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original chart: Hergert et al., Phys. Rep. 621 165 (2016)

Motivation

FR
IB

rare isotope facilities will discover unknown nuclei near the edge of stability

among those there are likely exotic states► 

halos, clusters  few-body resonances► ⇝
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Agenda

Resonances

Eigenvector Continuation

Complex Scaling Method

All above combined
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Resonances
Intuitive

metastable state (finite lifetime)

tunneling through potential barrier

Experimentally

peak in cross section

related to sharp jump in scattering phase shift

Formally

S-matrix pole at complex energy

wave function similar to bound state...

...but not quite normalizable

σ ∼
Γ2

(E − + /4ER)2 Γ2
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Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)  

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)

KDE Oxygen Theme

 

Bonilla et al., PRC 106 054322 (2022); Melendez et al., JPG 49 102001 (2022)

novel numerical technique, broadly applicable

amazingly simple in practice

special case of "reduced basis method" (RBM)

Eigenvector continuation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

 

Introducing eigenvector continuation
 

ever more so given the evolution of typical HPC clusters► 

Duguet, Ekström, Furnstahl, SK, Lee, RMP 96 031002 (2024)

emulators, perturbation theory, ...► 
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Frame et al., PRL 121 032501 (2018)

Duguet, Ekström, Furnstahl, SK, Lee, RMP 96 031002 (2024)

Eigenvector continuation 101
Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

prerequisite: smooth dependence of  on  (or )

enables analytic continuation of  from  to 

Procedure

calculate ,  in "training regime"

solve generalized eigenvalue problem  with

Example

Hubbard model

large number of applications/extensions in recent years!

H(c)

H(c) c c ⃗ 

|ψ(c)⟩ ctrain ctarget

|ψ( )⟩ci i = 1,…NEC

H|ψ⟩ = λN|ψ⟩

► = ⟨ |H( )| ⟩Hij ψi ctarget ψj

► = ⟨ | ⟩Nij ψi ψj

c = U/t
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statistical fitting gives posteriors for LECs

LEC uncertainties propagate to observables

need to sample a large number of calculations

Need for emulators
1. Fitting of LECs to few- and many-body observables

common practice now to use  to constrain nuclear forces, e.g.:

fitting needs many calculations with different parameters  

2. Propagation of uncertainties

A > 3

Shirokov et al., PLB 644 33 (2007); Ekström et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

JISP16, NNLOsat, -  scattering► α α

Wesolowski et al., JPG 46 045102 (2019)

typically achieved via Bayesian statistics► 

expensive already in few-body sector► 

typically not doable for many-body problems!► 
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SK, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020), ...

Hamiltonian parameter spaces
Consider a Hamiltonian depending on several parameters:

EC emulation
EC can accomodate multi-dimensional parameter spaces ( )

the sum in Eq. (1) can be carried out in small (dimension = ) space!

generally highly efficient and accurate

H = + V = +H0 H0 ∑
k=1

d

ckVk (1)

in particular,  can be a chiral potential with LECs ► V ck

Hamiltonian is element of -dimensional parameter space► d

convenient notation: ► = {c ⃗  ck}
d
k=1

typical for  potential: 14 two-body LECs + 2 three-body LECs► O( )Q3

→ci c ⃗ i

 for ► | ⟩ = |ψ( )⟩ψi c ⃗ i i = 1, ⋅ ⋅ NEC

, ► = ⟨ |H( )| ⟩Hij ψi c ⃗ target ψj = ⟨ | ⟩Nij ψi ψj

NEC

this permits an offline/online decomposition of the problem► 
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Many more EC applications, e.g.:

Melendez et al. PLB (2021); Drischler et al. PLB (2021); Zhang + Furnstahl (2022)

Yapa + SK, PRC 106 014309 (2022)

Yoshida+Shimizu, PTEP 2022 053D02 (2022)

Duguet, Ekström, Furnstahl, SK, Lee, RMP 96 031002 (2024)

Many-body perturbation theory Demol, SK, et al., PRC 101 041302(R) (2020)

Two- and three-body scattering

Volume extrapolation

Shell-model emulators

...
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Now back to resonances...
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 "reveals" the resonance regime  

 

 

 

 

 

 

 

 

 

Formal look at resonances
in stationary scattering theory, resonances are described as generalized eigenstates

Complex scaling method

one way to circumvent this problem is the complex scaling method:

S-matrix poles at comples energies  (lifetime )► E = − iΓ/2ER ∼ 1/Γ

wave functions are not normalizable (exponentially growing in -space)► r

r → r   ,    p → p                                                                           eiϕ e−iϕ

⇝ bound states

resonances

virtual statesantiresonances

scattering

continuumIm

Re

p
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calculations by Nuwan Yapa

Complex-scaled resonance wave functions
complex scaling suppresses the exponentially growing tail of the wave function
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 "reveals" the resonance regime  

 

 

 

 

 

 

 

 

 

Formal look at resonances
in stationary scattering theory, resonances are described as generalized eigenstates

Complex scaling method

one way to circumvent this problem is the complex scaling method:

Notes

this particular method is also called "uniform" complex scaling

essentially, one uses a basis of complex momentum modes

S-matrix poles at comples energies  (lifetime )► E = − iΓ/2ER ∼ 1/Γ

wave functions are not normalizable (exponentially growing in -space)► r

r → r   ,    p → p                                                                           eiϕ e−iϕ

⇝ bound states

resonances

virtual statesantiresonances

scattering

continuumIm

Re

p
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EC for resonances
Why?

LEC fitting and/or observable predictions may include unstable states

but there is also an important technical reason:

accurate and efficient resonance emulators are needed for this► 

especially in the few-body sector, where calculations rapidly become expensive► 

basis expansion methods are typically good for targeting extremal eigenvalues► 

Lanczos/Arnoldi iteration and related techniques► 

complex physical resonance eigenvalues can be difficult to identify► 

bound states, on the other hand, are easy to find► 

tracking a state from being bound to becoming unbound can help!► 

p. 14



Yapa, Fossez, SK, PRC 107 064316 (2023); PRC 111 064318 (2025)

see e.g. Zhang, 2408.03309 [nucl-th], 2411.06712 [nucl-th]; Cheng et al., 2411.15492 [nucl-th]

EC for resonances
Why?

LEC fitting and/or observable predictions may include unstable states

but there is also an important technical reason:

How?
combine EC with complex scaling, work with complex eigenvalues

formalism needs to be developed/adapted for this task

related work discusses other extension of EC to non-Hermitian systems

accurate and efficient resonance emulators are needed for this► 

especially in the few-body sector, where calculations rapidly become expensive► 

basis expansion methods are typically good for targeting extremal eigenvalues► 

Lanczos/Arnoldi iteration and related techniques► 

complex physical resonance eigenvalues can be difficult to identify► 

bound states, on the other hand, are easy to find► 

tracking a state from being bound to becoming unbound can help!► 
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One important detail
under complex scaling, the Hamiltonian becomes non-Hermitian

this changes the inner product between states

r → r   ,    p → p    ⇝ H =eiϕ e−iϕ
H

∗

instead, it becomes complex symmetric► 

as such, it can have complex eigenvalues ✔► 

⟨ϕ|ψ⟩ = ∫ dr ϕ(r)ψ(r)

no complex conjugation for bra-side states► 

this is called the "c-product"► 

Moiseyev, Certain, Weinhold, Mol. Phys. 36 1613 (1978)

physical states with different energies are orthogonal w.r.t. c-product► 
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One important detail
under complex scaling, the Hamiltonian becomes non-Hermitian

this changes the inner product between states

Note

bound-state energies remain invariant under complex scaling

but the c-product is still needed in the non-Hermitian framework

r → r   ,    p → p    ⇝ H =eiϕ e−iϕ
H

∗

instead, it becomes complex symmetric► 

as such, it can have complex eigenvalues ✔► 

⟨ϕ|ψ⟩ = ∫ dr ϕ(r)ψ(r)

no complex conjugation for bra-side states► 

this is called the "c-product"► 

Moiseyev, Certain, Weinhold, Mol. Phys. 36 1613 (1978)

physical states with different energies are orthogonal w.r.t. c-product► 
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Yapa, Fossez, SK, PRC 107 064316 (2023)

Resonance-to-resonance continuation
for resonance to-resonance continuation, EC works directly...

...if one simply uses the c-product for all matrix elements
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Frame et al., PRL 121 032501 (2018)

Duguet, Ekström, Furnstahl, SK, Lee, RMP 96 031002 (2024)

Eigenvector continuation 101
Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

prerequisite: smooth dependence of  on  (or )

enables analytic continuation of  from  to 

Procedure

calculate ,  in "training regime"

solve generalized eigenvalue problem  with

Example

Hubbard model

large number of applications/extensions in recent years!

