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Ab initio nuclear theory

๏ Generate the nuclear force

‣ Pionless EFT: contact interactions 

‣ Chiral EFT: contact + long-range -exchange interactionsπ

๏ Solve the nuclear many-body problem accurately

‣ Nuclear bulk properties: masses, radii, … 

‣ Nuclear spectra: energy levels, transitions, … 

‣ Nucleonic matter EoS: neutron stars, … 

‣ New physics: , electric dipole moments, …0νββ

H =
A

∑
i=1

p2
i

2Mi
+ ∑

i<j

vij + ∑
i<j<k

Vijk HΨ(x1, x2, …, xA) = EΨ(x1, x2, …, xA)
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Quantum Monte Carlo

Lattice QCD 

Nuclear Physics 

Cold Atoms 

Atoms/Molecules 

Condensed Matter 

…
Piraulli et al., Phys. Rev. Lett. 120, 052503 (2018)

• Solves the many-body problem accurately and nonperturbatively 

• Able to work with the bare EFT interactions  

• Gives access to many nuclear properties, including spectra, transitions, form 

factors, responses, etc.
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Quantum Monte Carlo methods

• Variational Monte Carlo (VMC)

ET =
⟨ΨT |H |ΨT⟩

⟨ΨT |ΨT⟩
≃

1
N ∑

n

EL(Rn) + O(N− 1
2 )

min
ΨT

E[ΨT] ≥ E0

• Diffusion Monte Carlo (DMC)

,lim
τ→∞

e−(Ĥ−E)τ |ΨT⟩ = |Ψ0⟩

⟨R′ |e−Hδτ |R⟩ = ( M
2πδτ )

3A
2

e− M
2δτ (R′ −R)2e−V(R)δτ

Miminize the energy given trial function form

Stochastic imaginary-time propagation 

Initial wave function usually given by VMC 

 H = − 1
2 ∇2 + 1

2 r2

ΨT(r) = e− 1
2 αr2

Harmonic oscillator

Harmonic oscillator
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Challenge in Variational Monte Carlo

3H 4He 6Li 7Li 8Li
0

2

4

6

8

10

12

E
rro

r (
M

eV
)

Error for 8Li 

10 MeV (26%)

Larger e
rro

r

• “Conventional” trial wave functions cannot reach the ground states 

variationally, and their quality deteriorates rapidly with increasing A

QMC calculations of  nuclei: Wiringa et al., PRC 62, 014001 (2000)A ≤ 8

Error for 4He 
1.3 MeV (5%)

• Accuracy depends crucially on the quality of trial wave functions

AV18+UIX
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Challenge in Diffusion Monte Carlo

16O 

AFDMC

➡ Devising a polynomial scaling and accurate trial wave function

Lonardoni et al., PRC 97, 044318 (2018)

O(4A)

• Green’s function Monte Carlo (GFMC) explicitly sums over (iso)spins, which 

leads to exponential scaling with , limited to light  nucleiA A ≤ 12

• Auxiliary-field diffusion Monte Carlo (AFDMC) can adapt larger systems by 

sampling (iso)spins, but suffers from more severe sign problem

GFMC
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Neural networks
• Represents a function from inputs to outputs 

• Nested sequence of linear and non-linear functions with variable parameters.

: adjustable weights (variational param.)w, b

: nonlinear functions，e.g.σ tanh(x)

yi = σ (
n

∑
=1

xj × wij + bj)j

outputs inputs

Universal Approximation Theorem:                              existence / limit theorem  

A single-hidden-layer neural network can approximate any continuous function 

given enough number of hidden neurons.
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Neural-network variational Monte Carlo

Inputs: x = (x1, …, xA) Output: Ψw(x)

• Neural networks: efficiently parametrize many-body wave functions

• Variational Monte Carlo: train neural networks with variational principle

Energy

w

Energy minimum 

Emin(w)

Natural Gradient DescentInitial 
weights

w

(Stochastic reconfiguration)
Sorella, Phys. Rev. B 71, 241103(R) (2005) 
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LO pionless EFT Hamiltonian

HLO =
A

∑
i=1

−∇2
i

2mN
+ ∑

i<j

vij + ∑
i<j<k

Vijk

• NN potential: fit to S-wave scattering 

lengths, effective range, and deut-

eron binding energy 

• We first consider a nuclear Hamiltonian derived in LO pionless EFT
Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

