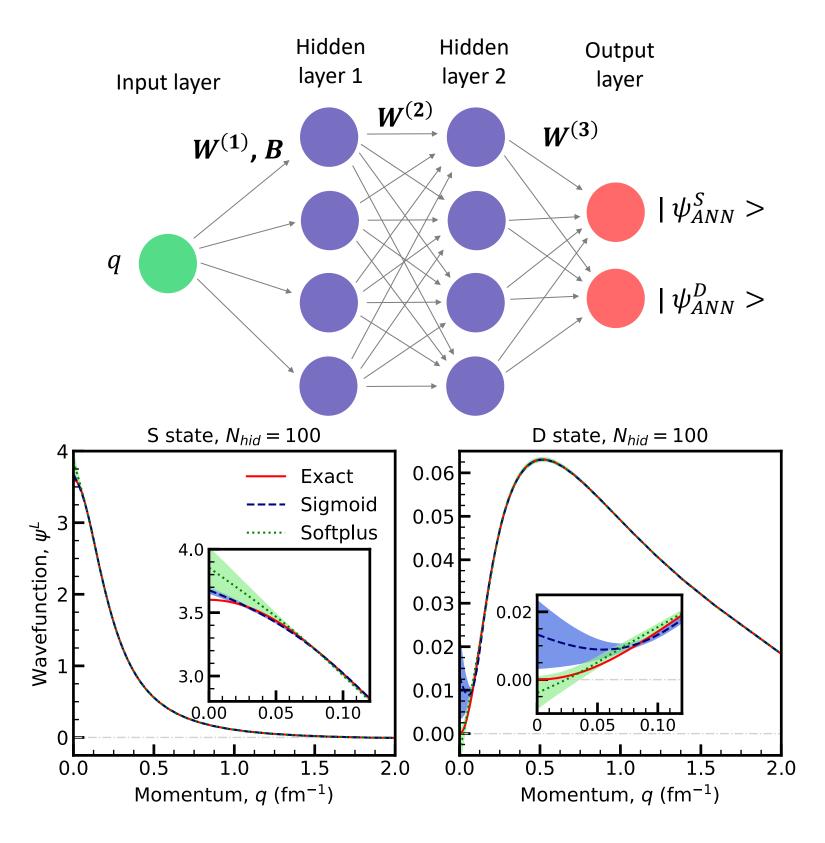
And the NQS is.... a VMC with a NN trial wave function!

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

neural networks

The **deuteron**:



Keeble, Rios, Phys. Lett. B 809, 135743 (2020) Rozalén Sarmiento, Keeble, EPJ Plus 139, 189 (2024)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Early NQS for nuclear physics

Light nuclei:

	Λ	VMC-ANN	VMC-JS	GFMC	GFMC_c
4	4 fm^{-1}		-2.223(1)	-2.224(1)	-
	6 fm^{-1}	-2.224(4)	-2.220(1)	-2.225(1)	-
$^{3}\mathrm{H}$	4 fm^{-1}	-8.26(1)			
	6 fm^{-1}	-8.27(1)	-7.74(1)	-8.38(2)	-7.81(1)
⁴ He	4 fm^{-1}				
	6 fm^{-1}	-24.47(3)	-23.44(2)	-25.06(3)	-24.10(2)

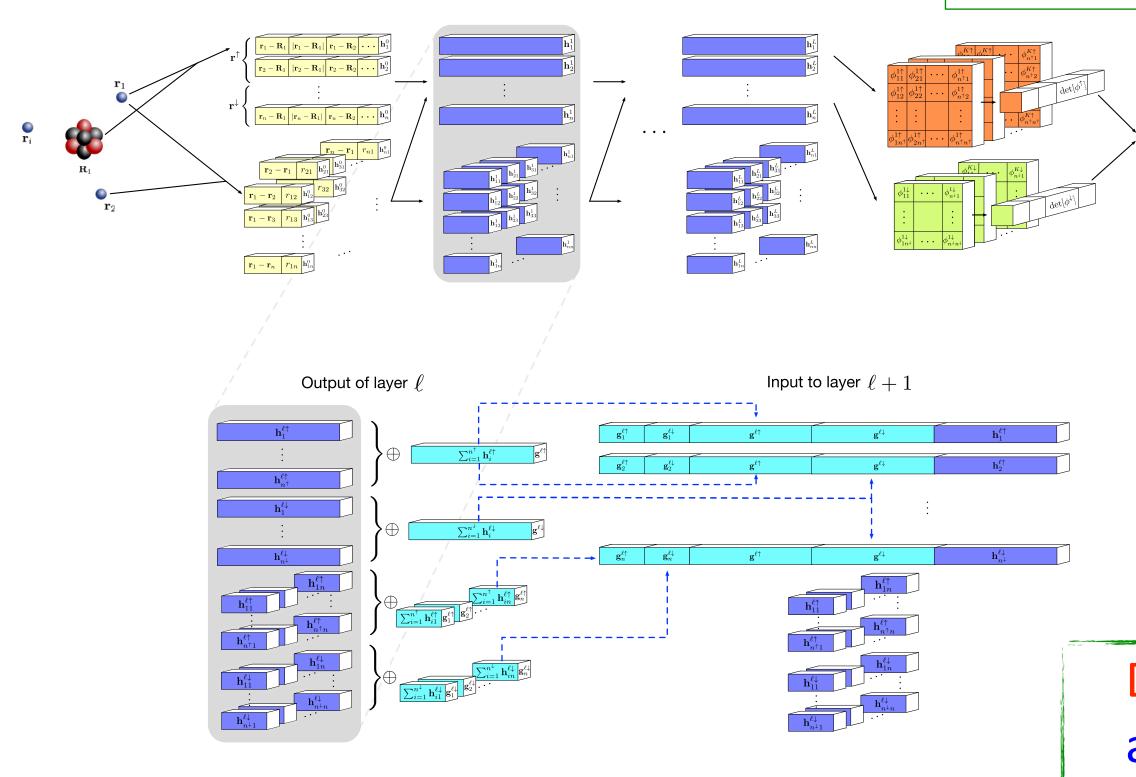
C. Adams, G. Carleo, A. Lovato, N. Rocco, Phys. Rev. Lett. **127**, 022502 (2021)