H(c)

H(c) c c ⃗ 

|ψ(c)⟩ ctrain ctarget

|ψ( )⟩ci i = 1,…NEC

H|ψ⟩ = λN|ψ⟩

► = ⟨ |H( )| ⟩Hij ψi ctarget ψj

► = ⟨ | ⟩Nij ψi ψj

c = U/t
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Yapa, Fossez, SK, PRC 107 064316 (2023)

momentum-space two-body calculation

sampled points within training regime

repeated EC evaluation with 5 points

benchmark against exact result

excellent agreement

Resonance-to-resonance continuation
for resonance to-resonance continuation, EC works directly...

...if one simply uses the c-product for all matrix elements

V (c; r) = c [−5 + 2 ]e− /3r2 e− /10r2

p. 16



Yapa, Fossez, SK, PRC 107 064316 (2023)

momentum-space two-body calculation

sampled points within training regime

repeated EC evaluation with 5 points

benchmark against exact result

excellent agreement

Resonance-to-resonance continuation
for resonance to-resonance continuation, EC works directly...

...if one simply uses the c-product for all matrix elements

V (c; r) = c [−5 + 2 ]e− /3r2 e− /10r2

Note: in the plot, we only show benchmarks for EC extrapolation

that is because interpolation is generally much easier► 

for resonance emulators, both are relevant and needed► 
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Bound-state-to-resonance continuation
bound-state-to-resonance extrapolation fails with naive approach...

it can be shown that for bound states, the EC Hamiltonian is real symmetric

this is a consequence of using the c-product for complex-scaled bound states► 

as such, it can have only real eigenvalues► 
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Bound-state-to-resonance continuation
however, there is a way to make this work!

we introduced complex-augmented eigenvector continuation (CA-EC)

in addition to the training wave functions, include also their complex conjugates► 

this provides the key information to describe the long-distance asymptotics► 

Yapa, Fossez, SK, PRC 107 064316 (2023)
doubles EC basis size at (almost) zero cost► 
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Why does this work?
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bound-state energies CS-invariant

but asymptotic wave numbers change

complex conjugation moves them into

the right quadrant for describing

resonances

 

 

 

 

Yapa, SK, Fossez, PRC 111 064318 (2025)

Complex-augmented EC
Intuitive explanation

 

Formal explanation

consider the Schrödinger equation for the complex-conjugated bound state

evalulate it at large distances, where the potential becomes negligible:

multiplication with  yields 

− ψ(r) = Eψ(r) for |r| → ∞e2iϕ
∇2

2μ

e−4iϕ (r) = E (r)Hϕψ
∗ e−4iϕ ψ∗
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What about more than two particles?

Benchmark different few-/many-body methods
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Complex scaling in �nite volume
Consider a cubic peridioc boundary condition:

 

 

 

 

 

 

 

 

 

 

 

useful to directly extract observables from volume dependence of energy levels

but also as a generic and powerful few-body technique

..., Yu, SK, Lee, PRL 131 212502 (2023); Klos, SK el al., PRC 98 034004 (2018); Taurence + SK, PRC 109 054315 (2024)

asymptotic normalization coefficients, resonance positions, radii► 
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well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix very sparse

Discrete variable representation
Efficient calculation of few-body energy levels

use a Discrete Variable Representation (DVR)

periodic boundary condistions  plane waves as starting point

efficient implementation for large-scale calculations

precalculate only 1D matrix elements► 

↔

handle arbitrary number of particles (and spatial dimensions)► 

Klos, SK et al., PRC 98 034004 (2018)numerical framework scales from laptop to HPC clusters► 

Dietz, SK et al., PRC 105 064002 (2022); SK, JP Conf. Ser. 2453 012025 (2023)

recent extensions: GPU acceleration, separable interactions► 

p. 23



Complex scaling in �nite volume
Consider a cubic peridioc boundary condition:
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Complex scaling in �nite volume
Consider a cubic peridioc boundary condition:

 

 

 

 

 

 

 

 

 

 

 

 

Now imagine it in terms of complex-scaled coordinates!
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Yu, Yapa, SK, PRC 109 014316 (2023)

