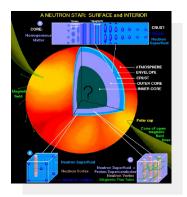
Conformal prediction, neural networks, and emulators for few-body systems

Alex Gezerlis

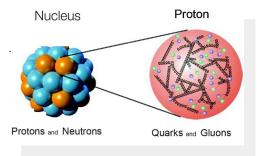
"Next generation *ab initio* nuclear theory" workshop ECT*, Trento, Italy July 15, 2025

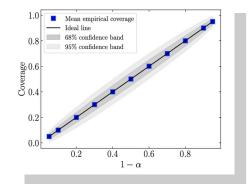
Outline

GUELPH



Credit: Dany Page





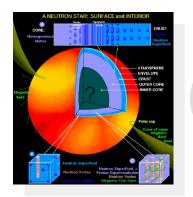
Motivation

Nuclear methods

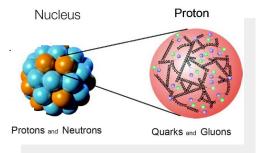
Recent results

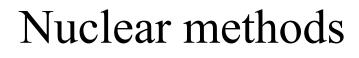
Outline

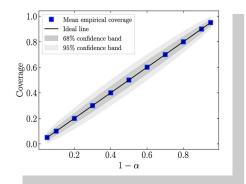
Motivation



Credit: Dany Page







Recent results

Physical systems studied

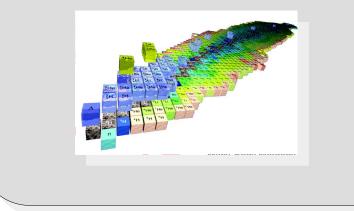
<section-header>

Nuclear structure

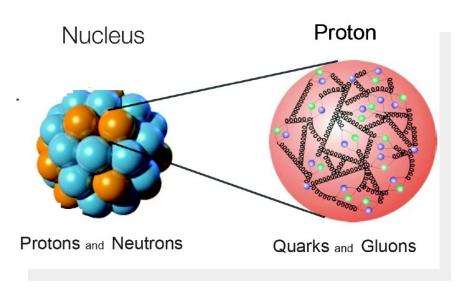
UNIVERSIT

GUELPH

OF



Key system: few nucleons

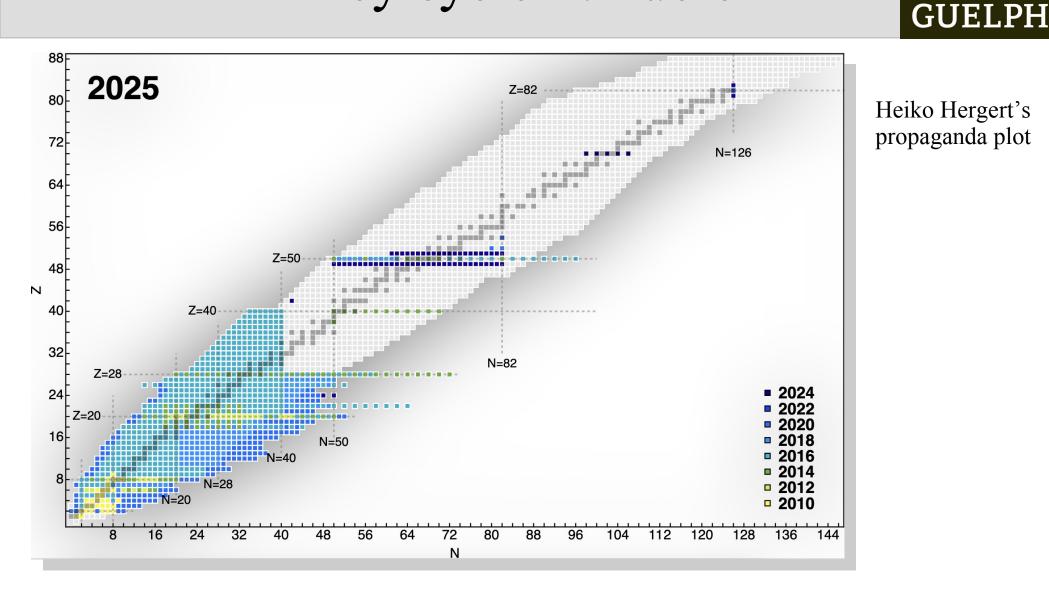


- No unique nuclear potential
- Preferable to use combination of phenomenological (high-quality) and more modern (conceptually clean) approach