Some example of NQS in quantum chemistry

FermiNet NQS:

Slater determinants of permutation-equivariant functions: $\phi_i^k(\mathbf{x}_j; \{\mathbf{x}_{/j}\})$

D. Pfau et al., Phys. Rev. Res. 2, 033429 (2020)



And many other architectures for correlated fermions: see e.g., J. Hermann et al., Nature Reviews Chemistry 7, 692–709 (2023)

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

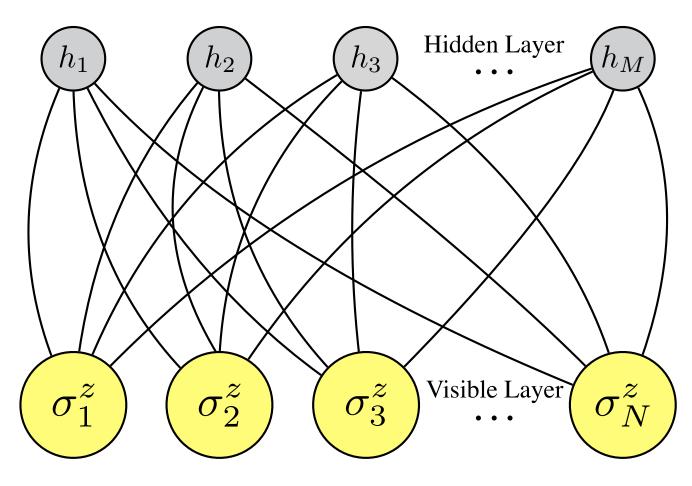
FermiNet for excited states:

Nitrosomethane Butadiene Glyoxal Tetrazine Cyclopentadienone $2^1 A_{g x}$ X 3¹A₁ 5 X 1^1B_{1g} 2^1A_g -1^3A^3 $1^{3}B_{u}$ ψ 2¹A₁ **→**2¹A′ 2^1A_g 0-0 0-0 $1^{1}B_{u}$ 6 1^1B_{a} 1^1B_1 5- $-1^{1}A_{ii}$ $1^{3}B_{a}$ -1^3A_g ▲ ▲ FermiNet Psiformer — ···· QUEST ---- DMC -1^1B_2 2 ___1¹A″ ----- CASPT3 - 1^3A_u $3 \mid -1^{1}A_{2}$ -1^1B_{3u} <u></u>−1³B₁₁ MR-CI - PauliNet/penalty Psiformer/NES-VMC (eV) $^{1}B_{1u}(V; \pi \rightarrow \pi^{*})$ Energy DMC/GFMC accuracy at the cost of VMC ! 20 100 120 80

D. Pfau et al., Science **385**, 6711 (2024)

Pyramidalization Angle ϕ (deg.)

Restricted Boltzmann Machines:



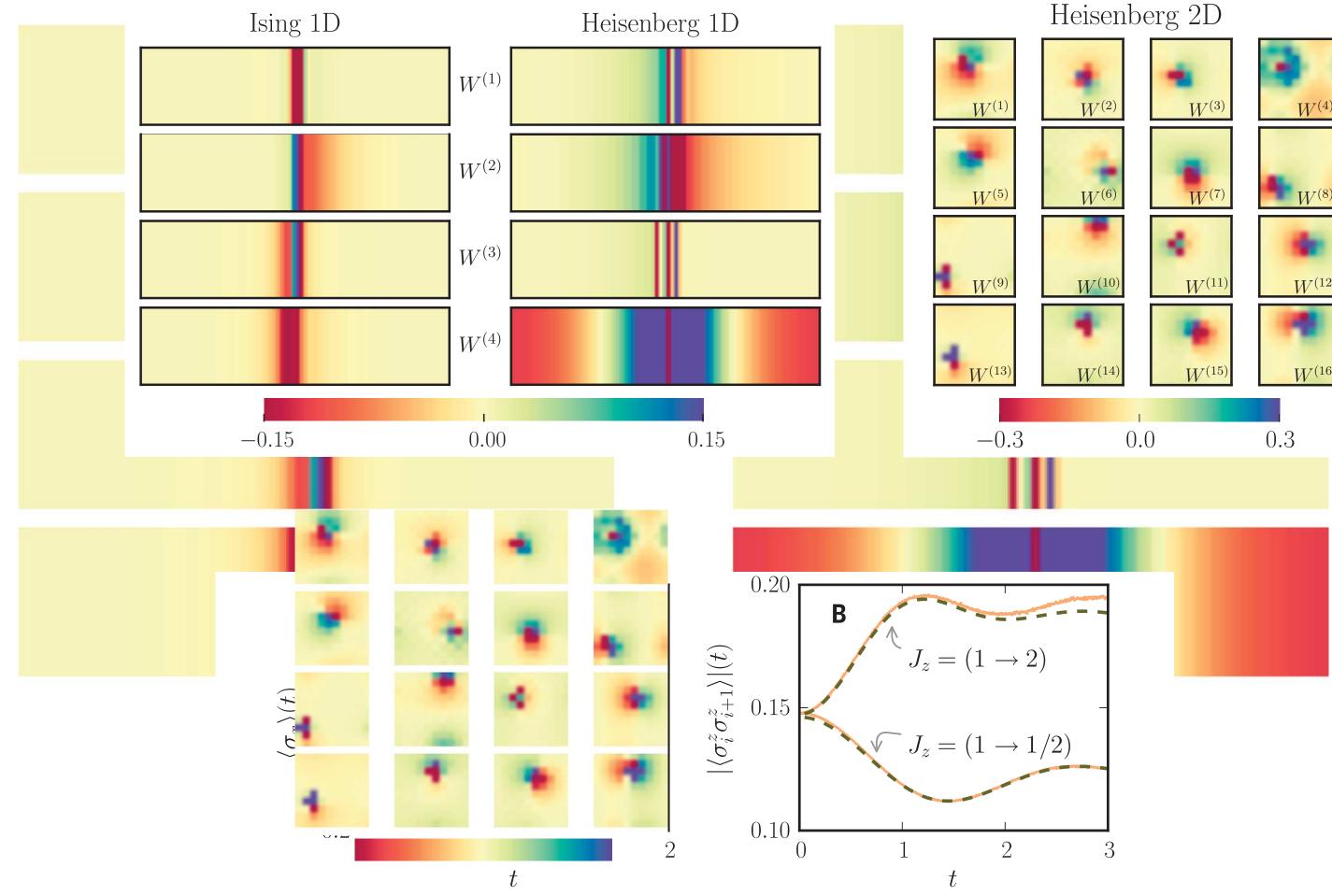
$$E^{\mathcal{W}} = \frac{\left\langle \psi^{\mathcal{W}} \right| \hat{H} \left| \psi^{\mathcal{W}} \right\rangle}{\left\langle \psi^{\mathcal{W}} \right| \psi^{\mathcal{W}} \right\rangle}$$

$$\Psi_M(\mathcal{S};\mathcal{W}) = \sum_{\{h_i\}} e^{\sum\limits_j a_j \sigma_j^z + \sum\limits_i b_i h_i + \sum\limits_{ij} W_{ij} h_i \sigma_j^z}$$

