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Outline

I This work is about a trip

I Don’t be scared, it is not dangerous!

I We will see very interesting things!

I Starting point: the physical point. Arrival: the unitary limit
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The trip

I The trip follows a particular path, it is determined by the ratio r0/a
I a is the scattering length, it characterizes each point of the path
I r0 is a characteristic length, constant along the path. It is different for each

nucleus, r
(N)
0 . Its determination is part of this talk.

I The trip consists in moving nuclei from the physical point to the unitary limit
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The two-body characteristic length r
(2)
0

I The path from the physical point to the unitary point is characterized by the
two-pole S-matrix representing one shallow state, virtual or bound

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

I The energy pole is described by the energy length aB

1/κ = aB −→ E2 = −~2κ2/m = −~2/ma2B

I E2 is a bound or virtual state when aB > 0 or aB < 0

I the second pole is described by the length rB = a− aB

I For example, for the deuteron at the physical point
a = 5.4 fm, aB = 4.3 fm
rB = a− aB = 1.1 fm



The two-body characteristic length r
(2)
0

I The two-pole S-matrix

S(k) = e2iδ =
e iδ

e−iδ
=

k cot δ + ik

k cot δ − ik
=

k + i/aB
k − i/aB

k + i/rB
k − i/rB

is equivalent to the second-order effective range expansion
k cot δ0 = −1/a + rek

2/2

I The two-poles are in the immaginary axes k = iκ, verifying the pole equation
κ = 1/a + reκ

2/2

I they are:

re
aB

= 1−
√

1− 2re/a → re/a < 0.5

re
rB

= 1 +
√

1− 2re/a



The two poles form the universal window
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Physical systems inside the universal window
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Our trip: r
(2)
0 ≡constant =⇒ rB ≡constant
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Effective description (scale invariance)

I The S-matrix

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

is exactly represented by the Eckart potential:

V (r) = −2
~2

mr20

βe−r/r0

(1 + βe−r/r0)2


a = 4r0

β
β−1

aB = 2r0
β+1
β−1


re = 2r0

β+1
β

rB = 2r0 → the second pole!



The universal window in terms of the Gaussian parameters
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Motivation of the trip

I The nuclear system, as well many other systems, are inside the universal window

I The universal window is characterized by scale invariance

I Scale invariance is not a symmetry of the underlying theory but appears for
particular values of the interaction parameters

I In this workshop, Next Generation Ab initio Nuclear Theory, we can consider the
following two main ingredients

I The microscopic theory for the nuclear interaction

I The scale invariance

I The trip will help to see how scale invariance manifests and, hopefully, how to
incorporate it in the effective description of nuclei.
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The two-body scale r
(2)
0 → assigning dimensions → the deuteron trip
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unitary point
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The three-body scale r
(3)
0 and K∗, the three-body parameter
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The Efimov plot: The three-body sector is scale invariant, K∗, is the binding
momentum at the unitary limit. It fixes the branch in which the system is located



The three-body scale r
(3)
0 using the gaussian characterization

The case of three bosons: V =
∑
ij

V0e
−(rij/r0)
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The three-body scale r
(3)
0 using the gaussian characterization

V (1, 2, 3) =
∑
i<j

V (i , j) =
∑
i<j

(
V0e

−(r/r0)2P01 + V1e
−(r/r0)2P10

)
To construct the plot we follow the nuclear path defined as 0anp/

1anp = −4.38

0 0.1 0.2 0.3 0.4 0.5

r
0
/a

B

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

r 0
Κ

3

deuteron
3
H 1st excited state

3
H

r
0
/a

B
=0.457

r
0
K

*
=0.4883

3
H

r
0

(3)
/a

B
0 0.5 1 1.5 2 2.5

E
2
 [MeV]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

E
3
 [

M
e
V

]

E
3
=-2.53 MeV

λ AV18 + UR =-2.65 MeV

3
H

deuteron

AV18+UR

tan ξ = KaB r
(3)
0 = 1.98 fm The 3H plot (λ1 = 0.8, λ0 = 1.06)



The three-nucleon system: correlations

V (1, 2, 3) =
∑
i<j

V (i , j) =
∑
i<j

(
V0e

−(r/r0)2P01 + V1e
−(r/r0)2P10

)
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The three- and four-body scales, r
(3)
0 and r

(4)
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The N-body scales, r
(N)
0 , for A ≤ 8
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Unifying the scales
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Unifying the scales: the LO potential

I The scale invariance is encoded in the two-pole S-matrix

I The trip to the unitary point has shown that two nuclear structures. They form
the thresholds from which the other nuclei emerge

I Accordingly we propose the following potential to be considered at the lowest
order

VN =
∑
i<j

V (i , j , r
(N)
0 , β0)P01 +

∑
i<j

V (i , j , r
(N)
1 , β1)P10 →

VN =
∑
i<j

V (i , j , r
(2)
0 , β0)P01 +

∑
i<j

V (i , j , r
(2)
1 , β1)P10 +

∑
i<j<k

W (i , j , k, r3, β3)

with β3, r3 fixed to reproduce E (3H) and E (4He)
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Mirroring the nuclear chart at the unitary limit



The LO potential at the physical point

0 20 40 60 80 100
A

5

6

7

8

9

10

11

B
/A

 (
M

eV
)

liquid drop model
LO potential
experiment



E/A curves in helium and in nuclei at the physical point
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Conclusions

I The nuclear system is well inside the universal window, accordingly it shows scale
invariance

I Scale invariance manifests in particular correlations not well explained otherwise

I Moreover, this symmetry is independent of the microscopic theory as many
different systems are located inside this window

I It will be important to incorporate this symmetry in the Ab Initio description of
the nuclear structure

I From our trip we have seen important structures suggesting a modification in the
power counting that organizes the perturbative series

I We refer here either to chiral or to pionless EFT

I From our point of view the nuclear potential at lowest order should decribe the
two-pole S-matrix plus the triton and alpha-particle binding energies


