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Outline

Introduction / Motivation: mining scattering data

• Emulators facilitate principled UQ of (chiral) NN+3N interactions

Emulators for two-body scattering

• Prototype for Parametric MOR: methods and terminology

• Variational calculation and Petrov-Galerkin projections

• Training algorithms: POD vs greedy algorithm (with error estimation)

• Efficient offline-online decomposition

• Kohn anomalies: what they are and how to remove them

• Applications: scattering phase shifts and cross sections

Emulators for three-body (N-d) scattering

• Preliminary results below the deuteron-breakup threshold



Motivation: mining scattering data

Scattering eqns. (FOM) can be solved accurately in few-body systems.

But: prohibitively slow for statistical analyses of A > 2 scattering

Construct emulators by removing superfluous information

Catacora-Rios, King et al., 

PRC 104, 064611 

see, e.g., Yang, Ekström et al., arXiv:2109.13303

Furnstahl, Hammer, Schwenk, Few Body Syst. 62, 72

BUQEYE

Chalmers
ISNET

Competing formulations of chiral EFT 

with open questions on issues including 

● EFT power counting

● sensitivity to regulator artifacts

● Differing predictions for medium-

mass to heavy nuclei

optical model
chiral potential

…

See also: 

Svensson et al., 
PRC 107, 014001

Wesolowski et al., 

JPG 46, 045102

Scattering experiments yield invaluable 

data for calibrating, validating, and 

improving chiral EFT (and optical models)

Bayesian methods have become standard 

for principled UQ in nuclear physics:

● parameter estimation

● model comparison

● sensitivity analysis

See the talk “Experiments to explore three-

nucleon forces” by Kimiko Sekiguchi



Bayesian parameter estimation

Weinberg, van Kolck, Kaplan, Savage, Wise, 

Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

multi-nucleon forces
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posteriors
for the two
3N couplings

Here: 11+2 parameters

 (at N2LO)

Wesolowski, Svensson et al., PRC 104, 064001 

Svensson, Ekström, Forssén, PRC 107, 014001 & PRC 109, 064003 

Bayesian fits of model 

parameters to few-body 

observables

but typically 

closer to 30 

parameters

parameter vector

Systematic EFT expansion of nuclear interactions, with 

many parameters to be determined (distribution functions!)

affine parameter dependence



Bayesian parameter estimation

multi-nucleon forces
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Systematic EFT expansion of nuclear interactions, with 

many parameters to be determined (distribution functions!)

new loop contributions to 3N forces recently identified

(promoted to N3LO from N5LO in WPC)

D2, F2, E2

Cirigliano, Dawid, Dekens, Reddy, 

arXiv:2411.00097 (PRL in press) 

2π-exchange interactions induced by 

insertions of the D2 operator

Recent progress on deriving and implementing 

the 13+ 3N contact interactions at N4LO, 

motivated by obtaining higher accuracy, 

solving the Ay puzzle, …

More on 3N forces

See Maria Dawid’s Rising 

Researchers seminar online

parameter vector

Weinberg, van Kolck, Kaplan, Savage, Wise, 

Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

affine parameter dependence



Reduced Order Models (ROMs)

Data-driven: 

interpolate output of full-order 

model (FOM) calculations 

(non-intrusive)

Model-driven: 

derive ROM equations 

from full order model 

(FOM) equations 

(intrusive)

often, via subspace 

projections; enables 

extrapolation

Hybrid: e.g., Parametric Matrix Models

Duguet, Eström, Furnstahl, König, Lee, RMP 96, 031002

RBM for eigenvalue problems reinvented in the last few years, 

coined Eigenvector Continuation (EC)

Emulator (here: Petrov-Galerkin ROMs)

Low-dimensional surrogate models that can 

approximate high-fidelity model calculations with 

high accuracy at a small computational cost.

ROMs are game changers in enabling otherwise 

impossible nuclear physics calculations for UQ and more 

Frame et al., 

PRL 121, 032501 (2017) Recent emulator applications include:

Cook et al., Nature Commun. 16, 5929
 Reed et al. ApJ 974 285

Somasundaram et al., PLB 866, 139558

Many emulator applications:
many-body accelerators, nuclear properties, reactions, 

accelerator physics, EOS, many-body accelerators, …

FOM (or high-fidelity) 

solver required

Mini-apps: fast & accurate model predictions

without having expert knowledge and closed-source code



Constructing ROMs: Variational & Galerkin Projections

Variational Approach

Galerkin Projection
Consider weak form:

Reduced Order Model

Reduce:

Choose nb test functions                         :

generalized eigenvalue problem

snapshots

norm matrix

projected Hamiltonian

Other choices possible ➜ Petrov-Galerkin ROM

Trial wave function:

Functional:

from FOM

from FOM

trajectory

Find stationary point of the functional 

Results in very effective trial wave functions!



Emulator basis construction

Snapshot #1

FOM trajectory

Where to place the 

emulator’s snapshots?