<u>G. Carleo & M. Troyer, Science 355, 602 (2017)</u> K. Choo, et al., Nature Comm., 11, 2368, (2020).

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA



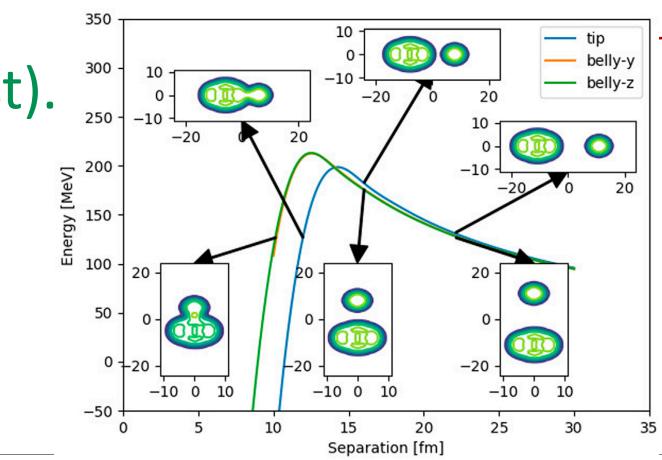
NQS for spin lattices — RB

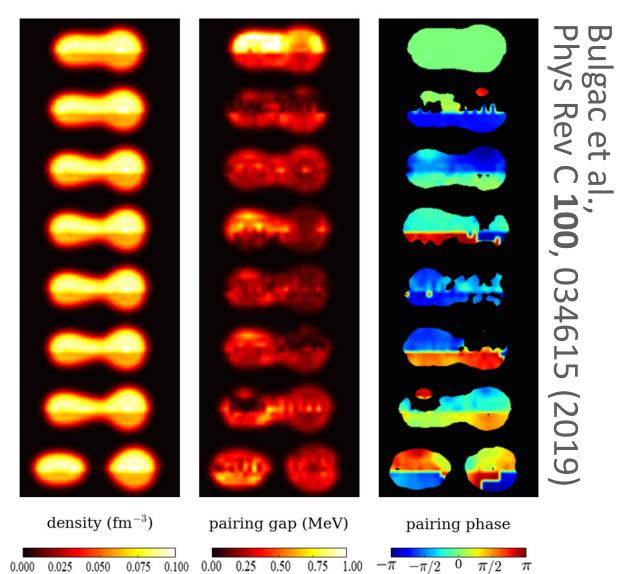
Fig. 4. Many-body unitary time evolution with NQS. NQS results (solid lines) for the time evolution induced by a quantum quench in the microscopic parameters of the models we study (the transverse

Advantages of a lattice-NQS for nuclei:

- It is hopeless too costly to work in practice.
- Fermi-Pauli statistics comes for free (Fock space).
- Not tied to spherical or partially deformed ansätze (full deformation, etc...).
- Transfer learning (train few-nucleon first).
- Many-body dynamics.

Why a NQS on the Lattice?





Fission of ²⁴⁰Pu:

- time dependent DFT inspired, in 3D
- 30 x 30 x 60 fm³ box
- 24 x 24 x 48 = 27,000 pts mesh

Mean-field simulations of Es-254 + Ca-48 heavy-ion reactions

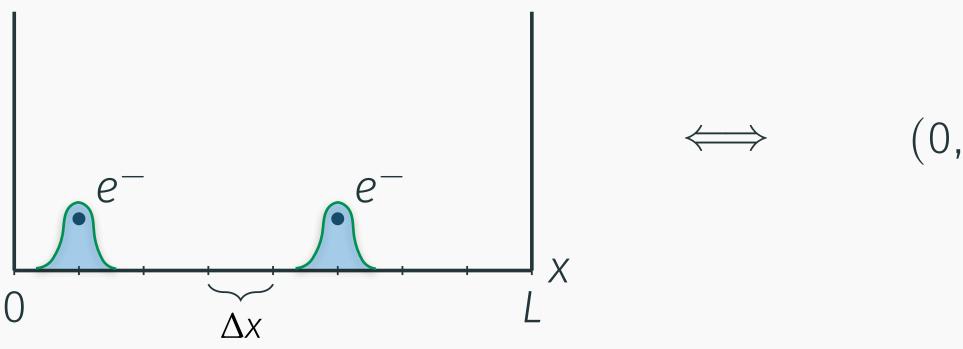
P. Stevenson et al., Frontiers **10**, 1019285 (2022)

NQS for fermions confined in a box

UNIVERSITÀ DEGLI STUDI DI MILANO

Confined fermions w/ a discrete coordinate space mesh

- Discretise coordinate space
- Use occupation number to locate particles



- Use a Fock space basis to represent particle configurations:

$$|\psi\rangle = \prod_{i} \psi^{\dagger}(x_{i}) |0\rangle = |n_{0}=0, n_{1}=1, n_{2}=0, n_{3}=0, n_{4}=0, n_{5}=1, \dots n_{L}=0\rangle$$

- Can be mapped into a system of spins (*with fixed magnetisation*):

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

(0, 1, 0, 0, 0, 1, 0, 0, 0)

no need to worry about antisymmetrization!

