

Next generation ab initio nuclear theory

July 15, 2025, ECT* workshop, Trento, Italy

Neural-network quantum Monte Carlo approaches for ab initio nuclear structure

Yilong Yang

Peking University

In collaboration with:

Evgeny Epelbaum, Chen Ji, Jie Meng, Lu Meng, and Pengwei Zhao

Email: yl_yang@pku.edu.cn

Outline

- Methodology
 - Introduction
 - Quantum Monte Carlo
 - Neural-network wave functions
- Applications
 - Probing long-range 3NF in peripheral $n\alpha$ scattering
 - Solving the Zemach radius puzzle in ⁶Li
- Summary and outlooks

Ab initio nuclear theory

$$H = \sum_{i=1}^{A} \frac{p_i^2}{2M_i} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

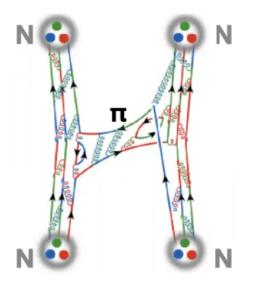
$$H\Psi(x_1, x_2, ..., x_A) = E\Psi(x_1, x_2, ..., x_A)$$

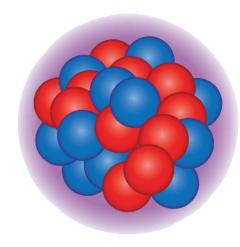
Generate the nuclear force

- Pionless EFT: contact interactions
- Chiral EFT: contact + long-range π -exchange interactions

Solve the nuclear many-body problem accurately

- Nuclear bulk properties: masses, radii, …
- Nuclear spectra: energy levels, transitions, …
- Nucleonic matter EoS: neutron stars, …
- New physics: $0\nu\beta\beta$, electric dipole moments, ...



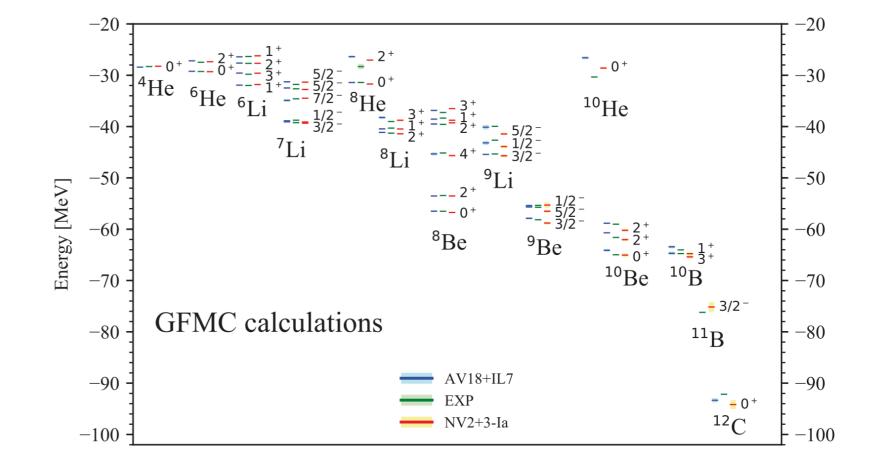


Quantum Monte Carlo

- Solves the many-body problem accurately and nonperturbatively
- Able to work with the bare EFT interactions
- Gives access to many nuclear properties, including spectra, transitions, form factors, responses, etc.

Lattice QCD Nuclear Physics Cold Atoms Atoms/Molecules Condensed Matter

. . .



Piraulli et al., Phys. Rev. Lett. 120, 052503 (2018)

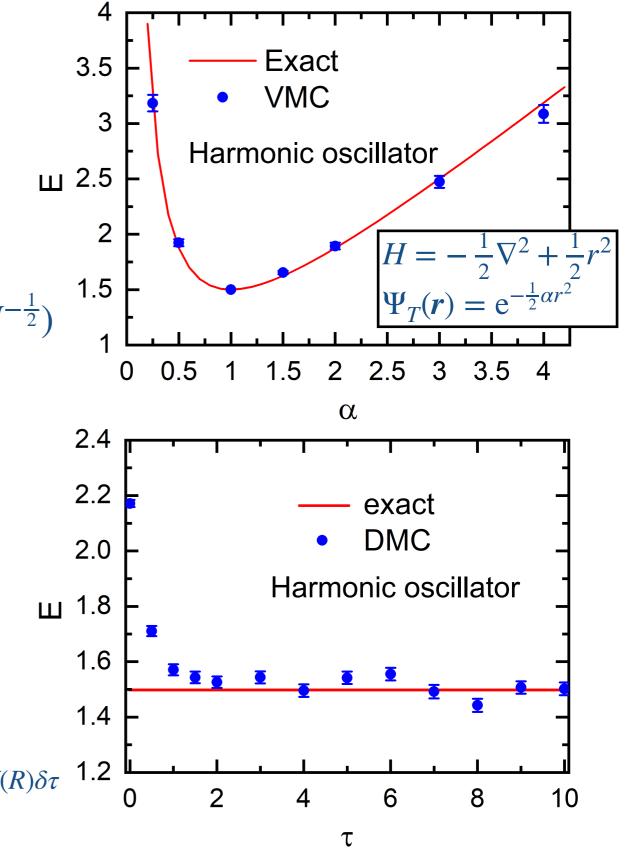
Quantum Monte Carlo methods

- Variational Monte Carlo (VMC) Miminize the energy given trial function form $\min_{\Psi_T} E[\Psi_T] \ge E_0 \qquad \square$ $E_T = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \simeq \frac{1}{N} \sum_n E_L(R_n) + O(N^{-\frac{1}{2}})$
- Diffusion Monte Carlo (DMC)

Stochastic imaginary-time propagation Initial wave function usually given by VMC

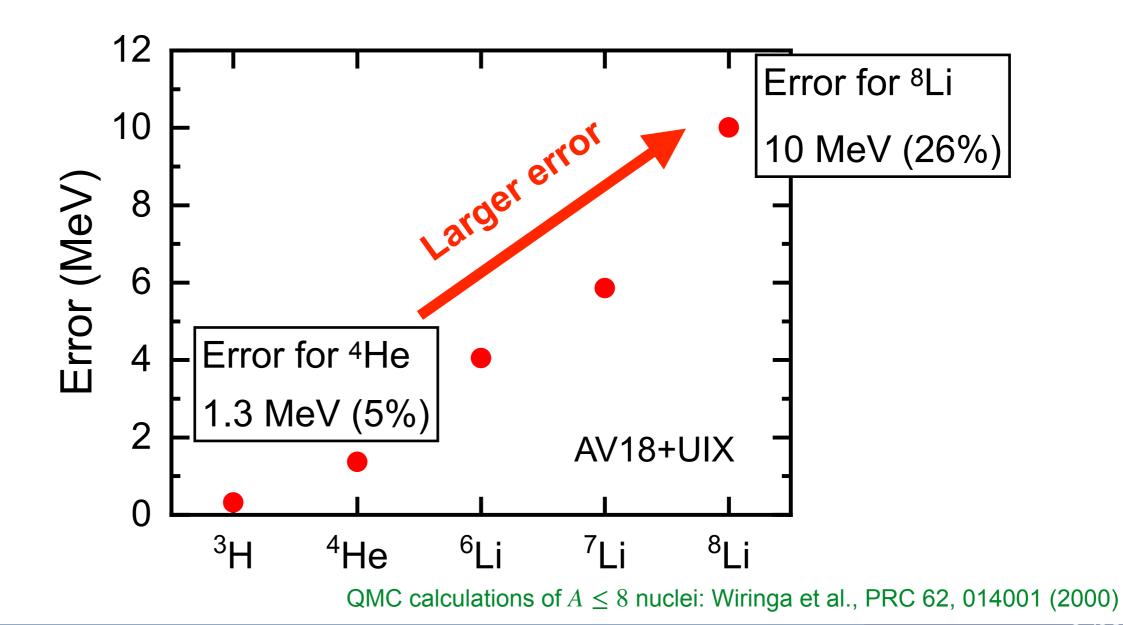
$$\lim_{\tau \to \infty} e^{-(\hat{H} - E)\tau} |\Psi_T\rangle = |\Psi_0\rangle,$$

$$\langle R' | e^{-H\delta\tau} | R \rangle = \left(\frac{M}{2\pi\delta\tau}\right)^{\frac{3A}{2}} e^{-\frac{M}{2\delta\tau}(R'-R)^2} e^{-V(R'-R)^2}$$



