Experiments to Explore Three-Nucleon Forces

Kyoto University / RIKEN Kimiko Sekiguchi

Three-Nucleon Force (3NF) - nuclear forces acting in systems more than A = 2 nucleons -**Key** to fully understand properties of nucleus **Existence of 3NF** was predicted in 1930's (after Yukawa's meson theory). 1957 Fujita-Miyazawa 3NF

- Equation of State of Nuclear Matter
 - etc ...

'80's First indication of 3NF : Binding Energies of Triton

'90's Realistic Nucleon-Nucleon Potential (CD Bonn, AV18, Nijmegen I, II)

Evidence / Candidates of 3NF Effects Nucleon-Deuteron Scattering at Intermediate Energies Biding Energies / Levels of Light Mass Nuclei

Few-Nucleon Scattering

a good probe to study the dynamical aspects of 3NFs.

✓ Momentum dependence ✓ Spin & Iso-spin dependence

Direct Comparison between Theory and Experiment

Rigorous Numerical Calculations of 3, 4N System

2NF Input

- CDBonn
- Argonne V18 (AV18)
- Nijmegen I, II, 93

etc..

• Experiment : Precise Data • $d\sigma/d\Omega$, Spin Observables (A_i, K_{ii}, C_{ii})

Extract fundamental information of Nuclear Forces

• Theory : Faddeev / Faddeev-Yakubovsky Calculations

3NF Input • Tucson-Melbourne • Urbana IX

2NF & 3NF Input

• Chiral Effective Field Theory

Nucleon-Deuteron Scattering - 3N Scattering -

Predictions by H. Witala et al. (1998) Cross Section minimum for Nd Scattering at \sim 100 MeV/nucleon

Where is the hot spot for 3NFs?

Nd Scattering at Low Energies ($E \leq 30$ MeV/A)

Weigh precision data are explained by Faddeev calculations based on 2NF.
(Exception : A_y, iT₁₁)

No signatures of 3NF

Exp. Data from Kyushu, TUNL, Cologne etc..

W. Glöckle et al., Phys. Rep. 274, 107 (1996).

This talk

Experimental study of nucleon-deuteron scattering at intermediate energies (70-300 MeV/nucleon)

Nd scattering & γEFT nuclear forces

Experimental study of proton-³He scattering

New Project in Japan : ERATO TOMOE Project

- Nd scattering & "semi-phenomenological NN" + 3NF

RIKEN RI Beam Factory (RIBF)

- acceleration by AVF+RRC : 65-135 MeV/nucleon
- acceleration by AVF+RRC+SRC : 190-300 MeV/nucleon
- polarization : 60-80% of theoretical maximum values
- Beam Intensity : < 100 nA

Nd Elastic Scattering Data at Intermediate Energies

pd and nd Elastic Scattering at 70-400 MeV/nucleon

Observable	100	200	300	400
$rac{d\sigma}{d\Omega}$				•
$\begin{vmatrix} \vec{p} & A_y^{\ p} \\ \vec{n} & A_y^{\ n} \end{vmatrix}$				•
$\vec{d} iT_{11}$ T_{29} T_{22} T_{21}				•
$\vec{p} \rightarrow \vec{p} K_y^{y'}$ $K_x^{x'}$ $K_x^{z'}$ $K_z^{x'}$ $K_z^{z'}$	<i>π</i> t	hreshold		
$\vec{d} \rightarrow \vec{p} K_y^{y'}$ $K_{xx}^{y'}$ $K_{yy}^{y'}$ $K_{xz}^{y'}$				
$\vec{p} \rightarrow \vec{d} K_y^{y'}$				•
$ \vec{p} \vec{d} \qquad C_{i,j} \\ C_{ij,k} $	c			

~ 2025

High precision data set of *d*σ/*d*Ω & Analyzing Powers from RIKEN, RCNP, KVI, IUCF