$$\langle x|\psi\rangle \rightarrow \langle S|\psi\rangle \Leftrightarrow \begin{cases} c_{\uparrow\uparrow\uparrow\dots} \doteq \langle\uparrow\uparrow\uparrow\dots|\psi\rangle = \psi(\uparrow\uparrow\uparrow\dots) \\ c_{\downarrow\uparrow\uparrow\dots} \doteq \langle\downarrow\uparrow\uparrow\dots|\psi\rangle = \psi(\downarrow\uparrow\uparrow\dots) \\ \vdots \\ c_{\downarrow\downarrow\downarrow\dots} \doteq \langle\downarrow\downarrow\downarrow\dots|\psi\rangle = \psi(\downarrow\downarrow\downarrow\dots) \end{cases}$$

Can be solved as in Carleo and Troyer, Science **355**, 602 (2017)

NQS representation

- Use a Restricted Boltzmann Machine with complex parameter to represent the w.f.:

$$\mathcal{P}(\mathbf{v} \cap \mathbf{h}) = \frac{1}{\mathcal{Z}} \exp(\mathbf{a}^{\mathsf{T}}\mathbf{v} + \mathbf{b}^{\mathsf{T}}\mathbf{h} + \mathbf{h}^{\mathsf{T}}\underline{W}\mathbf{v}) \qquad \mathbf{v}$$

- Marginalize w.r.t. the hidden nodes:

$$\langle x|\psi\rangle \rightarrow \mathcal{P}(\mathbf{v}) = \sum_{\{\mathbf{h}\}} \mathcal{P}(\mathbf{v} \cap \mathbf{h})$$

$$\mathbf{a} = \mathbf{a}^{(0)} + \Delta \mathbf{a} = \mathbf{a}^{(0)} + \sum_{i=1}^{N_h} \mathbf{a}^{(i)}$$

$$1/\mathcal{Z} = \exp\left(\sum_{i=1}^{N_h} \mathcal{K}^{(i)}\right)$$

$$\left(\begin{array}{c} W_{1,i} \\ W_{2,i} \\ \vdots \\ W_{N_v,i} \end{array}\right) \in \mathbb{C}^{N_v},$$

$$\omega_i(\mathbf{v}) = \mathbf{W}^{(i)\mathsf{T}}\mathbf{v} + b_i = \sum_j W_{ji}v_j + b_i,$$

Restricted Boltzmann Machine

$$\psi(\mathbf{v}) = 2^{N_h} \exp\left(\mathbf{a}^{(0)\mathsf{T}}\mathbf{v}\right) \prod_{i=1}^{N_h} \left[\exp\left(K^{(i)} + \mathbf{a}^{(i)\mathsf{T}}\mathbf{v}\right) \cosh(\omega_i(\mathbf{v}))\right]$$

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

ith:
$$\begin{cases} \mathbf{v} \in \{-1, 1\}^{N_{v}} \\ \mathbf{h} \in \{-1, 1\}^{N_{h}} \end{cases}$$

$$\begin{cases} \mathbf{a} \in \mathbb{C}^{N_{V}} \\ \mathbf{b} \in \mathbb{C}^{N_{h}} \\ W \in \operatorname{Mat}_{N_{h} \times N_{V}}(\mathbb{C}) \end{cases}$$

- Note that **a**⁽ⁱ⁾ are site dependent and no hidden nodes are necessary for a single particle $(N_h=0)$.

Energy minimization

- The Hamiltonian for N_v fermions fermions will be

$$\mathcal{H} = T + V = \sum_{j} \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j - 2\psi_j^{\dagger} \psi_j + \frac{-\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j+1}^{\dagger} \psi_j + \frac{\hbar^2}{2m_j(\Delta x)^2} \sum_{j} \left[\psi_{j}^{\dagger} \psi_j +$$

- Sample E_{loc} from $|\psi(x)|^2 \sim \text{RBM}^2$ using MCMC:

$$E_{\rm loc}(\mathbf{x}) = \int d\mathbf{x}' \,\mathcal{H}_{\mathbf{x}\mathbf{x}'} \frac{\psi(\mathbf{x}')}{\psi(\mathbf{x})}$$

$$\frac{\langle \psi | \mathcal{H} | \psi \rangle}{\langle \psi | \psi \rangle} = \langle E_{\text{loc}} \rangle_{|\psi(\mathbf{x})|^2}$$

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

$-\psi_{j-1}^{\dagger}\psi_{j} + V$ + appropriate conditions at the walls.

Use gradient descent w/ SR:

$$D_{k}(\mathbf{x};\theta) = \frac{\partial_{\theta_{k}}\psi^{\theta}(\mathbf{x})}{\psi^{\theta}(\mathbf{x})}$$

$$\partial_{\theta_k} \langle \mathcal{H} \rangle_{\psi} = \langle G_k \rangle_{|\psi(\mathbf{x})|^2}$$