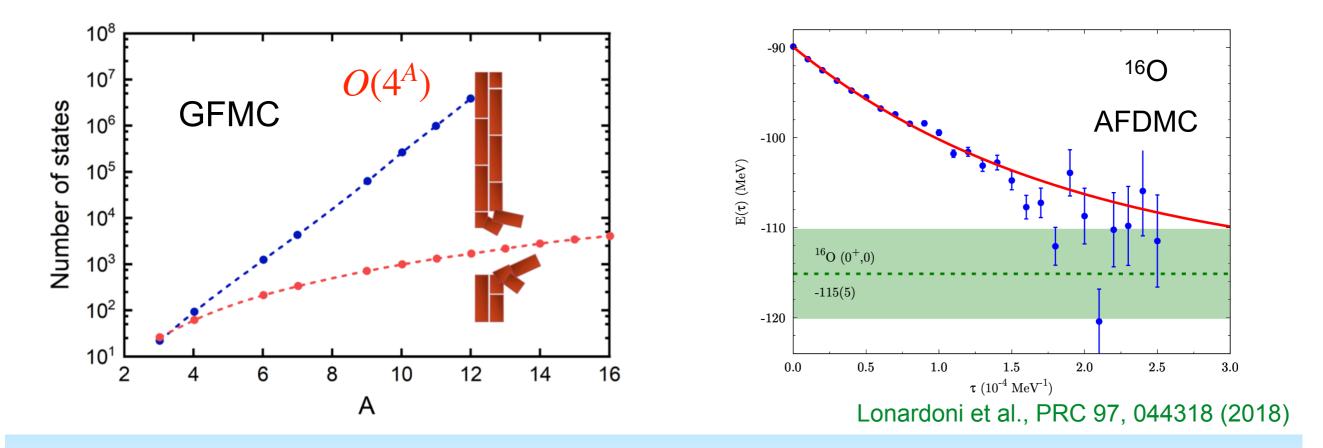
Challenge in Variational Monte Carlo

- Accuracy depends crucially on the quality of trial wave functions
- "Conventional" trial wave functions cannot reach the ground states variationally, and their quality deteriorates rapidly with increasing A



Challenge in Diffusion Monte Carlo

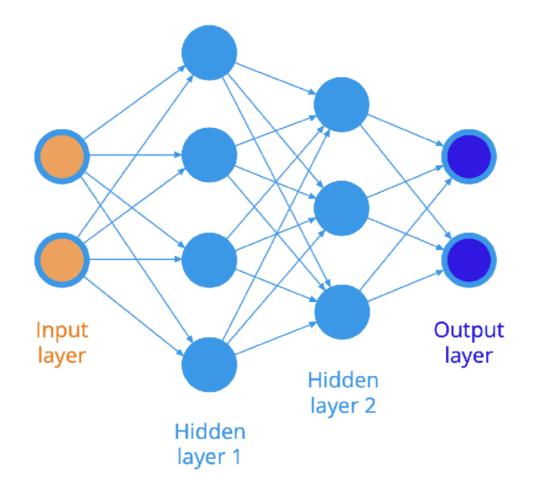
- Green's function Monte Carlo (GFMC) explicitly sums over (iso)spins, which leads to exponential scaling with *A*, limited to light $A \le 12$ nuclei
- Auxiliary-field diffusion Monte Carlo (AFDMC) can adapt larger systems by sampling (iso)spins, but suffers from more severe sign problem

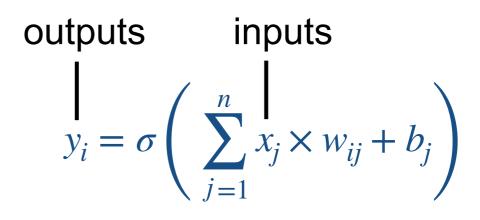


Devising a polynomial scaling and accurate trial wave function

Neural networks

- Represents a function from inputs to outputs
- Nested sequence of linear and non-linear functions with variable parameters.





w, *b*: adjustable weights (variational param.) σ : nonlinear functions, e.g. tanh(*x*)

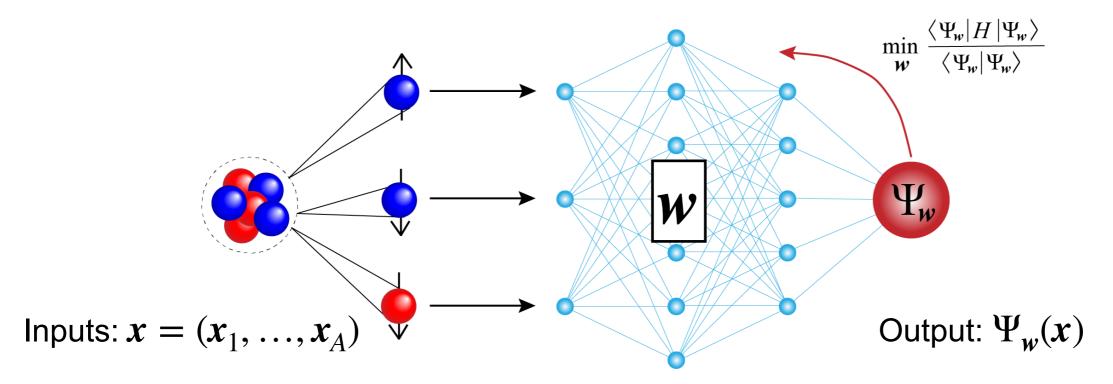
Universal Approximation Theorem:

existence / limit theorem

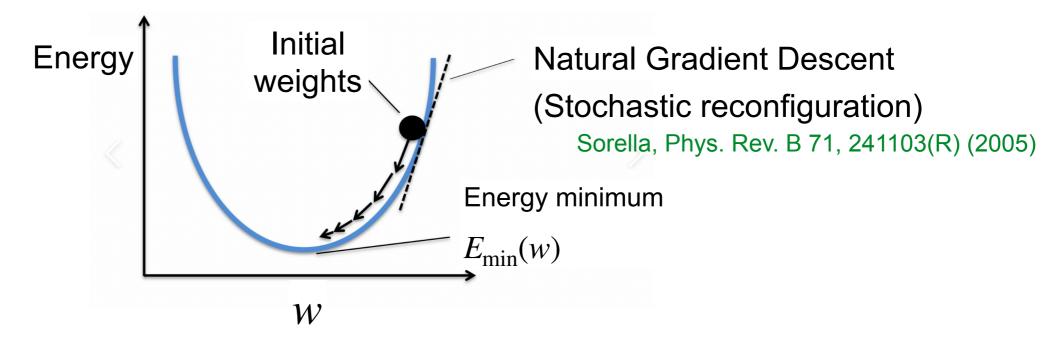
A single-hidden-layer neural network can approximate any continuous function given enough number of hidden neurons.

Neural-network variational Monte Carlo

• Neural networks: efficiently parametrize many-body wave functions



• Variational Monte Carlo: train neural networks with variational principle



9/32

LO pionless EFT Hamiltonian

• We first consider a nuclear Hamiltonian derived in LO pionless EFT

Schiavilla et al., Phys. Rev. C 103, 054003 (2021)

$$H_{\rm LO} = \sum_{i=1}^{A} \frac{-\nabla_i^2}{2m_N} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

- NN potential: fit to S-wave scattering lengths, effective range, and deuteron binding energy
- 3N potential: adjusted to reproduce triton binding energy ()

$$V_{ij}^{\text{CI}} = \sum_{p=1}^{4} v_p(r_{ij}) O_{ij}^p$$

$$V_{ijk} = D \sum_{\text{cyc}} e^{-(r_{ij}^2 + r_{jk}^2)/R_3^2}$$

$$O_{ij}^{p=1-4} = 1, \ \tau_{ij}, \ \sigma_{ij}, \ \sigma_{ij} \tau_{ij}$$

r-space cutoffs: $R_{T=0} \simeq 1.5$ fm, $R_{T=1} \simeq 1.8$ fm, $R_3 = 1.0$ fm

Neural-network wave functions

• Nuclear many-body wave function must be antisymmetric

$$\Psi(..., x_i, ..., x_j, ...) = -\Psi(..., x_j, ..., x_i, ...)$$

• Mean-field wave function: Slater determinant, no correlations

$$det[\phi(x)] = \begin{cases} \phi_1(x_1), \ \phi_1(x_2), \ \cdots, \ \phi_1(x_A) \\ \phi_2(x_1), \ \phi_2(x_2), \ \cdots, \ \phi_2(x_A) \\ \vdots, \ \cdots, \ \ddots, \ \vdots \\ \phi_A(x_1), \ \phi_A(x_2), \ \cdots, \ \phi_A(x_A) \end{cases} \qquad x_i = (\mathbf{r}_i, s_i, t_i)$$

• Including many-body correlations in Slater determinant

"Hidden nucleons"

$$\boldsymbol{\phi}_{A \times A}(x), \boldsymbol{\phi}_{A \times A_h}(x_h)$$
$$\boldsymbol{\chi}_{A_h \times A}(x), \boldsymbol{\chi}_{A_h \times A_h}(x_h)$$

Lovato et al., Phys. Rev. Research 4, 043178 (2022)

"Backflow transformation"