UNIVERSITY OF GUELPH

- Desirable to make contact with underlying level
- New era, where practitioners design interactions themselves

Key system: nuclei

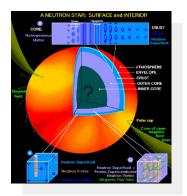


- Lots of recent progress
- Open-shell nuclei are the current frontier

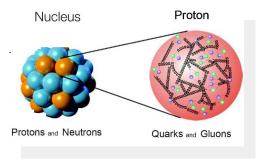
• Goal is to study nuclei *from first principles* (when possible) UNIVERSITY OF

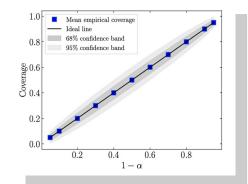
Outline

GUELPH



Credit: Dany Page



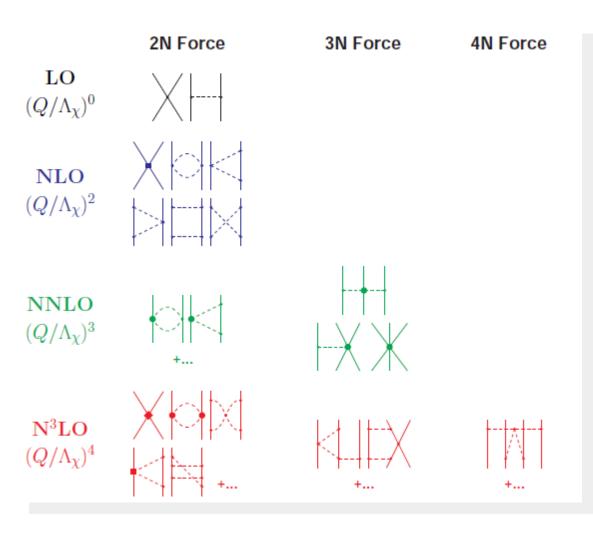


Motivation

Nuclear methods

Recent results

Nuclear interactions



• Attempts to connect with underlying theory (QCD)

GUELPH

- Lowmomentum expansion
- Naturally emerging many-body forces
- Low-energy constants from experiment or lattice QCD
- Now available in non-local, local, or semi-local varieties
- Power counting's relation to renormalization actively investigated

S. Weinberg, U. van Kolck, E. Epelbaum, N. Kaiser ...

But even with the interaction in place, how do you solve the many-body problem?

Nuclear many-body problem

UNIVERSI

GUELPH

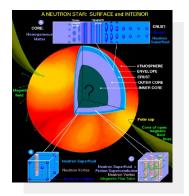
$H\Psi = E\Psi$

where
$$H = \sum_{i} K_i + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$$

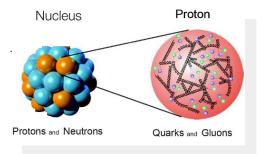
Wave function depends on coordinates, spin projections, and isospin projections, so we are faced with a large number of complex coupled second-order differential equations