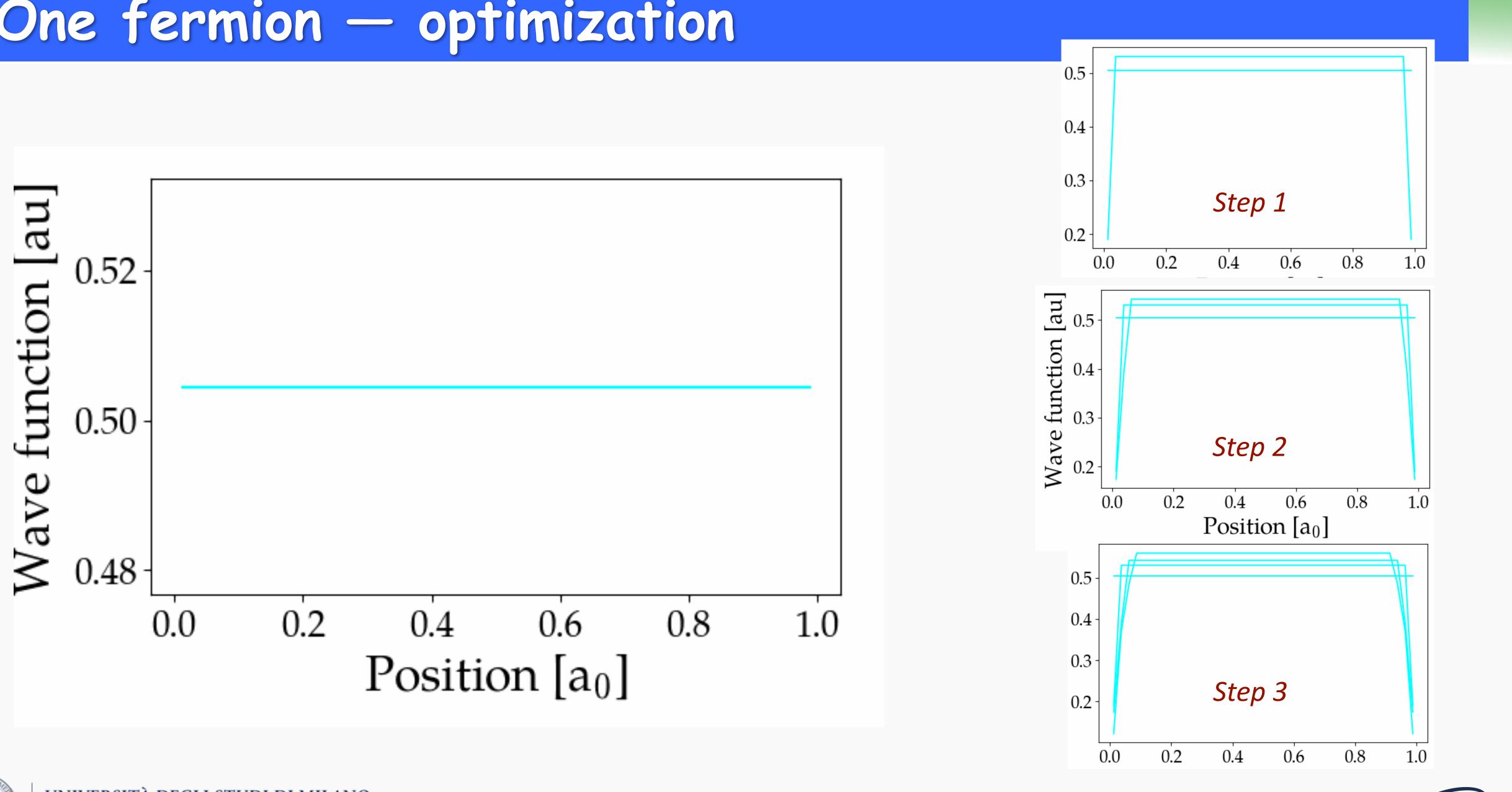
$$G_{k}(\mathbf{x};\theta) = 2\operatorname{Re}\left[D_{k}^{*}(\mathbf{x};\theta)\left(E_{\operatorname{loc}}(\mathbf{x}) - \langle E_{\operatorname{loc}}\rangle_{|\psi(\mathbf{x})|^{2}}\right)\right]$$

Stochastic Reconfiguration

$$\theta^{(t+1)} = \theta^{(t)} - \eta^{(t)} S^{-1} \nabla_{\theta} \langle \mathcal{H} \rangle_{\psi},$$
$$S_{ij} = \langle D_i^* \rangle \langle D_j \rangle - \langle D_i^* D_j \rangle,$$