• 3N potential: adjusted to reproduce 

triton binding energy ()

vCI
ij =

4

∑
p=1

vp(rij)Op
ij

Op=1-4
ij = 1, τij, σij, σijτij

Vijk = D∑
cyc

e−(r2
ij+r2

jk)/R2
3

-space cutoffs:  r RT=0 ≃ 1.5 fm, RT=1 ≃ 1.8 fm, R3 = 1.0 fm



/3211

Neural-network wave functions

• Mean-field wave function: Slater determinant, no correlations

ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xA)
ϕ2(x1), ϕ2(x2), ⋯, ϕ2(xA)

⋮ , ⋯, ⋱ , ⋮
ϕA(x1), ϕA(x2), ⋯, ϕA(xA)

det[ϕ(x)] = xi = (ri, si, ti)

• Nuclear many-body wave function must be antisymmetric

Ψ(…, xi, …, xj, …) = − Ψ(…, xj, …, xi, …)

ϕA×A(x), ϕA×Ah
(xh)

χAh×A(x), χAh×Ah
(xh)

“Hidden nucleons”

Lovato et al., Phys. Rev. Research 4, 043178 (2022)

“Backflow transformation”

YLY and Zhao, PRC 107, 034320 (2023) 

f1(x1; {x1/}), ⋯, f1(xA; {xA/})
f2(x1; {x1/}), ⋯, f2(xA; {xA/})

⋮ , ⋱ , ⋮
fA(x1; {x1/}), ⋯, fA(xA; {xA/})

• Including many-body correlations in Slater determinant
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FeynmanNet

det[ΦBF] =

f1(x1; {x1/}), ⋯, f1(xA; {xA/})
f2(x1; {x1/}), ⋯, f2(xA; {xA/})

⋮ , ⋱ , ⋮
fA(x1; {x1/}), ⋯, fA(xA; {xA/})

fμ(xi, {xi/}) = ρμ ( ⃗ϕ (r̄i, si, ti) + ∑
i

⃗η (rij, rij, si, sj, ti, tj))j ≠

Backflow in 3He liquid: Feynman and Cohen, Phys. Rev. 102, 1189 (1956)

Correlations

ϕμ(xi) ⇒

• We introduce spin-isospin dependent backflow with neural networks

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998 
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FeynmanNet:  nucleiA = 4

Hyperspherical Harmonics method: Gnech et al., Few-Body Syst. 63, 7 (2022)

Energy Density

FeynmanNet

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998 

• Perfect agreement with the Hyperspherical Harmonics (HH) method 

Accuracy at the level of ~0.01 MeV for  nucleiA ≤ 4

Pionless EFT  is usedHLO
Schiavilla2012PRC

HH
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FeynmanNet:  nucleiA = 16

AFDMC (constrained-path): Schiavilla et al., PRC 103, 054003 (2021)

VMC (Hidden nucleon): Lovato et al., Phys. Rev. Research 127, 022502 (2022)

0 100 200 300 400 500
-136

-135

-134

-133

-132

-131

-130

Training steps

E
 (M

eV
)

16O

• FeynmanNet provides the lowest energy among the QMC methods

AFDMC (constrained-path)

VMC-NN (Hidden nucleon)

FeynmanNet

VMC-NN (Hidden nucleon + backflow)

VMC (FeynmanNet): YLY and Zhao, PRC 107, 034320 (2023) 

VMC (Hidden nucleon + backflow): Gnech et al., PRL 133, 142501 (2024)

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998 
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FeynmanNet: NLO pionless Hamiltonian

• NLO pionless Hamiltonian feasible for  nuclei, but requires much 

more number of MC samples and larger neural networks…

A = 4

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998 

0 100 200 300 400 500
-30.2

-30.0

-29.8

-29.6

-29.4

-29.2

-29.0

E
 (M

eV
)

Training steps

4He

LO NLO

.Op=1-8
ij ∈ {1, σij, Sij, L ⋅ S} ⊗ {1, τij}vCI

ij =
8

∑
p=1

vp(rij)Op
ij

3σi ⋅ ̂rijσj ⋅ ̂rij − σij

Iteration

Noncentral coupling between 
spin and spatial d.o.f

HH
HH

40k samples 160k samples
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Realistic chiral interactions

• The tensor forces from -exchange are essential in chiral EFTπ

From Reinert, Krebs, and Epelbaum, EPJA 54, 86 (2018)

Central Isovector tensor

• How to include tensor correlations in neural-network wave functions?