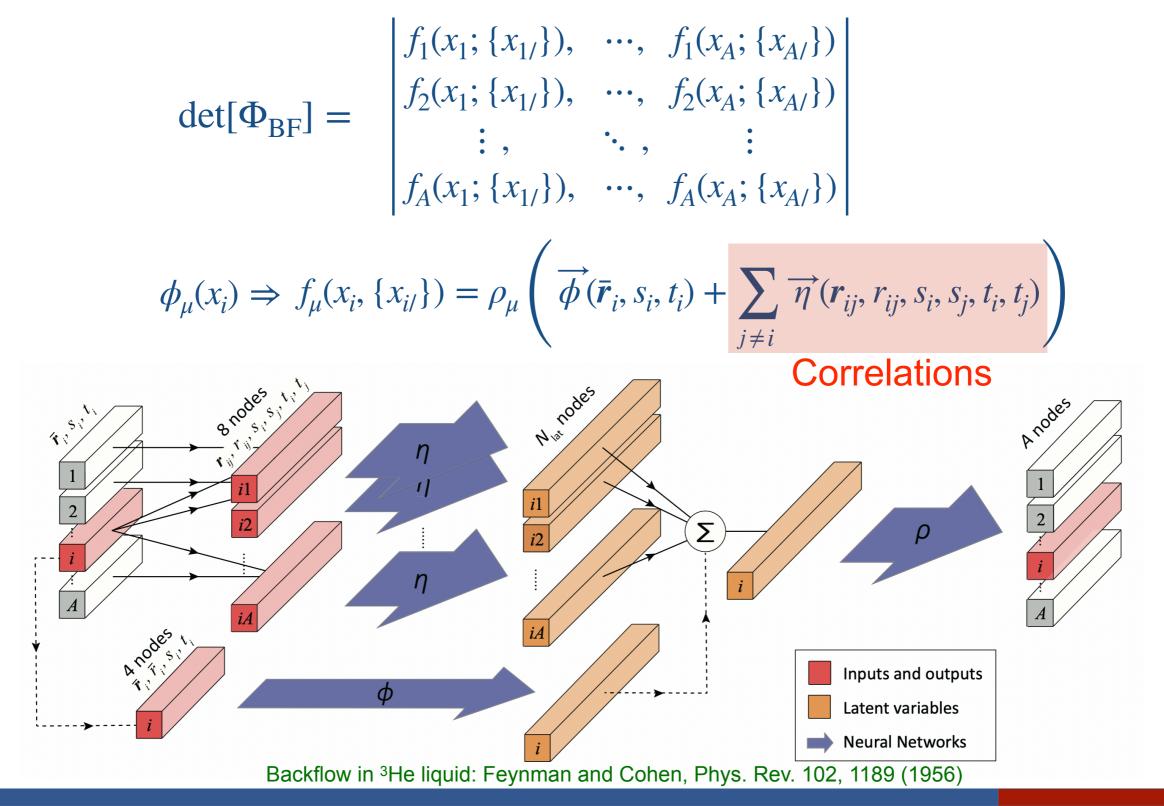
$$\begin{array}{rcl} f_1(x_1; \{x_{1/}\}), & \cdots, & f_1(x_A; \{x_{A/}\}) \\ f_2(x_1; \{x_{1/}\}), & \cdots, & f_2(x_A; \{x_{A/}\}) \\ & \vdots, & \ddots, & \vdots \\ f_A(x_1; \{x_{1/}\}), & \cdots, & f_A(x_A; \{x_{A/}\}) \end{array}$$

YLY and Zhao, PRC 107, 034320 (2023)

FeynmanNet

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998

• We introduce spin-isospin dependent backflow with neural networks



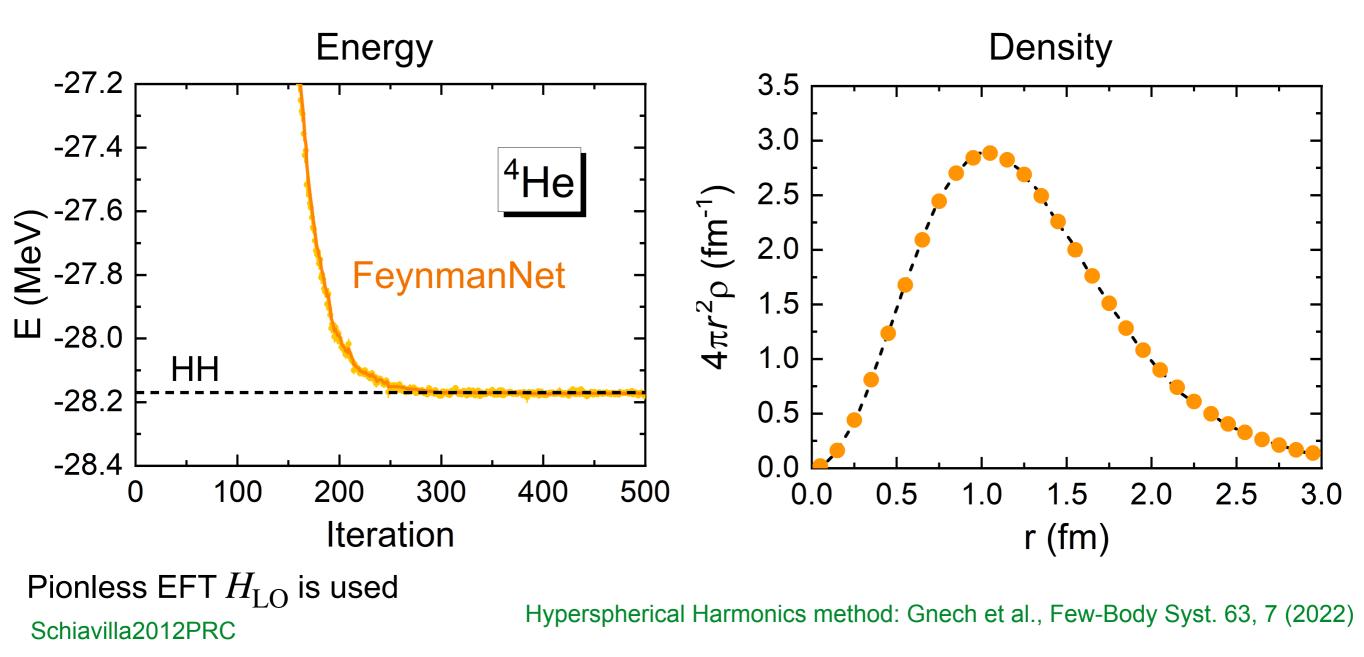
12/32

FeynmanNet: A = 4 nuclei

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998

• Perfect agreement with the Hyperspherical Harmonics (HH) method

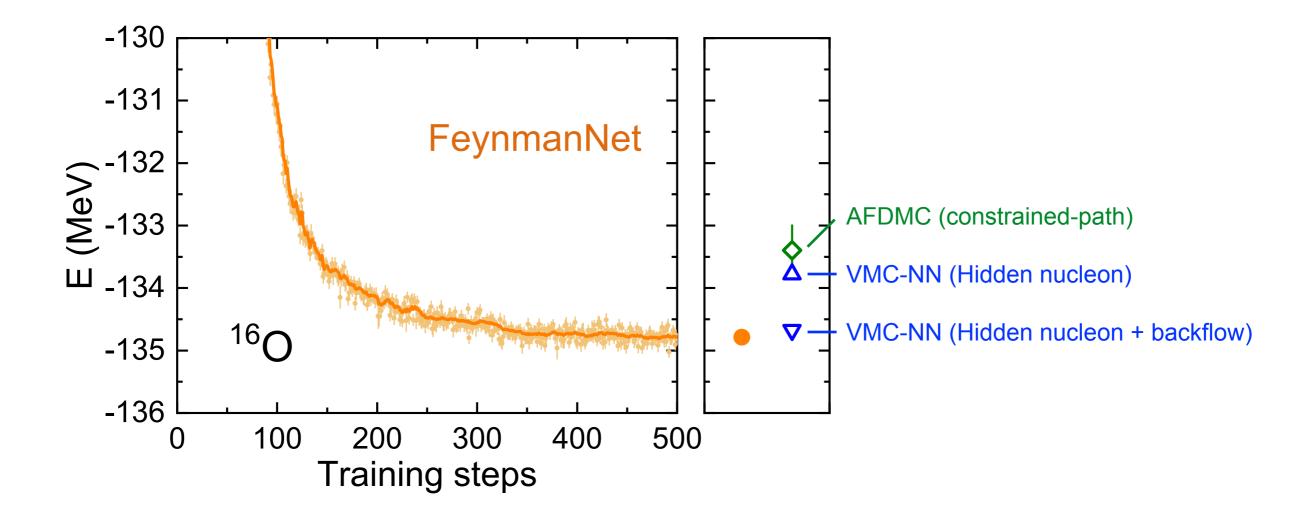
Accuracy at the level of ~0.01 MeV for $A \le 4$ nuclei