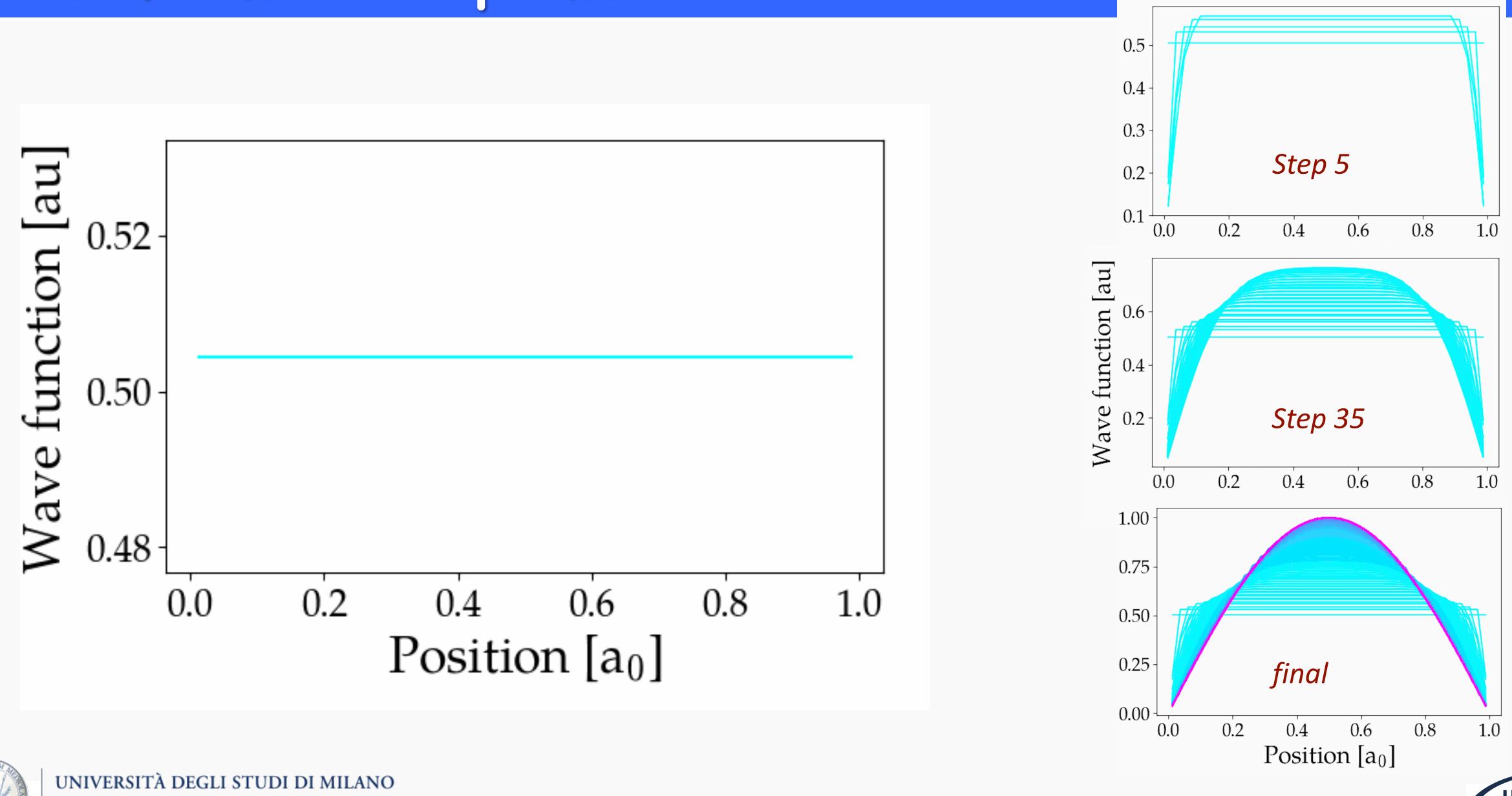


One fermion — optimization



UNIVERSITÀ DEGLI STUDI DI MILANO

One fermion — optimization



Two fermions — optimization

Convergence with $N_v=10$

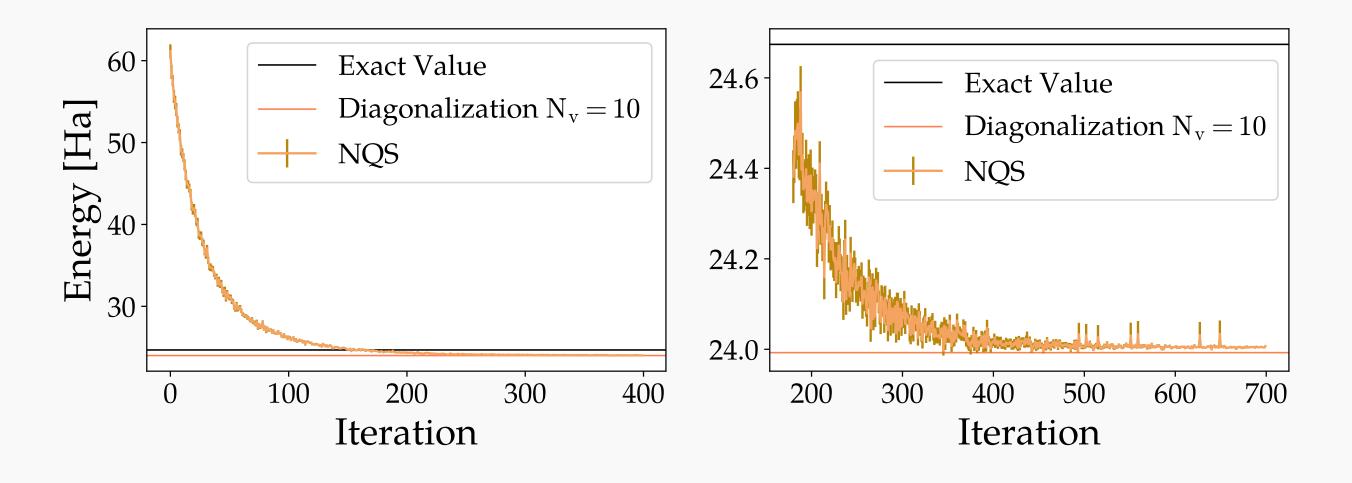


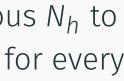
Figure 1: Solution for the two particles non-interacting problem with an RBM built with only 10 hidden nodes. This simulation proves that it is possible to have a satisfying approximation also with relatively few hyper parameters.

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Hyperparameter optimization

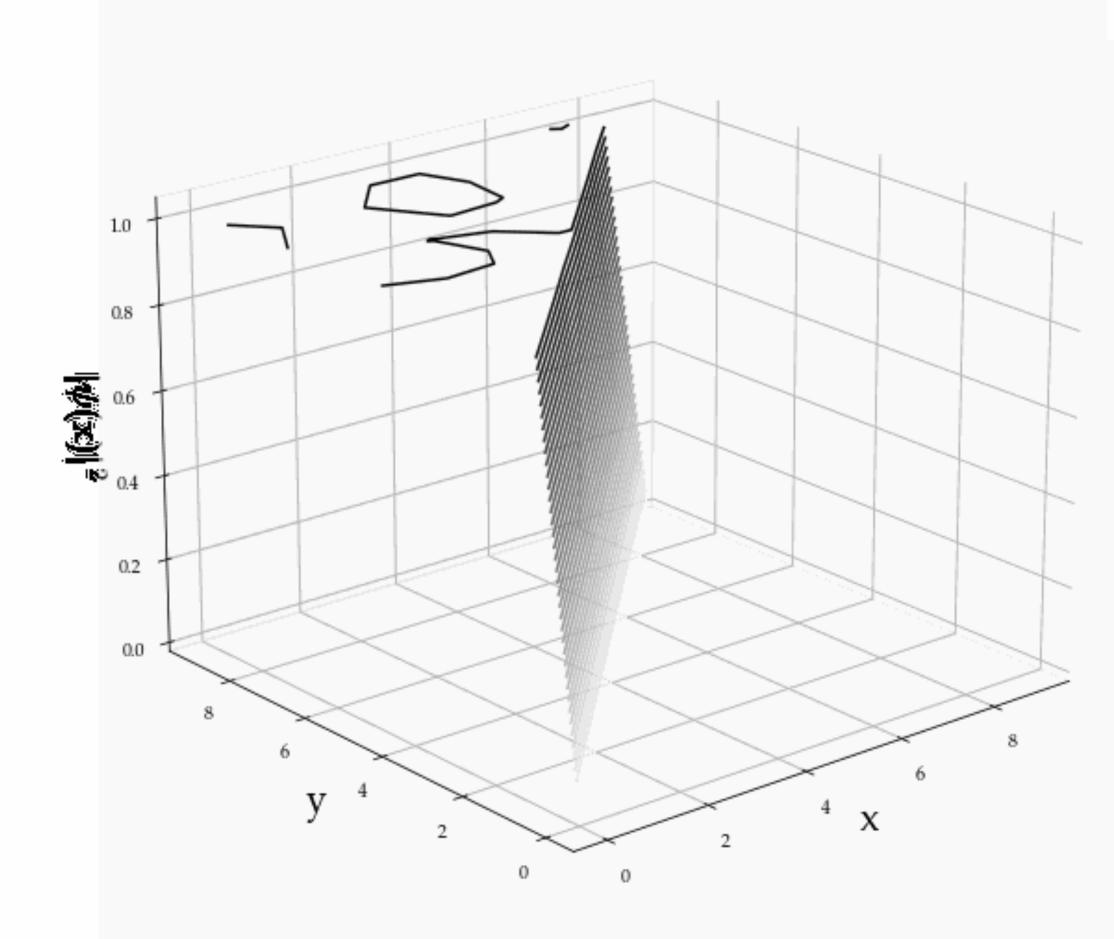
_				
	N _h	$\langle t \rangle$ / iteration	$\Delta E / E$	
-	40	2.75 min	2%	
	30	1.8 min	2.6%	
	20	1 min	0.03%	
	10	16.2 s	0.05%	
	5	4 S	60%	