‣ So far hard for NNs to directly learn the tensor correlations…

‣ Use tensor operators explicitly in the w.f. |Ψ(ℱ(R), Ôp)⟩
YLY2023PRC

Neural networks Spin-isospin operators

Ôp
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Neural-network correlation functions

|Ψ⟩ = ∏
i<j

f(rij) 1 + ∑
i<j

∑
p=2-6

up(rij)Op
ij |Φ⟩Jπ,T

YLY and Pengwei Zhao,  Chinese Phys. Lett. 42, 052101 (2025); e-Print: 2405.04203

• Neural-network correlation functions + spin-isospin operators

• Solves the deuteron exactly with Bonn potential

: neural networksf, u

VMC 
Exact

Similar form used in AFDMC calculations 
Gandolfi et al., PRC 90, 061306(R) (2014)
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Neural-network correlation functions

|Ψ⟩ = ∏
i<j

f(rij) 1 + ∑
i<j

∑
p=2-6

up(rij)Op
ij |Φ⟩Jπ,T

YLY and Pengwei Zhao,  Chinese Phys. Lett. 42, 052101 (2025); e-Print: 2405.04203

• Neural-network correlation functions + spin-isospin operators

Shortage: 
Only include two-
body correlations

• For few-body nuclei, Diffusion Monte Carlo is still needed 

VMC

: neural networksf, u
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Accurate neural-network wave function for solving realistic forces
YLY, Evgeny Epelbaum, Ji Chen, and Pengwei Zhao, in preparation

VMC-JS: Wiringa2000PRC 
UsmaniPRC2012 

GFMC: Lynn2017PRC 
AFDMC: Lonardoni2018PRCPre

lim
inar
y

With new neural-network wave functions, VMC can for the first time provide 

virtually-exact solutions of the ground state energies with realistic NN+3N forces. 

New trial wave function
 with 

many-body correlations
|Ψ(ℱ(R), Ôp)⟩

Local EFT forcesχ
Gezerlis2014PRC, Lynn2017PRC

Argonne+Urbana forces
Wiringa1995PRC, Pudliner1997PRC
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Probing long-range 3NF in peripheral  scatteringnα
YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961 
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Motivation

• Test the chiral EFT prediction of long-range behavior of nuclear force

Short-range 
 Phenomenology Strong Constraint by 

 symmetry+  dataχ πN

OPE TPE

Testing TPE NN force in peripheral NN scattering

Kaiser, Brockmann, and Weise, NPA 625, 758 (1997)

1. Can one find more direct probe 

for TPE, without OPE interfering?

V1π
V1π + V (2)

2π

V1π + V (3)
2π (DR) V1π + V (3)

2π (Λb)

2. How to probe TPE 3NF?

From Epelbaum024Few-bodySys
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Peripheral  scatteringnα
• Peripheral  scattering ( ) might be suitable!nα L ≥ 2

Suggested in Higa and Robilotta, arXiv:nucl-th/9908062 (1999)

T = 0

T = 0

T = 0

T = 0

α

α

α

α

α

α

α

α
(a) (b) (c) (d)

α

α
(e)

T = 0

T = 0

T = 0

T = 0

α

α

α

α

α

α

α

α
(a) (b) (c) (d)

α

α
(e)

Suppressed Allowed 

• The existing studies have focused on S- and P-waves, where short-range 

mechanisms dominate, while no ab initio studies of peripheral  scattering 

are available yet to probe long-range TPE three-nucleon forces.

nα

QMC: Carslon1987PRC, Lynn2016PRL, … 
Faddeev-Yakubovsky: Lazauskas2018PRC, … 
NCSM: Navrátil2016PS, Shirokov2018PRC, … 
SVM: Bagnarol2023PLB, … 

T = 0
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YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961 

23

QMC + BERW formula for  phase shiftsnα

•  phase shifts are extracted from the 5He  energy in a harmonic oscillator trapnα l

k2l+1 cot δnα
l (k) = (−1)l+1(4μω)l+1/2 Γ((3 + 2l)/4 − ϵl /(2ω))

Γ((1 − 2l)/4 − ϵl /(2ω))

Busch et al., Found. Phys. 28, 549 (2008); Suzuki et al., PRA 80, 033601 (2009)

with . We focus on the D5/2 wave (spin-orbit 

splitting between D5/2 and D3/2 at low energies are small).