FeynmanNet: A = 16 nuclei

YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998

• FeynmanNet provides the lowest energy among the QMC methods

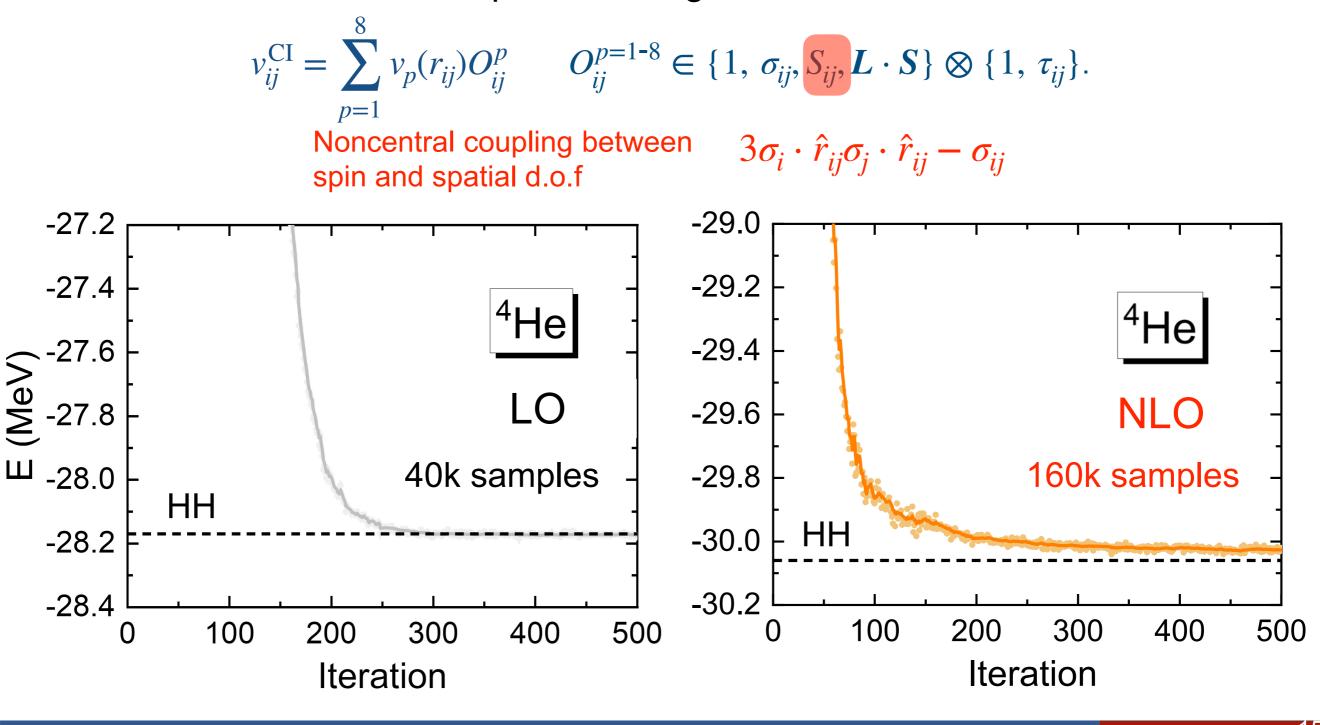


VMC (FeynmanNet): YLY and Zhao, PRC 107, 034320 (2023)
VMC (Hidden nucleon): Lovato et al., Phys. Rev. Research 127, 022502 (2022)
VMC (Hidden nucleon + backflow): Gnech et al., PRL 133, 142501 (2024)
AFDMC (constrained-path): Schiavilla et al., PRC 103, 054003 (2021)

FeynmanNet: NLO pionless Hamiltonian

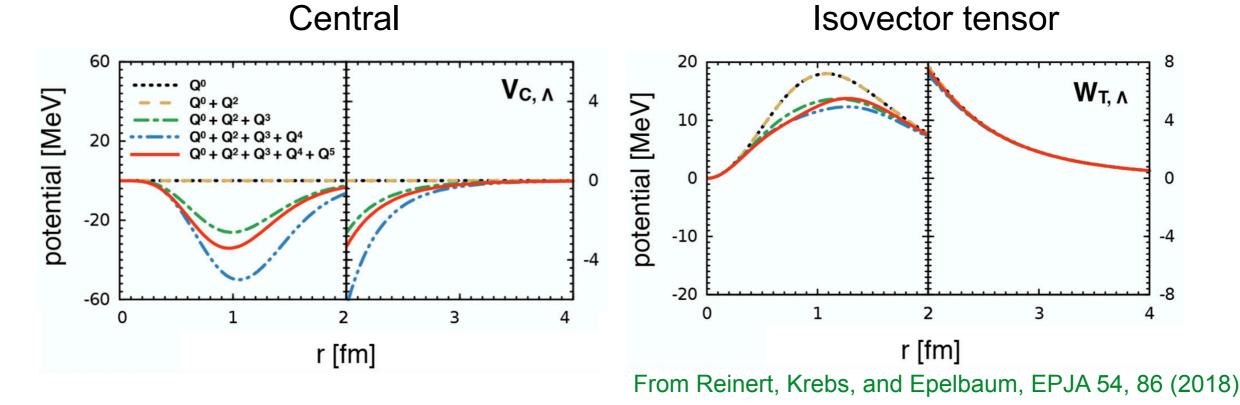
YLY and Pengwei Zhao, PRC 107, 034320 (2023); e-Print: 2211.13998

• NLO pionless Hamiltonian feasible for A = 4 nuclei, but requires much more number of MC samples and larger neural networks...



Realistic chiral interactions

- The tensor forces from π -exchange are essential in chiral EFT
- How to include tensor correlations in neural-network wave functions?
 - So far hard for NNs to directly learn the tensor correlations...
 - Use tensor operators explicitly in the w.f. $|\Psi(\mathcal{F}(R), \hat{O}^p)\rangle$



YI Y2023PRC

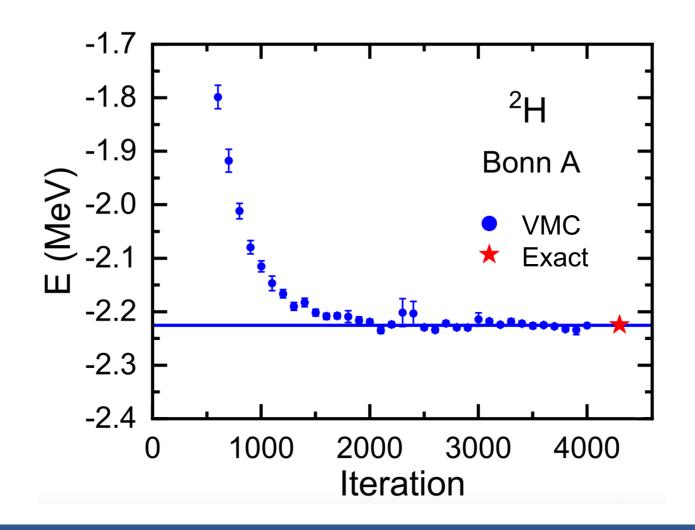
Neural-network correlation functions

YLY and Pengwei Zhao, Chinese Phys. Lett. 42, 052101 (2025); e-Print: 2405.04203

Neural-network correlation functions + spin-isospin operators

$$|\Psi\rangle = \prod_{i < j} f(r_{ij}) \begin{bmatrix} 1 + \sum_{i < j} \sum_{p=2-6} u^p(r_{ij}) O_{ij}^p \\ f, u: \text{ neural networks} \end{bmatrix}$$

Similar form used in AFDMC calculations
 Solves the deuteron exactly with Bonn potential Gandolfi et al., PRC 90, 061306(R) (2014)



Neural-network correlation functions

YLY and Pengwei Zhao, Chinese Phys. Lett. 42, 052101 (2025); e-Print: 2405.04203

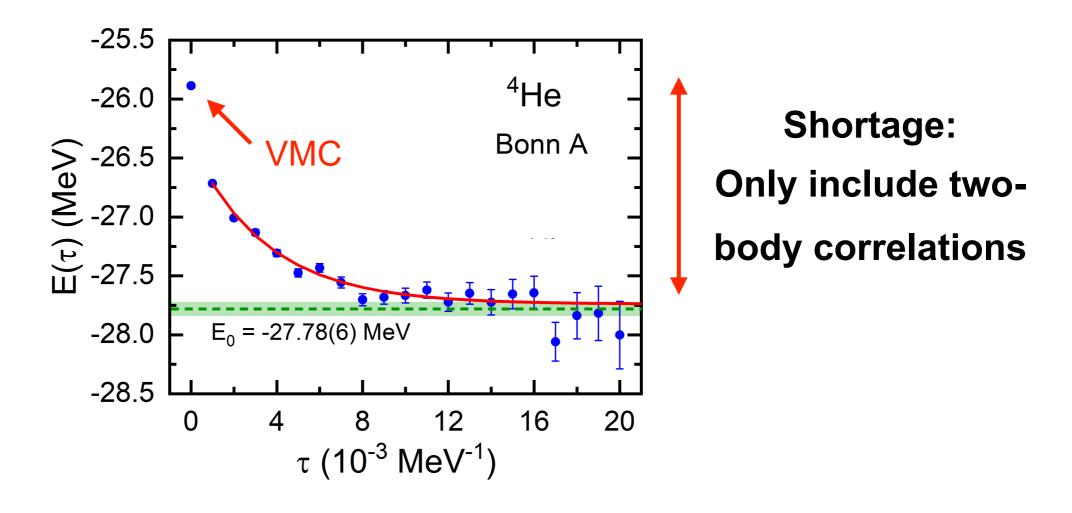
Neural-network correlation functions + spin-isospin operators