Table 1: Efficiency and quality of convergence of RBMs with various N_h to model the two non-interacting fermions in a box. N_v is set to 10 for every simulation.



Two fermions — NQS wave function

Neural network ground state



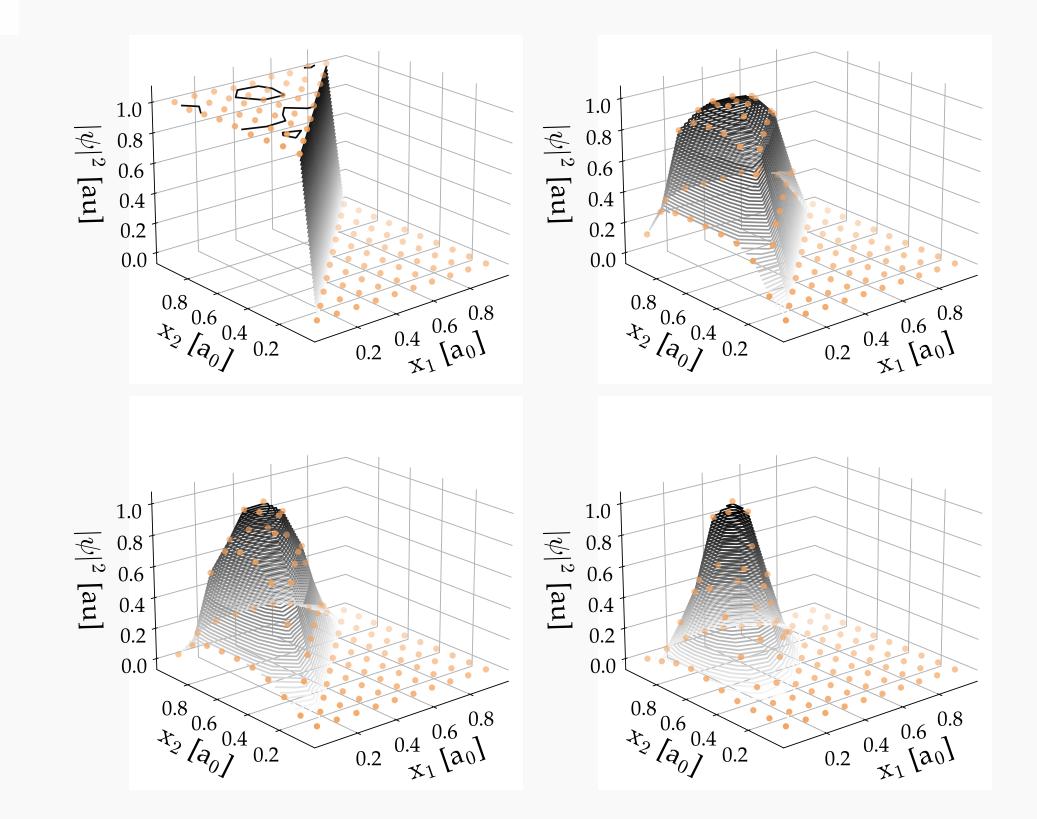
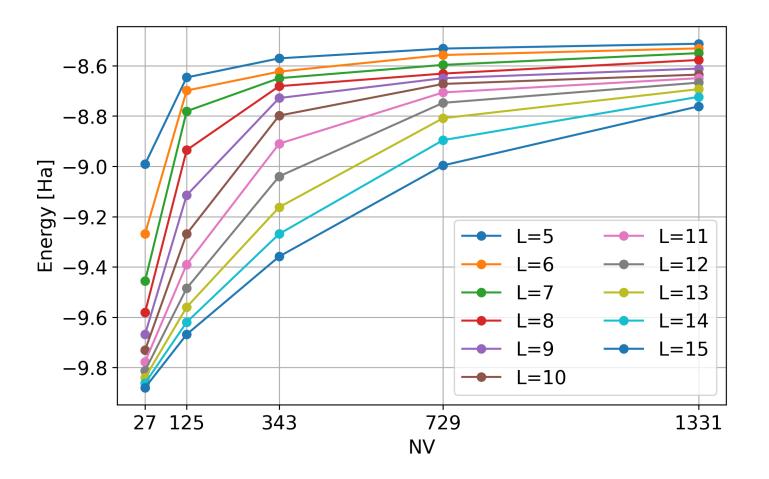


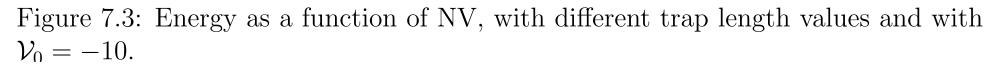
Figure 2: *Physical* learning process of an RBM with $N_h = 20$ from the starting wave function (upper left). The NN seems to be learning boundaries and antisimmetry in the following iterations (number 15, 30 and 300 are reported).

3D lattice 1 and 2 electrons — finite size (FS) tests

Soft-shoulder interactions (Ryberg atoms):

$$\mathcal{V}(r) = \frac{\mathcal{V}_0}{\left(\frac{r}{R}\right)^6 + 1}$$





Good cusp and 1-body wave function in spite of finite size (FS) effects !!

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Hydrogen atom (Coulomb force): Long range interaction and cusps...