ϵl = E(5Hel) − Eα

• The trapped 5He energy is calculated with neural-network VMC+DMC
YLY and Pengwei Zhao,  Chinese Phys. Lett. 42, 052101 (2025); e-Print: 2405.04203

• The local N2LO NN [Gezerlis2014PRC] +3N [Lynn2017PRC] forces with -space cutoff 

 are employed.

r
R = 1.2 fm

• The BERW formula is benchmarked in NN scattering and the  calculation is 

benchmarked with the existing P-wave calculations [Lynn2016PRL].

nα
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YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961 

24

Impact of leading TPE 3NF

• Leading chiral TPE 3NF at N2LO provides a large repulsive contribution that 

improves the agreement with empirical D-wave  phase shifts.nα

NLO

N2LO

LO OPE suppressed

Mainly V3NF
2π
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YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961 

25

Impact of subleading corrections

• Peripheral  scattering provides a sensitive probe to the long-range 3NFnα
(governed by  symmetry)χ

N2LO NN+3NF
c1 = − 0.81, c3 = − 3.40, c4 = 3.40

N2LO NN+3NF(effective  s)ci
c1 = − 0.87, c3 = − 2.71, c4 = 1.41

N2LO NN only

The N3LO and N4LO corrections 
effectively mimicked by reducing sci

Krebs, Gasparyan, and Epelbaum PRC 85, 054006 (2012)
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Resolving the Zemach radius puzzle in 6Li

YLY, Evgeny Epelbaum, Chen Ji, Pengwei Zhao, in preparation
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7Li

6Li

27

Zemach radius puzzle in 6Li

• A large unexplained discrepancy between the two Zemach radius values of 6Li 

obtained from the atomic hyperfine splitting and nuclear form factors.

rZ ≃ −
1

2Zαme

Eexpt − EQED

Eexpt

Qi et al., PRL 125, 183002 (2020); Yerokhin et al., PRA 78, 012513 (2013)

rZ = ∫ d3r∫ dr′ ρE(r)ρM(r′ ) |r − r′ |

6σ

Consistent

   

Hyperfine splitting in Li ions Extracted Zemach radius
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Inelastic -exchange effects2γ
• A probable explanation is the neglect of inelastic -exchange effects when 

extracting Zemach radius from hyperfine splitting. 

2γ

= +

Elastic (Zemach)

intermediate ground state

Inelastic

intermediate excited state

e

Nucl.
T0ν

• We provide the first ab initio calculation of inelastic contributions  of 6,7Li using 

neural-network wave function, within closure approximation.

ωN → ω, ∫∑
N≠0

= 1 − |0⟩⟨0 |T0k(q, − q) = ∫∑
N

⟨0 |ρ(−q) |N⟩⟨N | jk(q) |0⟩
q0 − ωN + iϵ

+ (exch.)

• Theoretical calculations of inelastic contributions exist only for  nucleiA ≤ 3
2,3H and 3He: Friar and Payne, PRC 72, 014002 (2005); 2H: Ji, Zhang, and Platter, PRL 133, 042502 (2024)

γ γ
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2.0 2.5 3.0 3.5 4.0

rZ, from REM

reffZ , 7Li HFS

reffZ , 6Li HFS

rZ (fm)

rZ, this work

reffZ , this work
reffZ , 7Li+ HFS

rZ, this work
rZ, from REM
reffZ , this work
reffZ , 6Li+ HFS

7Li

6Li

YLY, Evgeny Epelbaum, Chen Ji, Pengwei Zhao, in preparation

29

Resolving the Zemach radius puzzle in 6Li

10 15 20 25 30
-1.0

-0.5

0.0

0.5

1.0

ω (MeV)

δr
po
l(7
Li
)/δ
r p
ol
(6
Li
)

• Inelastic contributions smaller in 6Li 

than in 7Li, consistent with the 

observation (insensitive to )ω

• With reasonable closure energies, 

the  from HFS and  from form 

factors can be both reproduced

reff
Z rZ

Inelastic  (cal.)2γ

 (expt.)reff
Z − rZPre
lim
inar
y

Pre
lim
inar
y

Strong evidence that inelastic -exchange effects are responsible for the observed 

discrepancy between  from hyperfine splitting (HFS) and  from nuclear form factors.