Г

$$|\Psi\rangle = \prod_{i < j} f(r_{ij}) \left[1 + \sum_{i < j} \sum_{p=2-6} u^p(r_{ij}) O_{ij}^p \right] |\Phi\rangle_{J^{\pi},T}$$

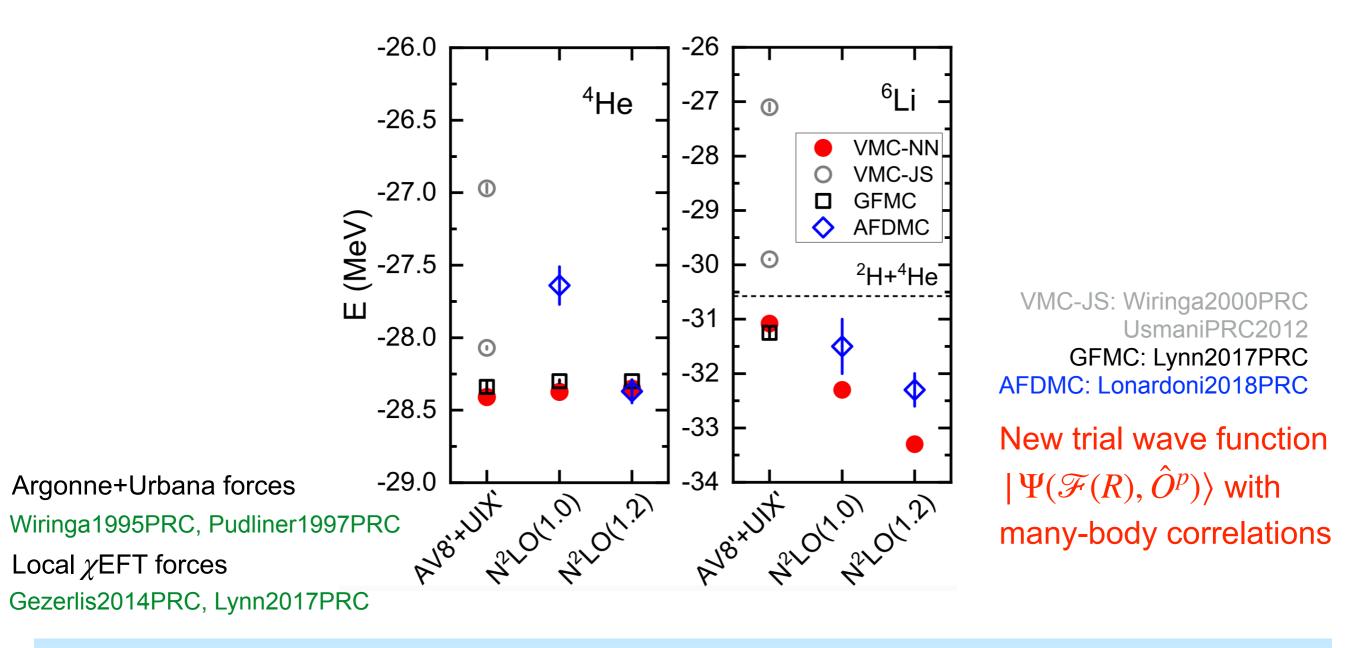
f, *u*: neural networks

• For few-body nuclei, Diffusion Monte Carlo is still needed



Accurate neural-network wave function for solving realistic forces

YLY, Evgeny Epelbaum, Ji Chen, and Pengwei Zhao, in preparation



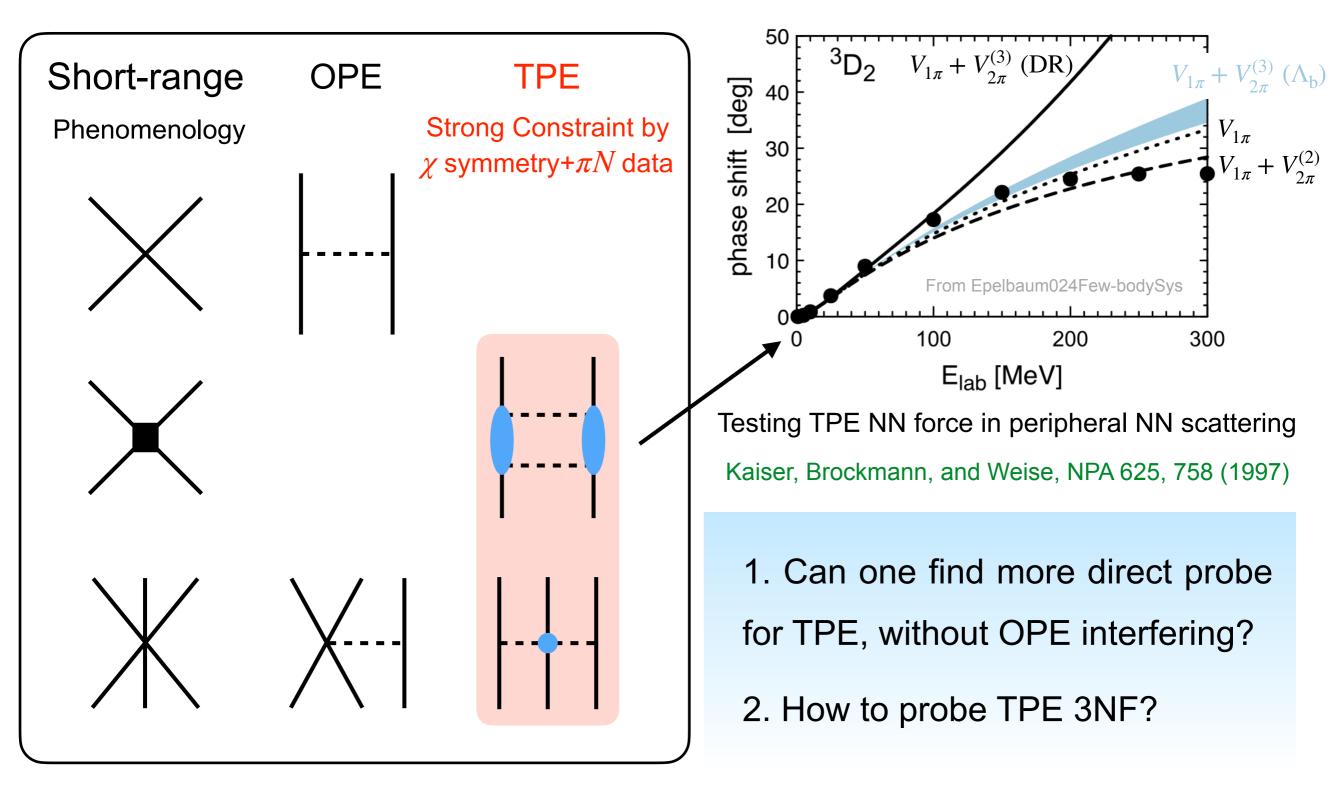
With new neural-network wave functions, VMC can for the first time provide virtually-exact solutions of the ground state energies with realistic NN+3N forces.

Probing long-range 3NF in peripheral $n\alpha$ scattering

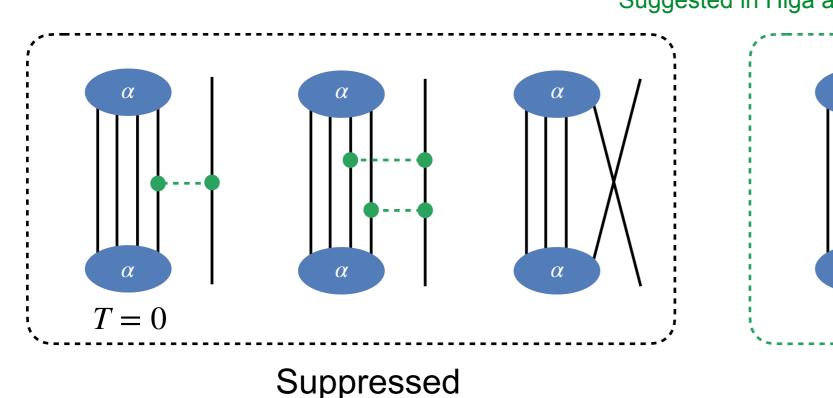
YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961

Motivation

• Test the chiral EFT prediction of long-range behavior of nuclear force

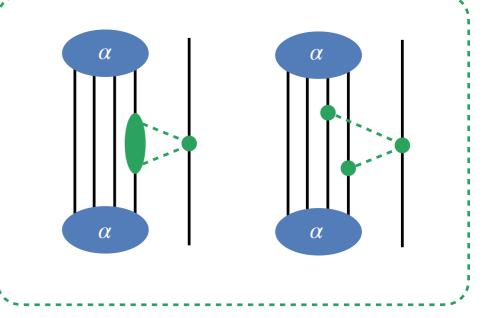


Peripheral $n\alpha$ scattering



Peripheral $n\alpha$ scattering ($L \ge 2$) might be suitable!