1. Space-filling sampling combined with a Proper 

Orthogonal Decomposition (POD) 

2. Active learning approach based on error 

estimation and a greedy algorithm

Snapshot #2

See also: Sarkar & Lee, PRR 4, 023214 ; Bonilla et al., PRC 106, 054322

The greedy method uses far fewer FOM solutions to 

construct its basis, iteratively adding snapshots 

where the (estimated) emulator error is maximum.

Maldonado, CD, Furnstahl et al., 

arXiv:2504.06092 (PRC in press)



Proper Orthogonal Decomposition (POD)

POD is based on a (truncated) Singular Value Decomposition (SVD) of the snapshot basis:

See also Principal Component Analysis (PCA)

 

U and V are unitary matrices (e.g., UU† = U†U = 1|) containing the singular vectors

Σ is a diagonal matrix with decreasing, nonnegative diagonal entries (singular values)

Truncating singular vectors corresponding to the r smallest singular values results in the best possible 

rank-r approximation (in Frobenius norm) to the original M (low-rank approximation)



Greedy Iteration 

increasing accuracy 

start with 2 

randomly placed 

initial snapshots

Estimate the 

emulator error 

across the 

parameter space

Place the next 

snapshot(s) at 

the location(s) of 

maximum 

estimated error

Iterate until the 

requested 

accuracy is 

obtained

#0

#1

#2

Greedy Algorithm
in Action (preview)

(1D problem 

for illustration)



Reduced order models: (Petrov-)Galerkin projections

Full-Order Model: inhomogeneous RSE

High-Fidelity Solver: here, Numerov’s method (iterative) 

Other methods include 

RK and leapfrog methods

special second-order ODE

scattered 

wavefunction

free wavefunction

Obtain matrix form of ODE solver

In the case of Matrix Numerov:

lower triangular, low-bandwidth matrix

The generated sequence has to be matched 

to an asymptotic limit parametrization

Already FAST!

Least-Squares Petrov-Galerkin (LSPG) ROM

Affine decompositions 

from potential carry over:

Galerkin (G) ROMReduction:

Projection:

Reduced matrix

Snapshot matrix

Reduction: 

Projection:

Construct            as orthogonal projector 

onto residuals



Emulator error estimation for greedy algorithm

Theoretical 

error bounds

Opportunities/challenges: 

• estimate the extremal singular values using 

the Successive Constraint Method (SCM) 

• use the upper bound as a conservative 

error estimate
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start with 2 

randomly placed 

initial snapshots

Estimate the 

emulator error 

across the 

parameter space

Place the next 

snapshot(s) at 

the location(s) of 

maximum 

estimated error

Iterate until the 

requested 

accuracy is 

obtained

Error estimates: residual as a proxy for exact error

exact error (approximatively 

proportional to each other)

Fast & accurate error estimation in the reduced space

Also derived: similar error bounds for phase shifts



POD vs greedy algorithm

POD obtains high accuracy as it 

has access to the most 

information. But: expensive!

Greedy emulator: 

• similar accuracy throughout 

but using far fewer high-fidelity 

calculations. Much less 

expensive!

• identifies & remedies poor 
choices of the initial snapshot 

bases

• Finds and removes spurious 

singularities known as Kohn 

anomalies (LSPG-ROM is free 
of such anomalies)

Chiral Potential

Gezerlis et al. (N2LO)

Maldonado, CD, Furnstahl et al., 

arXiv:2504.06092 (PRC in press)

training set: 200 random points, validation set: 104 random points



Work in progress Giri, Kim, CD, Elster, Furnstahl et al., in prep.

Extension to coupled channels 

& momentum space in progress 

(via scattering T-matrix equation)
Local N2LO GT+ 

chiral potential

Similar convergence 

for LSPG-ROM

Lippmann-Schwinger (integral) equation

More 

rigorous 
speed-up 
factors 

thanks to



Variational ROMs for two-body scattering

Fast & accurate emulation of two-body scattering observables 

without wave functions (Newton Variational Principle)

Melendez, CD, Garcia, Furnstahl, and Zhang, Phys. Lett. B 821, 136608

Toward emulating nuclear reactions using eigenvector continuation 

(General Kohn Variational Principle)
CD, Quinonez, Giuliani, Lovell, and Nunes, Phys. Lett. B 823, 136777

Wave-function-based emulation for nucleon-nucleon scattering in 

momentum space (General Kohn & Newton Variational Principle)

Garcia, CD, Furnstahl, Melendez, and Zhang, Phys. Rev. C 107, 054001

Efficient emulators for scattering using eigenvector continuation 

(Kohn Variational Principle for the K-matrix)
Furnstahl, Garcia, Millican, and Zhang, Phys. Lett. B 809, 135719

See also: CD, Melendez, Garcia, Furnstahl, and Zhang, Front. Phys. 10, 92931 | see also ROSE in Odell et al., PRC 109, 044612 
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Highlight: VP without (trial) wave functions  |  in momentum space  |  coupled channels

Highlight: introduces snapshot-based trial wave functions for ROMs

Highlight: Schwartz anomaly mitigation  |  proof of principle: parameter estimation

Highlight: extends snapshot-based KVP to momentum space & coupled channels

Codes (Jupyter notebooks) 

publicly available!