Complex scaling in �nite volume
Key idea

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

resonances, like bound states, correspond to isolated S-matrix poles

complex scaling renders their wave functions normalizable

we can adapt bound-state techniques to derive their volume dependence

in this equation , 

explicit form for leading term (LO) and subleading corrections (NLO)

note: dependence on volume  and complex-scaling angle 

Numerical implementation

DVR method can be adapted to this scenario (scaling of   scaling of )

  ΔE(L) = [ exp(iζ L) + exp(i ζ L) + ] + O ( )
3γ2∞

μζL
p∞ 2–√ 2–√ p∞

4 exp(iζ L)3
–

√ p∞

3 L3–√
ei2ζ Lp∞

ζ = eiϕ =p∞ 2μE(∞)
− −−−−−−√

L ϕ

x, y, z ⇝ r
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    S-wave state     P-wave state

Resonance examples
two-body calculations are in excellent agreement with derived volume dependence

fitting the  dependence yields physical resonance position and lifetime!

S-wave resonance generated via explicit barrier► 

P-wave resonance from purely attractive potential► 

L
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bound-state energies normally remain real under

complex scaling (strictly true in infinite volume)

the finite-volume, however, induces a non-zero

imaginary part

 and  oscillate as a function of 

possible to fit  dependence at fixed volume!

More applications
Single-volume bound-state fitting

ReE ImE L

and also as a function of ► ϕ

ϕ
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bound-state energies normally remain real under

complex scaling (strictly true in infinite volume)

the finite-volume, however, induces a non-zero

imaginary part

 and  oscillate as a function of 

possible to fit  dependence at fixed volume!

Klos, SK et al., PRC 98 034004 (2018)

the exact volume dependence is only known for

two-body system

the complex scaled FV-DVR can however be

used to study more particles

three-boson example in good agreement with

previous avoided-crossings analysis

More applications
Single-volume bound-state fitting

Three-body resonance

ReE ImE L

and also as a function of ► ϕ

ϕ
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Three-boson resonance trajectory
take potential from before that generates a (genuine) three-body resonance

add attractive two-body potential to bind system

use eigenvector continuation (via complex scaling in FV) to extrapolate

Klos, SK et al., PRC 98 034004 (2018)

established via avoided level crossings (purely real spectrum)► 

V (r) = 2 exp[−( )] + exp(−(r/3 )
r − 3

1.5
V0 )2
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Yapa, SK, Fossez, PRC 111 064318 (2025)

Resonance EC for few/many-body systems
CA-EC can be implemented with different numerical methods:

Finite-Volume (FV) DVR

Harmonic Oscillator (HO) basis (complex freq.)

Berggren Basis (BB)

Gamow Shell Model

Comparison / Benchmark
three-boson system with...

 excellent agreement overall!

just discussed► 

equivalent to complex scaling► 

deformed contour plus selection of poles► 

path towards many-body applications► 

HO basis► 

FV-DVR calculation► 

Berggren Basis► 

⇝
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Fossez et al., PRC 98 061302 (2018)

Yapa, SK, Fossez, PRC 111 064318 (2025)

Realistic physics application
consider Gamow Shell Model (GSM) for 6He system

reduce strength of  interaction to make system unbound

 

 

 

 

 

 

 

 

 

 

CA-EC works nicely also for this system!        

4He core plus two neutrons► 

Woods-Saxon potential for core-neutron interaction, fit to 4He-  phase shifts► n

contact interaction between neutrons► 

nn
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Conclusion
Summary

complex scaling method can be combined with eigenvector continuation

possible to construct emulators for resonance states

resonance-to-resonance extrapolation is straightforward

conjugate-augmented EC enables bound-state-to-resonance extrapolation

method initially developed for two-body resonances

extension to three-body resonances recently established

method works independent of particular numerical framework

GSM application paves way towards extrapolating many-body resonances

Outlook

inclusion of Coulomb force important to treat charged-particles resonances

application to recently discoverd exotic resonances, such as 9N

consider possible extensions to handle virtual ("anti-bound") states
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Thanks...
...to my students and collaborators...

N. Yapa (NCSU  FSU); K. Fossez (FSU); H. Yu (NCSU  Tsukuba)

A. Schwenk, H.-W. Hammer, K. Hebeler (TU Darmstadt); P. Klos, J. Lynn

D. Lee (FRIB/MSU), R. Furnstahl (OSU)

A. Ekström (Chalmers U.), T. Duguet (CEA Saclay)

...for support, funding, and computing time...

  

Jülich Supercomputing Center

NCSU High-Performance Computing Services
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