Suggested in Higa and Robilotta, arXiv:nucl-th/9908062 (1999)



Allowed

• The existing studies have focused on S- and P-waves, where short-range mechanisms dominate, while no ab initio studies of peripheral $n\alpha$ scattering are available yet to probe long-range TPE three-nucleon forces.

QMC: Carslon1987PRC, Lynn2016PRL, ... Faddeev-Yakubovsky: Lazauskas2018PRC, ... NCSM: Navrátil2016PS, Shirokov2018PRC, ... SVM: Bagnarol2023PLB, ...

QMC + BERW formula for $n\alpha$ phase shifts

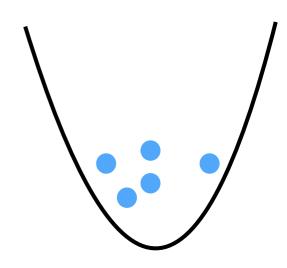
YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961

• $n\alpha$ phase shifts are extracted from the ⁵He₁ energy in a harmonic oscillator trap

$$k^{2l+1} \cot \delta_l^{n\alpha}(k) = (-1)^{l+1} (4\mu\omega)^{l+1/2} \frac{\Gamma((3+2l)/4 - \epsilon_l/(2\omega))}{\Gamma((1-2l)/4 - \epsilon_l/(2\omega))}$$

Busch et al., Found. Phys. 28, 549 (2008); Suzuki et al., PRA 80, 033601 (2009)

with $\epsilon_l = E({}^{5}\text{He}_l) - E_{\alpha}$. We focus on the D_{5/2} wave (spin-orbit splitting between D_{5/2} and D_{3/2} at low energies are small).

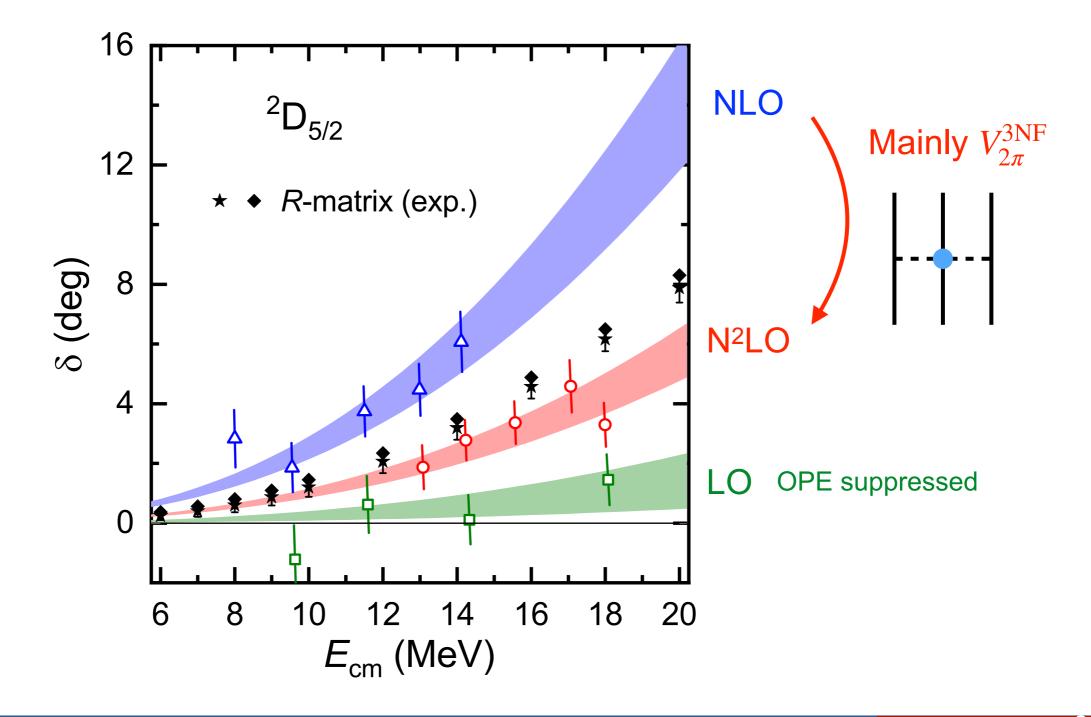


- The trapped ⁵He energy is calculated with neural-network VMC+DMC
 <u>YLY</u> and Pengwei Zhao, Chinese Phys. Lett. 42, 052101 (2025); e-Print: 2405.04203
- The local N²LO NN [Gezerlis2014PRC] +3N [Lynn2017PRC] forces with *r*-space cutoff R = 1.2 fm are employed.
- The BERW formula is benchmarked in NN scattering and the $n\alpha$ calculation is benchmarked with the existing P-wave calculations [Lynn2016PRL].

Impact of leading TPE 3NF

YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961

• Leading chiral TPE 3NF at N²LO provides a large repulsive contribution that improves the agreement with empirical D-wave $n\alpha$ phase shifts.



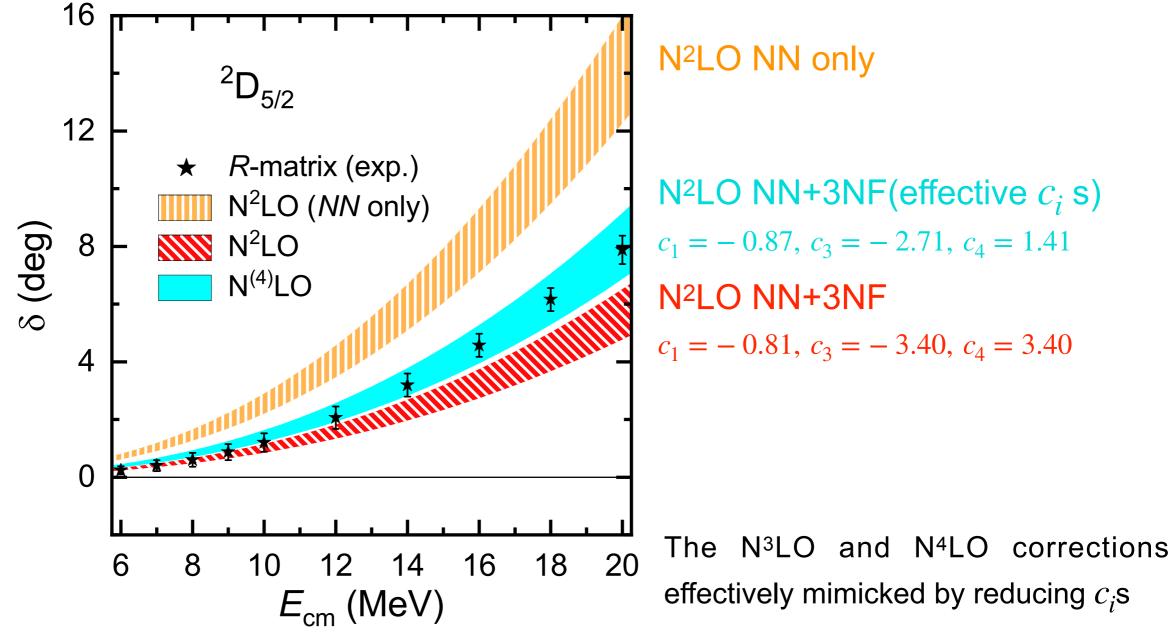
24/32

Impact of subleading corrections

YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961

• Peripheral $n\alpha$ scattering provides a sensitive probe to the long-range 3NF

(governed by χ symmetry)



Krebs, Gasparyan, and Epelbaum PRC 85, 054006 (2012)

Resolving the Zemach radius puzzle in ⁶Li

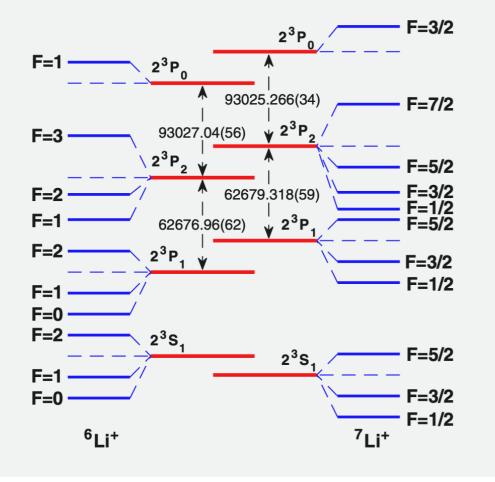
YLY, Evgeny Epelbaum, Chen Ji, Pengwei Zhao, in preparation

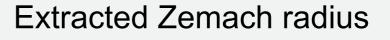
Zemach radius puzzle in ⁶Li

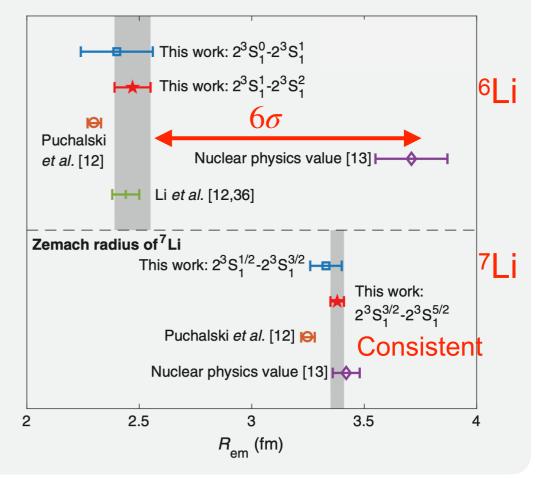
 A large unexplained discrepancy between the two Zemach radius values of ⁶Li obtained from the atomic hyperfine splitting and nuclear form factors.