Outline

GUELPH

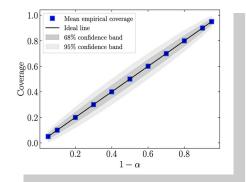


Credit: Dany Page



Motivation

Nuclear methods



Recent results

Recent results

• Conformal prediction for nucleon-nucleon scattering

• Neural-network wave functions for light nuclei

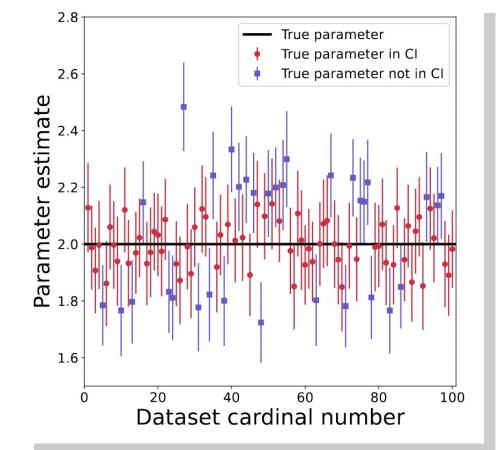
• Emulators for the triton

Conformal prediction for nucleon-nucleon scattering

(Frequentist) confidence interval

E.g., maximize likelihood and take an $n\sigma$ error bar around that point.

Confidence interval *does not* imply degree of belief about our single dataset, but *does* provide guaranteed coverage across datasets.



UNIVERSI7

GUELPH

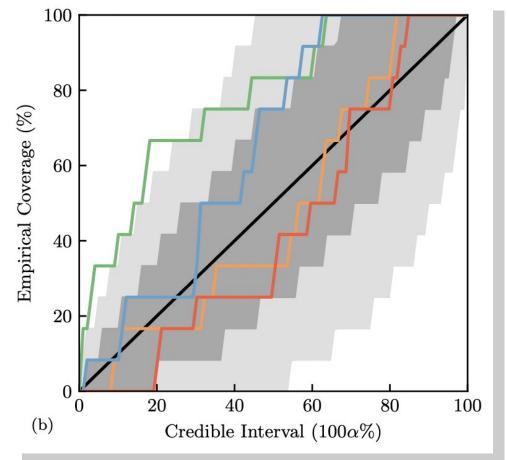
A. Gezerlis and M. Williams, Eur. Phys. J Plus 138, 19 (2023)

(Bayesian) credible interval

E.g., maximize posterior and take an $n\sigma$ error bar around that point.

Credible interval *does* imply degree of belief about our single dataset, but *does not* provide guaranteed coverage across datasets.

N.B. BUQEYE collaboration interprets coverage order-by-order



UNIVERSI

GUELPH

J. A. Melendez, R. J. Furnstahl, D. R. Phillips, M. T. Pratola, and S. Wesolowski, Phys. Rev. C **100**, 044001 (2019)

A hint of the philosophy of statistics

Summarizing attractive features

- (Frequentist) confidence interval has guaranteed coverage across datasets
- (Bayesian) credible interval combines prior and likelihood to encapsulate degree of belief about our single dataset

Summarizing attractive features

- (Frequentist) confidence interval has guaranteed coverage across datasets
- (Bayesian) credible interval combines prior and likelihood to encapsulate degree of belief about our single dataset

Can you get the best of both worlds?

- Yes (*contra* Betteridge's law of headlines)
- Conformal prediction is a tool that post-processes any pre-trained model to produce guaranteed coverage

Conformal prediction

UNIVERSITY OF GUELPH

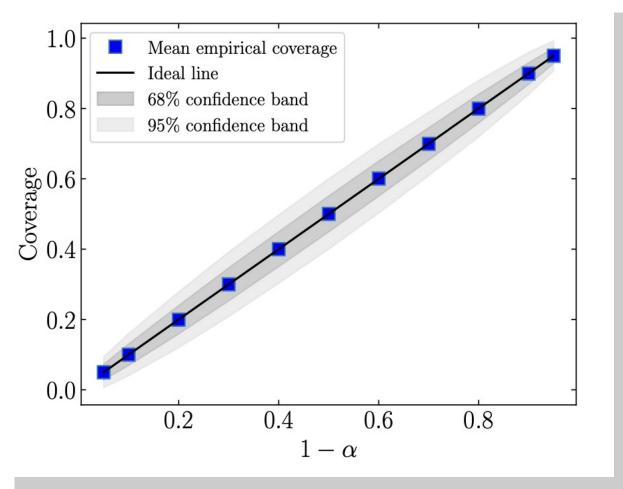
- Distribution-free and model-agnostic uncertaintyquantification method
- Provides finite-sample prediction intervals with guaranteed coverage
- It accomplishes this by employing the quantile function (inverse of the cumulative distribution function) in an ingenious way:

$$C(X_{n+1}) = [Q_Y\left(\frac{\alpha}{2} \mid X_{n+1}\right) - q, \ Q_Y\left(1 - \frac{\alpha}{2} \mid X_{n+1}\right) + q]$$

where $q = Q_S(1 - \alpha)$

Conformal prediction

- Two-nucleon total cross section at E = 50 MeV
- Empirical coverage over 4000 independent trials
- There is near-perfect alignment between empirical coverage and ideal line

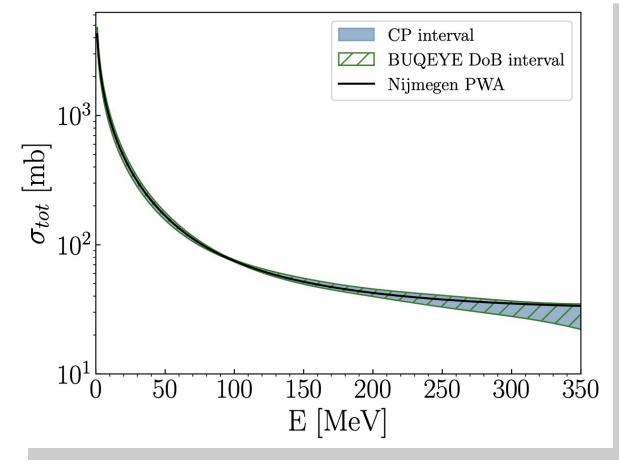


GUELPE

Conformal prediction

Application: BUQEYE Gaussian-process model

- Two-nucleon total cross section at N²LO 0.9 fm EKM potential
- BUQEYE's GP is a nonparametric model
- To generate the conformal prediction bands we drew posterior samples using the BUQEYE open-source code



GUFI.PH

Neural-network wave functions for light nuclei

Encode parameters in trial wave function Ψ_V and use Rayleigh-Ritz principle to minimize expectation value of Hamiltonian GUELPH

Diffusion Monte Carlo

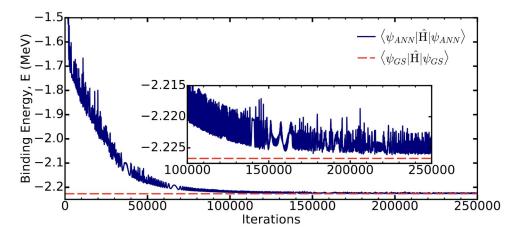
Project out excited-state contributions, to reach the ground state

$$\Psi(\tau \to \infty) = \lim_{\tau \to \infty} e^{-(\mathcal{H} - E_T)\tau} \Psi_V$$