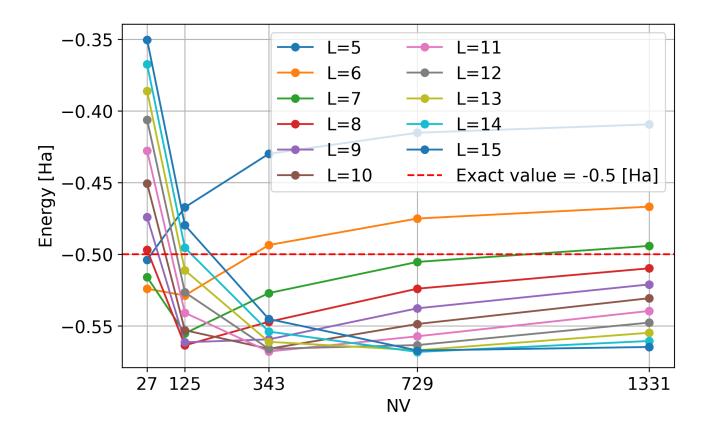
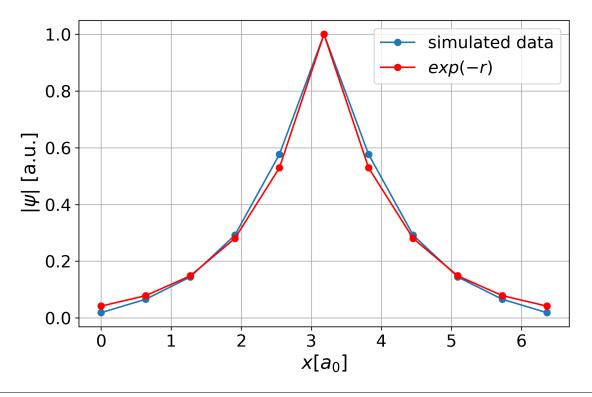
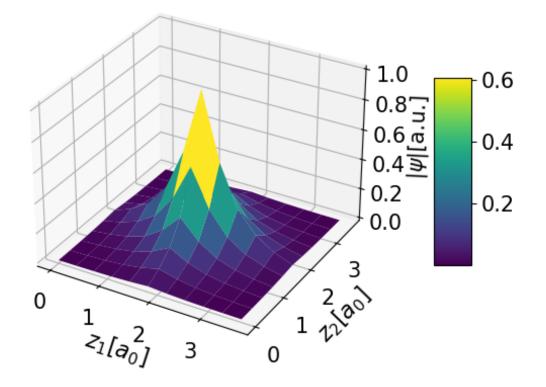


Figure 7.1: Energy as a function of the number of visible nodes for the hydrogen atom, with different trap length values.

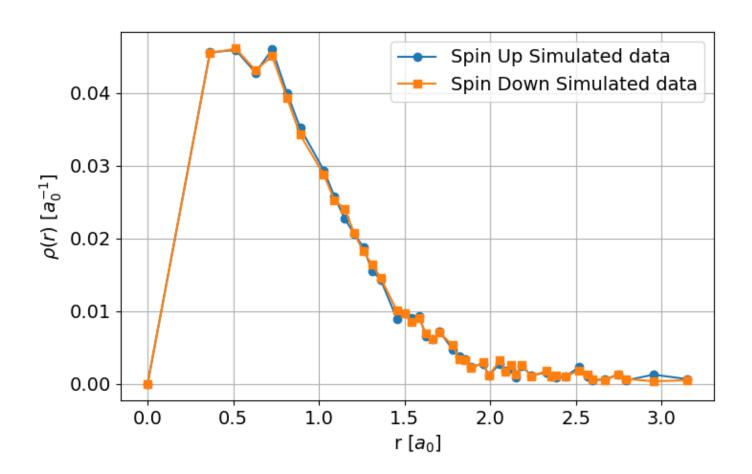


Examples with 2 electrons (Helium atoms)

Inverted spins (He g.s.):

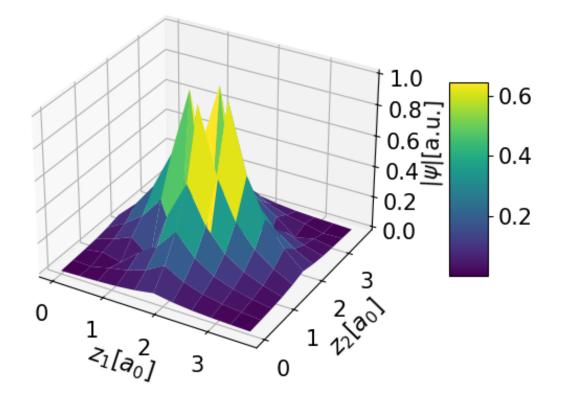


(d) Motion of two electrons along the z-axis with $x_1 = y_1 = x_2 = y_2 = 5$.

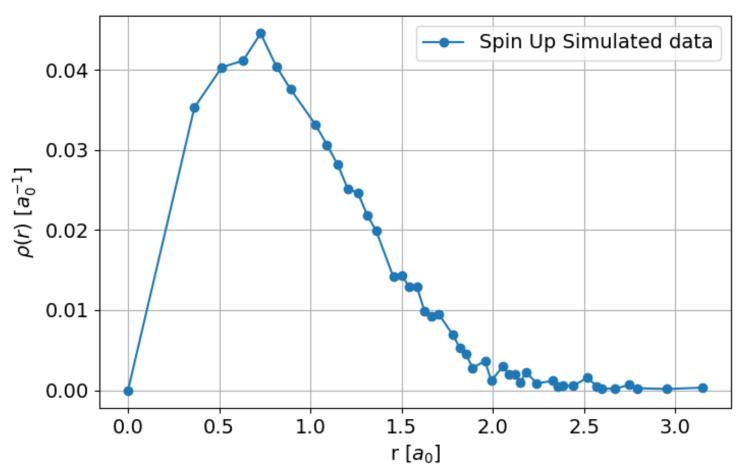


UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Two spins up (He g.s.):



(d) Motion of two electrons along the z-axis with $x_1 = y_1 = x_2 = y_2 = 5$.



Take home messages

- NQS on a lattice are highly challenging. And still at the infancy stage, anyway.
- BUT: they have great potentials (exotic structures, dynamics, etc.)
- Few fermions on small lattices are under reach—proof of principle.
- Transfer learning to heavy systems?? Maybe...
- NQS based VMC only exploits the variational principle (...but see PINN, next talk).