2020

2021

2021

2023



Emulating the on-shell K matrix

12 training points randomly 

sampled in the range [-5, +5] in 

the units used in the potential

SMS chiral NN potential at N4LO+ with 

momentum cutoff Λ = 450 MeV

3S1–
3D1 channel with 

6 free parameters (LECs)(Snapshot-based) KVP extended to

Reinert, Krebs, and Epelbaum, EPJ A 54, 86

Residuals are far below experimental uncertainties 

if the K matrix were to be converted to phase shifts.

Kohn Variational Principle (MS)

Garcia, CD, Furnstahl, Melendez, 

and Zhang, PRC 107, 054001

coupled channel scattering

momentum space Kohn, PR 84, 495 (1951) 

2 KVP implementations:

“Glöckle” is faster in the 

offline stage but less 

accurate in the online stage

1

2



Emulating total cross sections

Train emulators across partial-wave 

channels up to j = 4 (while the other 

partial-wave channels are fixed once)

≳300x 
faster than high-fidelity calculation

(highly implementation dependent)

500 random LEC samples in the range 

[-5, +5] in the units used in the potential 

(same range as the training points)

25 free parameters (LECs) varied;

50 snapshots used for training

SMS chiral NN potential at N4LO+ with 

momentum cutoff Λ = 450 MeV

KVP (Std.) and NVP residuals are 

vanishingly small compared to the cross 

section and its experimental uncertainty

(KVPs use anomaly mitigation)

jmax = 20

Garcia, CD, Furnstahl, Melendez, 

and Zhang, PRC 107, 054001

see our paper for phase shifts, differential 

cross sections, and analyzing powers.



N-d scattering emulator

Emulate three-body scattering with 

greedy snapshot selection

FOM: KVP for three-body scattering & 

hyperspherical harmonics method 

(linear system)

Preliminary results for 

emulating R-matrix elements 

across large (cD, cE) ranges

See also Zhang & Furnstahl, 

PRC 105, 064004

Gnech, Zhang, CD, Furnstahl, 

Grassi, Kievsky, Marcucci, and 
Viviani, in prep.

See also the review articles:

Kievsky et al., J. Phys. G 35, 063101

Marcucci et al., Front. Phys. 8

So far: N-d scattering below the 

deuteron break-up threshold with 

• fixed N3LO NN potential (Norfolk)

• N2LO 3N interactions (cD, cE)

FOM trial wave function

ROM: G-ROM or LSPG-ROM

p-d scattering



Proof of principle

Systematic reduction of the emulator error with 

increasing number of snapshots (as expected)

G-ROM and LSPG-ROM behave similarly

R11 is much larger than the other two components

½
- 

is less sensitive to 3N forces (= smaller residuals)

Preliminary results
Gnech, Zhang, CD, Furnstahl, 

Grassi, Kievsky, Marcucci, and 
Viviani, in prep.

Opportunities/challenges:

• Emulation of all NN+3N LECs and up to higher E

• Computation of scattering observables; requires 

emulation across partial waves (and energy)

• Implementation in Bayesian parameter estimation

• Application to four-body scattering?

p-d scatteringSee also:

Witala, Golak, Skibinski, 
EPJA 57, 241



Take-away points

1 Emulators are game changers for principled UQ (and more!) in 
nuclear physics. Much can be learned from the mature MOR field.

2
Active learning (“greedy”) approach to snapshot selection allows for 
the construction of fast & accurate emulators for two- and three-body 
scattering: N-d scattering is a work in progress

Ch. Elster    R. Furnstahl    A. Giri    A. Gnech    A. Grassi    A. Kievsky    

J. Kim    J. Maldonado    L. Marcucci    P. Mlinarić    X. Zhang

Many thanks to my 

collaborators:

Source codes are (or will be 

made) publicly available!

3
Promising proof-of-principle emulator for three-body scattering based 
on the KVP, but more work is needed for applications to Bayesian 
parameter estimation of chiral interactions

4 Many options to construct scattering emulators are available. Which 
one(s) are the most efficient and/or reliable in practice?



Model (Order) Reduction for Nuclear Physics

Companion website with lots of pedagogical material: https://github.com/buqeye/frontiers-emulator-review

(pedagogical review article)

Front. Phys. 10, 92931 (open access)

see also 

our Literature Guide 

Melendez, CD et al., 

J. Phys. G 49, 102001

Pedagogical & interactive 

Jupyter notebooks online! 

see also 

Duguet et al., 

Rev. Mod. Phys. 96, 

031002
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