$$r_Z \simeq -\frac{1}{2Z\alpha m_e} \frac{E_{\text{expt}} - E_{\text{QED}}}{E_{\text{expt}}}$$

$$r_Z = \int \mathrm{d}^3 r \int \mathrm{d} r' \rho_E(\mathbf{r}) \rho_M(\mathbf{r}') \left| \mathbf{r} - \mathbf{r}' \right|$$





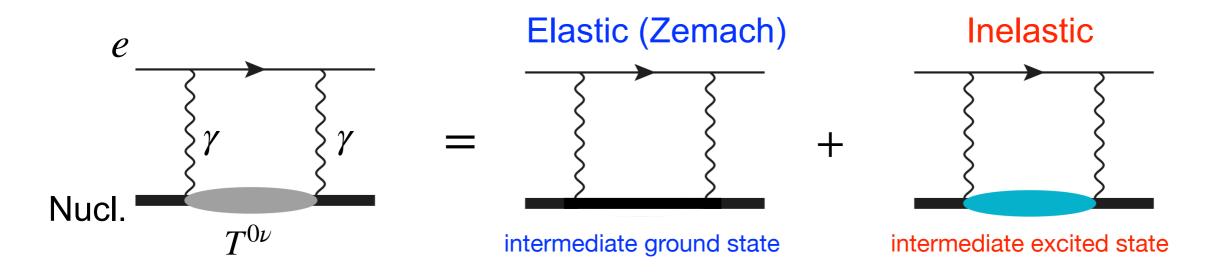


27/32

Qi et al., PRL 125, 183002 (2020); Yerokhin et al., PRA 78, 012513 (2013)

Inelastic 2γ -exchange effects

• A probable explanation is the neglect of inelastic 2γ -exchange effects when extracting Zemach radius from hyperfine splitting.



- Theoretical calculations of inelastic contributions exist only for $A \le 3$ nuclei ^{2,3}H and ³He: Friar and Payne, PRC 72, 014002 (2005); ²H: Ji, Zhang, and Platter, PRL 133, 042502 (2024)
- We provide the first ab initio calculation of inelastic contributions of ^{6,7}Li using neural-network wave function, within closure approximation.

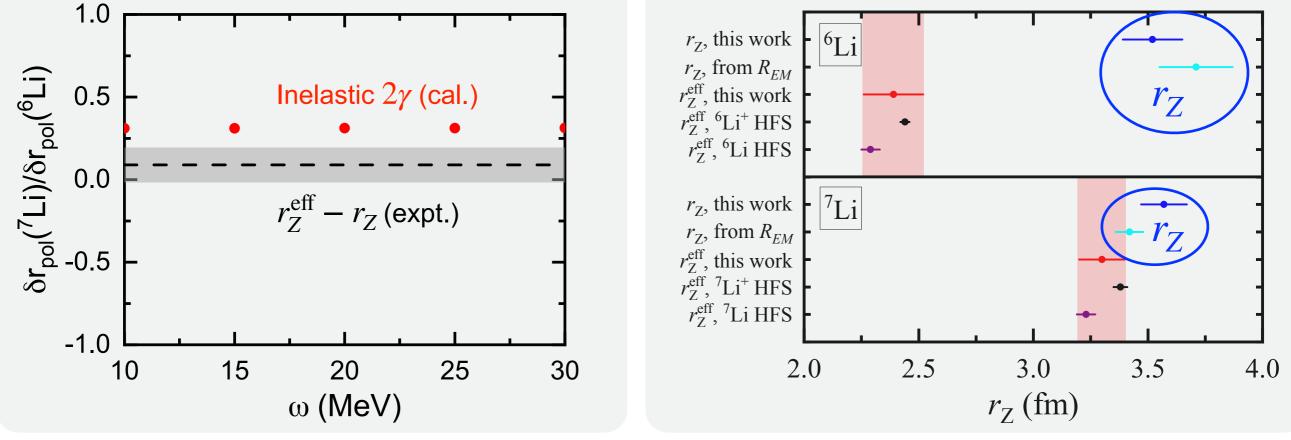
$$T^{0k}(q, -q) = \sum_{N} \frac{\langle 0 | \rho(-q) | N \rangle \langle N | j^k(q) | 0 \rangle}{q_0 - \omega_N + i\epsilon} + (\text{exch.}) \qquad \omega_N \to \overline{\omega}, \quad \sum_{\substack{N \neq 0}} = 1 - | 0 \rangle \langle 0 |$$

Resolving the Zemach radius puzzle in ⁶Li

YLY, Evgeny Epelbaum, Chen Ji, Pengwei Zhao, in preparation

 Inelastic contributions smaller in ⁶Li than in ⁷Li, consistent with the observation (insensitive to *w̄*)

• With reasonable closure energies, the r_Z^{eff} from HFS and r_Z from form factors can be both reproduced

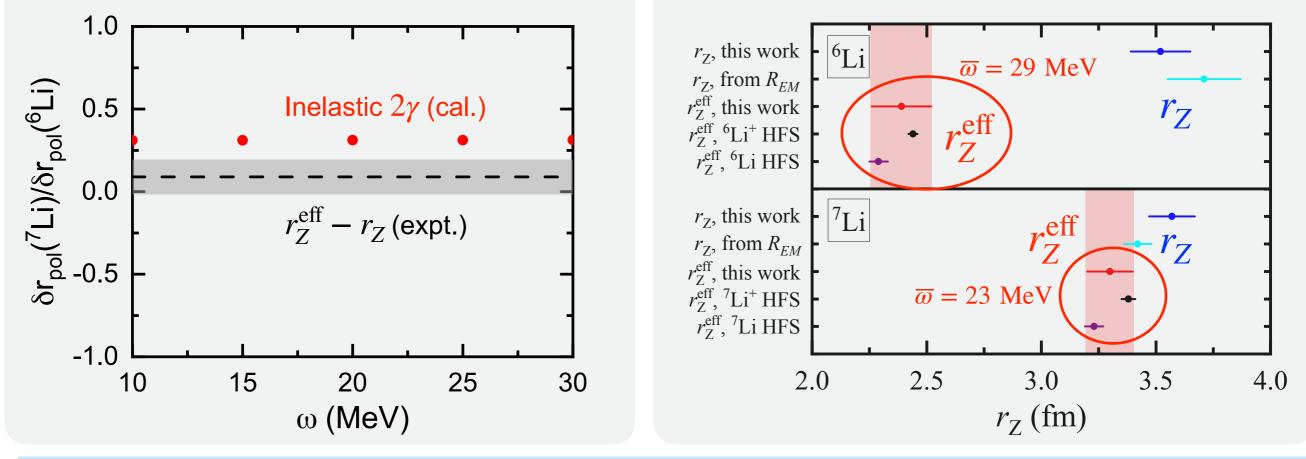


Strong evidence that inelastic 2γ -exchange effects are responsible for the observed discrepancy between r_Z^{eff} from hyperfine splitting (HFS) and r_Z from nuclear form factors.

Resolving the Zemach radius puzzle in ⁶Li

YLY, Evgeny Epelbaum, Chen Ji, Pengwei Zhao, in preparation

- Inelastic contributions smaller in ⁶Li than in ⁷Li, consistent with the observation (insensitive to w)
- With reasonable closure energies,
 the r_Z^{eff} from HFS and r_Z from form
 factors can be both reproduced



Strong evidence that inelastic 2γ -exchange effects are responsible for the observed discrepancy between r_Z^{eff} from hyperfine splitting (HFS) and r_Z from nuclear form factors.

Summary and outlooks

Neural-network quantum Monte Carlo: A new accurate ab initio many-body method for studying nuclear and electroweak properties

• Achieve high accuracy of ground state variantionally

 $\checkmark A \lesssim 16$ nuclei with pionless EFT

- $\checkmark A \lesssim 7$ nuclei with chiral EFT
- Recent applications
 - ✓ Probing long-range 3NF in peripheral $n\alpha$ scattering
 - ✓ Solving the Zemach radius puzzle in ⁶Li
- Towards heavier nuclei with more accurate nuclear interactions
- Excited states, resonances, real-time dynamics, ...

Acknowledgement

• Special thanks to my supervisors and collaborators

Jie Meng, Pengwei Zhao

Peking University

Evgeny Epelbaum, Lu Meng

Ruhr University Bochum

Chen Ji

Central China Normal University

Thank you for your attention!