Earlier work

Deuteron

Light nuclei

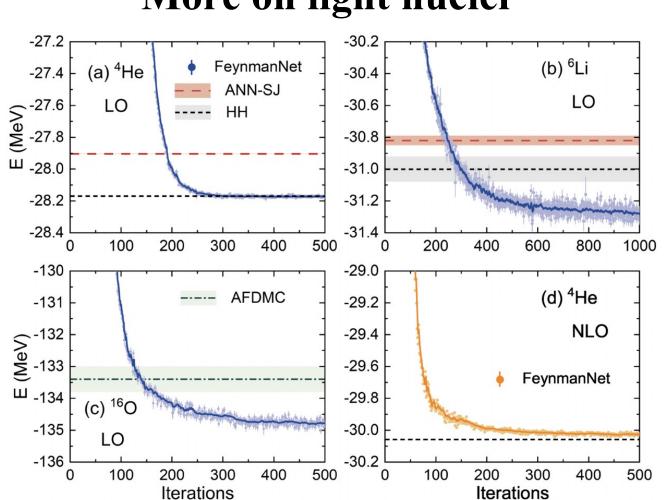


	Λ	VMC-ANN	VMC-JS	GFMC	GFMC_{c}
$^{2}\mathrm{H}$	$4 {\rm fm}^{-1}$		-2.223(1)	-2.224(1)	-
	6 fm^{-1}	-2.224(4)	-2.220(1)	-2.225(1)	-
$^{3}\mathrm{H}$	4 fm^{-1}	-8.26(1)	-7.80(1)	-8.38(2)	-7.82(1)
	6 fm^{-1}	-8.27(1)	-7.74(1)	-8.38(2)	-7.81(1)
⁴ He	4 fm^{-1}	-23.30(2)	-22.54(1)	-23.62(3)	-22.77(2)
	6 fm^{-1}	-24.47(3)	-23.44(2)	-25.06(3)	-24.10(2)

J. W. T. Keeble and A. Rios, Phys. Lett. B **809**, 135743 (2020) C. Adams, G. Carleo, A. Lovato, N. Rocco, Phys. Rev. Lett. **127**, 022502 (2021)

N.B. Limited to pionless Hamiltonian

Earlier work



More on light nuclei

Y. L. Yang and P. W. Zhao, Phys. Rev. C **107**, 034320 (2023) N.B. Also limited to pionless Hamiltonian

Neural networks for light nuclei

UNIVERSIT

GUELPH

Y OF

Spin-isospin correlations

$$\begin{split} |\psi\rangle &= \mathcal{S} \prod_{i < j} \left(1 + \sum_{\mathbf{x}} u_{ij}^{(\mathbf{x})} \hat{O}_{ij}^{(\mathbf{x})} \right) f_{ij}^{(c)} |\Phi\rangle \\ |\psi\rangle &\to \left(1 + \sum_{i < j < k} \sum_{\mathbf{cyc}} \sum_{\mathbf{x}} \epsilon^{(\mathbf{x})} \hat{V}_{ijk}^{(\mathbf{x})} \right) |\psi\rangle \end{split}$$

for N²LO chiral Hamiltonian

Neural networks for light nuclei

UNIVERSIT

GUELPH

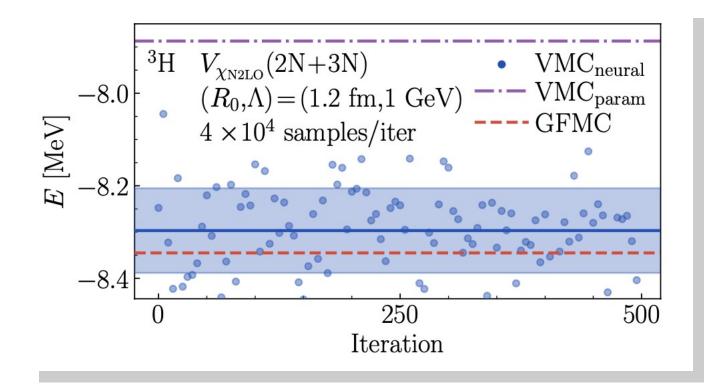
Y OF

Nearly reproduces GFMC results already at the VMC level

$E=E_{ m k}+V_{\chi { m N}^2 { m LO}}(2{ m N})$							
	$R_0 [{ m fm}]$	$E_{\rm neural}$ [MeV]	$E_{\rm GFMC}$ [MeV]	$ \Delta E / E_{ m GFMC} $			
³ H	1.0	$-7.338 {\pm} 0.008$	$-7.554{\pm}0.007$	2.9%			
	1.1	-7.500 ± 0.006	$-7.625 {\pm} 0.005$	1.6%			
	1.2	$-7.678 {\pm} 0.005$	$-7.740 {\pm} 0.005$	0.8%			
² H	1.0	$-2.217{\pm}0.005$	$-2.21 {\pm} 0.02$	0.3%			
	1.2	-2.212 ± 0.004	$-2.20 {\pm} 0.03$	0.5%			