2γ

reff
Z rZ

rZ

rZ
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YLY, Evgeny Epelbaum, Chen Ji, Pengwei Zhao, in preparation
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Resolving the Zemach radius puzzle in 6Li

10 15 20 25 30
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-0.5
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ω (MeV)

δr
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l(7
Li
)/δ
r p
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(6
Li
)

• Inelastic contributions smaller in 6Li 

than in 7Li, consistent with the 

observation (insensitive to )ω

• With reasonable closure energies, 

the  from HFS and  from form 

factors can be both reproduced

reff
Z rZ

Inelastic  (cal.)2γ

 (expt.)reff
Z − rZPre
lim
inar
y

Pre
lim
inar
yω = 29 MeV

ω = 23 MeV

Strong evidence that inelastic -exchange effects are responsible for the observed 

discrepancy between  from hyperfine splitting (HFS) and  from nuclear form factors.

2γ

reff
Z rZ

rZ

reff
Z

reff
Z

rZ
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Summary and outlooks

• Achieve high accuracy of ground state variantionally

✓  nuclei with pionless EFTA ≲ 16

✓  nuclei with chiral EFTA ≲ 7

✓ Probing long-range 3NF in peripheral  scattering 

✓ Solving the Zemach radius puzzle in 6Li

nα

• Recent applications

➡ Towards heavier nuclei with more accurate nuclear interactions

➡ Excited states, resonances, real-time dynamics, …

Neural-network quantum Monte Carlo: A new accurate ab initio many-body 

method for studying nuclear and electroweak properties
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Appendix
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Chiral symmetry in nuclear force

Chiral symmetry +  data = predictions for the large-distance behavior of the nuclear forcesπN

ℒpv = −
g

2M
Nγ5γμτN ⋅ ∂μπ

ℒps = − gNiγ5τN ⋅ π

Same 1  exchange (on-shell) 

i.e., NOT contrained by  symmetry

π
χ} ⇒

 exchange strongly constrained by  symmetry2π χ
 vs  matters;  interactions enter (fixed in  systems) ℒpv ℒps ππ, ππN πN

predictions for long-range NN and 3N force

e.g., a N2LO contribution

V (3)
C (r) = c1

3m6
πg2

A

16π2f4
π

e−2x

x4
(1 + x2)

Reinert2018EPJA

x = mπr
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4He calculated with several NN forces

 VMC
 Converged value 

0 500 1000 1500 2000
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E
 (M
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)
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E
 (M
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4He
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YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961 
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QMC + BERW formula for  phase shiftsnα

•  phase shifts are extracted from the 5He  energy in a harmonic oscillator trapnα l

k2l+1 cot δnα
l (k) = (−1)l+1(4μω)l+1/2 Γ((3 + 2l)/4 − ϵl /(2ω))

Γ((1 − 2l)/4 − ϵl /(2ω))

Busch et al., Found. Phys. 28, 549 (2008); Suzuki et al., PRA 80, 033601 (2009)

with . We focus on the D5/2 wave (spin-orbit 

splitting between D5/2 and D3/2 at low energies are small).

ϵl = E(5Hel) − Eα

• Benchmarked in D-wave NN scattering.

BERW

np scattering

• The oscillator lengths  are used.b > 4 fm

systematic error within 10% at low energies.∼

much larger than interaction range mπb ≥ 3
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YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961 

37

QMC + BERW formula for  phase shiftsnα

• The trapped 5He energy is calculated with neural-network VMC+GFMC

• The local N2LO NN [Gezerlis2014PRC] +3N [Lynn2017PRC] 

forces with the softest  space cutoff  

are employed. (due to the sign problem; harder cutoff 

can be made possible by the new neural-network 

wave function with many-body correlations)

r R = 1.2 fm N2LO

NLO

•  caluclations for P-wave benchmarked against [Lynn2016PRL]nα

Here, the trial function includes 
mainly two-body correlations, 
so GFMC is necessary. 
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Excited spectrum in 6,7Li

Excitations of the cluster in A=6 and 7 nuclei
T. Yamagata et al., PHYSICAL REVIEW C 69, 044313 (2004)

Unit: MeV