Appendix

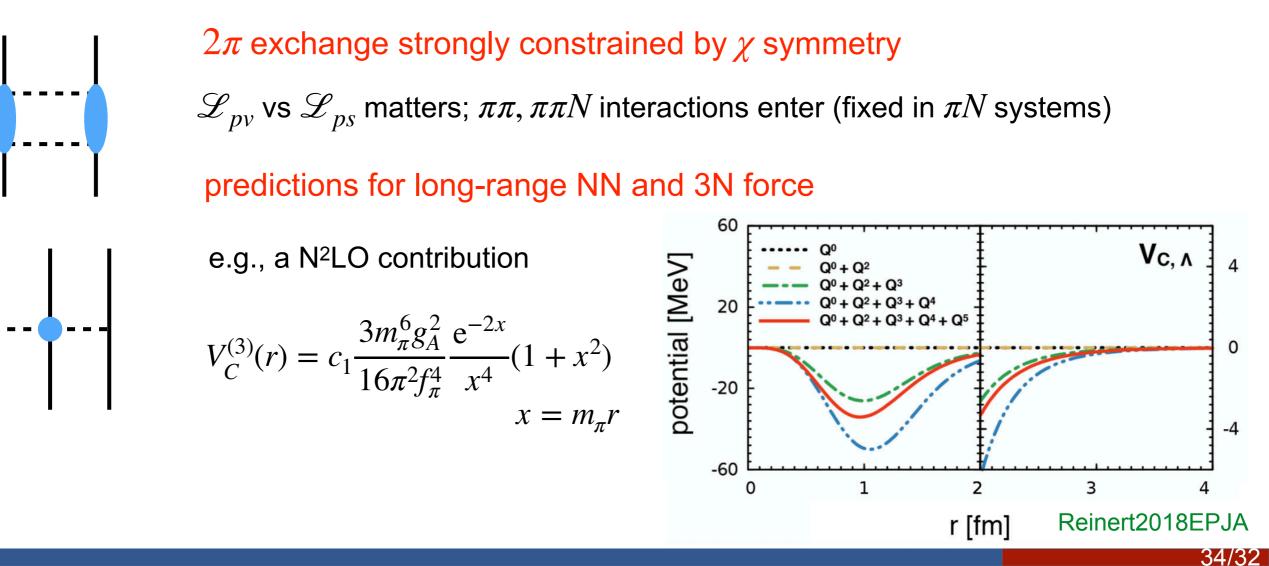
Chiral symmetry in nuclear force

Chiral symmetry + πN data = predictions for the large-distance behavior of the nuclear forces

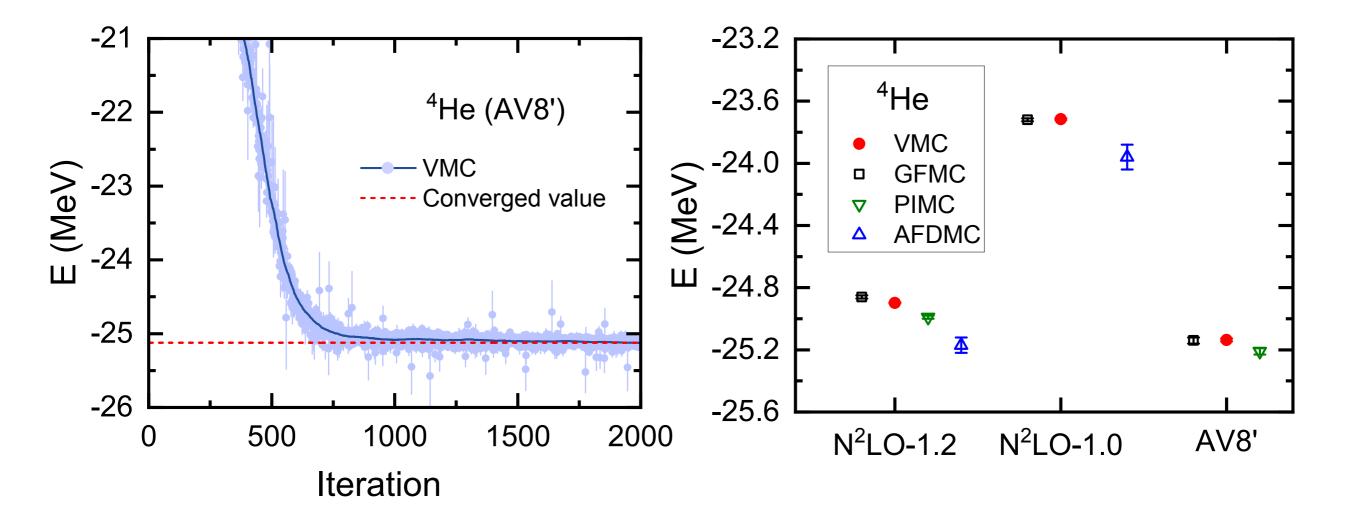
$$\mathscr{L}_{pv} = -\frac{g}{2M} \overline{N} \gamma_5 \gamma^{\mu} \tau N \cdot \partial_{\mu} \pi$$
$$\mathscr{L}_{ps} = -g N i \gamma_5 \tau N \cdot \pi$$

Same 1π exchange (on-shell)

i.e., **NOT** contrained by χ symmetry



⁴He calculated with several NN forces



QMC + BERW formula for $n\alpha$ phase shifts

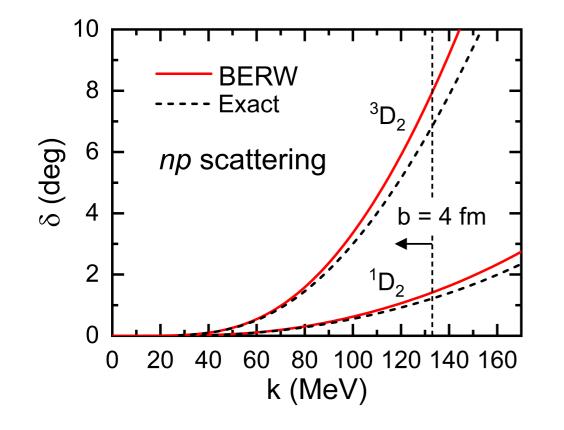
YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961

• $n\alpha$ phase shifts are extracted from the ⁵He₁ energy in a harmonic oscillator trap

$$k^{2l+1} \cot \delta_l^{n\alpha}(k) = (-1)^{l+1} (4\mu\omega)^{l+1/2} \frac{\Gamma((3+2l)/4 - \epsilon_l/(2\omega))}{\Gamma((1-2l)/4 - \epsilon_l/(2\omega))}$$

Busch et al., Found. Phys. 28, 549 (2008); Suzuki et al., PRA 80, 033601 (2009)

with $\epsilon_l = E({}^{5}\text{He}_l) - E_{\alpha}$. We focus on the D_{5/2} wave (spin-orbit splitting between D_{5/2} and D_{3/2} at low energies are small).



• The oscillator lengths b > 4 fm are used.

much larger than interaction range $m_{\pi}b \geq 3$

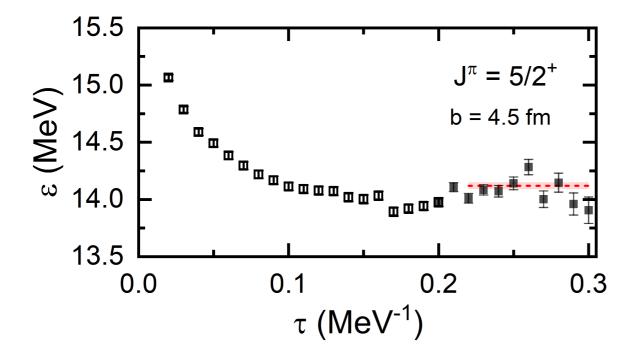
• Benchmarked in D-wave NN scattering.

systematic error within $\sim 10\%$ at low energies.

QMC + BERW formula for $n\alpha$ phase shifts

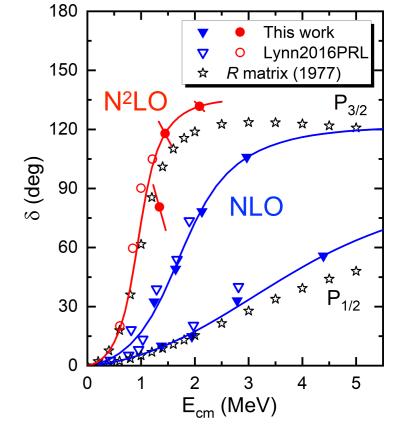
YLY, Evgeny Epelbaum, Jie Meng, Lu Meng, and Pengwei Zhao, e-Print: 2502.9961

• The trapped ⁵He energy is calculated with neural-network VMC+GFMC



Here, the trial function includes mainly two-body correlations, so GFMC is necessary.

- The local N²LO NN [Gezerlis2014PRC] +3N [Lynn2017PRC] forces with the softest *r* space cutoff R = 1.2 fm are employed. (due to the sign problem; harder cutoff can be made possible by the new neural-network wave function with many-body correlations)
- $n\alpha$ caluclations for P-wave benchmarked against [Lynn2016PRL]



37/32

Excited spectrum in ^{6,7}Li

Excitations of the cluster in *A*=6 and 7 nuclei T. Yamagata et al., PHYSICAL REVIEW C 69, 044313 (2004)