Neural networks for light nuclei

Dramatic improvement over standard/parametric VMC employed before, e.g., AFDMC



UNIVERS

GUELPH

OF

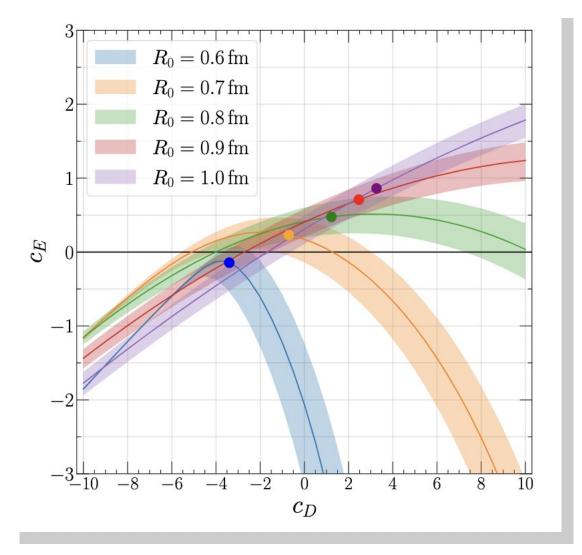
R. Curry, A. Gezerlis, K. Hebeler, A. Schwenk, R. Somasundaram, and I. Tews, in preparation

Fitting the three-nucleon interaction

Solve Faddeev equations for triton binding energy to find a curve

Employ triton beta-decay half-life to single out a point (for each interaction)

This process is computationally quite costly



GUELPH

Tews, Somasundaram, Lonardoni, Goettling, Seutin, Carlson, Gandolfi, Hebeler, Schwenk, Phys. Rev. Research 7, 033024 (2025)

Emulators in one slide

I'm probably running out of time, so I refer to the previous two talks for a summary of previous applications of emulators to nuclear physics.

• **Parametric Matrix Model (PMM)**: use approximate model with matrices of chosen dimensionality:

$$\hat{H} = H_0 + c_D H_D + c_E H_E$$

• **Eigenvector continuation (EC)**: Solve within a subspace (leading to generalized eigenvalue problem):

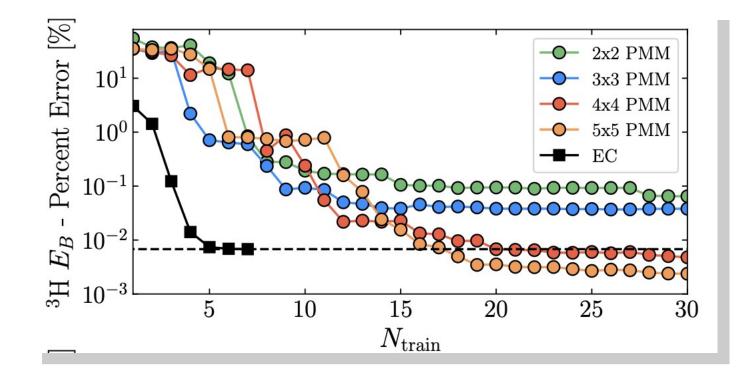
$$\sum_{i} H |\psi_{j}\rangle = E \sum_{j} |\psi_{j}\rangle$$

Varying the three-nucleon interaction

150 training data points + 75 test data points

New criterion for how to reject linearly dependent new training points

GUEL

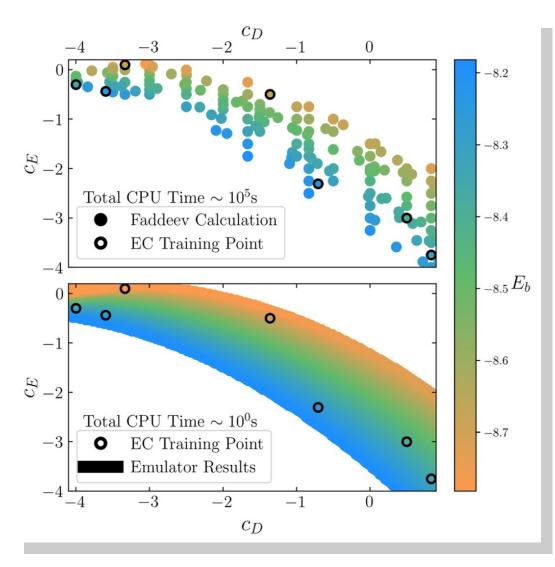


R. Curry, A. Gezerlis, K. Hebeler, A. Schwenk, R. Somasundaram, and I. Tews, in preparation

Varying the three-nucleon interaction

UNIVERSITY OF GUELPH

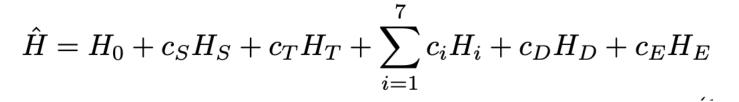
Now that the calculation is so cheap, we can fill out the plot:

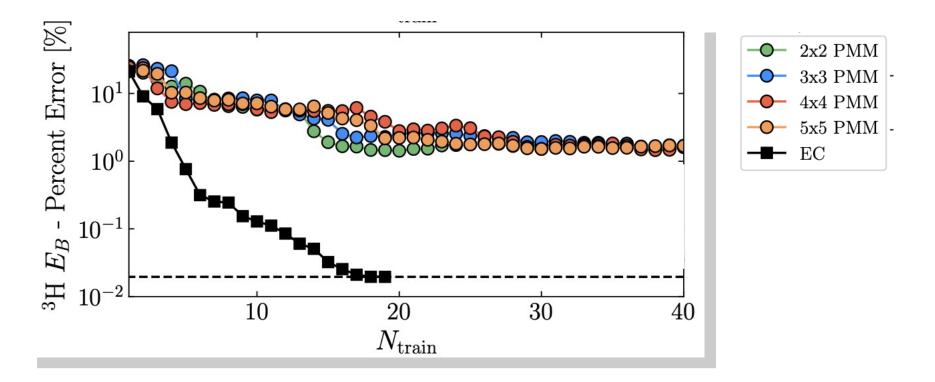


R. Curry, A. Gezerlis, K. Hebeler, A. Schwenk, R. Somasundaram, and I. Tews, in preparation

Varying the full interaction

Release the full interaction, leading to 11 matrices:





OF

GUELPH

R. Curry, A. Gezerlis, K. Hebeler, A. Schwenk, R. Somasundaram, and I. Tews, in preparation

Conclusions

GUELP

• We used chiral Effective Field Theory interactions in neural-network studies of light nuclei

• We used PMM and EC emulators for the threenucleon problem

Acknowledgments

Collaborators

Guelph

- Ryan Curry
- Habib Yousefi Dezdarani

Los Alamos

- Rahul Somasundaram
- Ingo Tews

Texas A&M

- Jeremy Holt
- Pengsheng Weng

TU Darmstadt

- Kai Hebeler
- Achim Schwenk

Acknowledgments

Funding

CANADA FOUNDATION FOR INNOVATION FONDATION CANADIENNE POUR L'INNOVATION

MINISTRY OF RESEARCH AND INNOVATION MINISTÈRE DE LA RECHERCHE ET DE L'INNOVATION

Collaborators

Guelph

- Ryan Curry
- Habib Yousefi Dezdarani

and the

UNIVERSITY OF

Los Alamos

- Rahul Somasundaram
- Ingo Tews

Texas A&M

- Jeremy Holt
- Pengsheng Weng

TU Darmstadt

- Kai Hebeler
- Achim Schwenk