Nd Elastic Scattering Data at Intermediate Energies

pd and nd Elastic Scattering at 70-400 MeV/A

Observable	100	20	0	300	400
$rac{d\sigma}{d\Omega}$		0	0 0		
$ \begin{array}{ccc} \vec{p} & A_y^{\ p} \\ \vec{n} & A_y^{\ n} \end{array} $		00			
$ \begin{vmatrix} \vec{d} & A_y^{d} \\ & A_{yy} \end{vmatrix} $			πt	hreshold	
$\begin{array}{c} A_{xx} \\ A_{xz} \end{array}$					
$\vec{p} \rightarrow \vec{p} K_y^{y'}$ $K_x^{x'}$ $K_x^{z'}$ $K_z^{x'}$ $K_z^{x'}$					
$\vec{d} \rightarrow \vec{p} K_y^{y'}$ $K_{xx}^{y'}$ $K_{yy}^{y'}$ $K_{xz}^{y'}$					
$\vec{p} \rightarrow \vec{d} K_y^{y'}$					
$ec{p} ec{d} C_{yy} \ C_{ij}$					

Nd Elastic Scattering Data at Intermediate Energies

pd and nd Elastic Scattering at 65-400 MeV/nucleon

Observable	100	200	300	400
$rac{d\sigma}{d\Omega}$		• • • • •		•
$ec{p} A_y^{\ p} \ ec{n} A_y^{\ n}$	••		•	•
$\vec{d} iT_{11}$ T_{20} T_{22} T_{21}				•
$\vec{p} \rightarrow \vec{p} K_y^{y'}$ $K_x^{x'}$ $K_x^{z'}$ $K_z^{z'}$ $K_z^{z'}$	π th	reshold		
$\vec{d} \rightarrow \vec{p} K_y^{y'}$ $K_{xx}^{y'}$ $K_{yy}^{y'}$ $K_{yy}^{y'}$ $K_{xz}^{y'}$				
$\vec{p} \rightarrow \vec{d} K_y^{y'}$				•
p [°] d C _{ij} C _{ij,k}		•		

~2025

High precision data set of
 dσ/dΩ & Analyzing Powers

from

RIKEN, RCNP, KVI, IUCF, LANSCE

etc.

After ~ 90 Years of

Fujita-Miyazawa 3NF (1957) Quantitative discussions on 3NFs start via Theor. & Exp. .

Spin observables : Defects of spin-dependent parts of 3NFs

Calculations by Bochum-Cracow Gr.

Energy Dependent Study for *dp* Scattering - Cross Section & Analyzing Powers -

Summary of Results of Comparison for *dp* elastic scattering

- Cross section at ~100 MeV/nucleon
 - First clear signature of 3NF effects in 3N scattering
 - Magnitudes of 3NFs is O.K. .
- Spin observables
 - Not always described by 2π -3NFs
 - Defects of spin-dependent parts of 3NFs
- At higher energies ...
 - Serious discrepancy at backward angles
 - Short Range 3NFs are required.

γEFT & dp elastic scattering

 $\simeq \chi EFT$ 2NFs have achieved to high-precision. 5th order of NN potentials (N4LO⁺) reproduce pp(np) data with χ^2 /datum=1.00 P. Reinert, H. Krebs, E. Epelbaum EPJA 54, 86 (2018)

dp elastic scattering data at around 100 MeV show necessities of the N4LO 3NFs.

> Cross section minimum region for *dp* elastic scattering at $\sim 100 \text{MeV/nucleon}$ is

"Golden window" for the N4LO 3NFs.

LENPIC collaboration, Phys. Rev. C 98, 014002 (2018)

New Experiment at RIKEN **Measurement of Spin Correlation Coefficients** for dp elastic scattering at ~ 100 MeV/nucleon

- determination of LECs of N4LO 3NFs from *dp* scattering data

pol.d beam

- for investigation of N4LO 3NFs
- Solution Observables to be measured : $C_{y,y}$, $C_{x,x}$, $C_{z,x}$, $C_{xx,y}$, $C_{yy,y}$, $C_{xz,y}$, $C_{yz,x}$, $C_{xy,x}$

+ pol.p solid target

+ Kulyaku detector New!

Sensitivities of the LEC (C_{Ei}) in N4LO 3NFs

Investigations on *d*-*p* elastic scattering to determine the LECs (c_{E_i}) in χ EFT's 3NF N⁴LO \rightarrow Collaboration of experimental and theoretical approaches

 $c_{E_1}, c_{E_7}, c_{E_5}$:

• significant effect (0.1-0.2) from LECs for <u>multiple spin observables</u> at $\theta_{CM} = 70^{\circ}-140^{\circ}$ \rightarrow effective for determining the c_{E_i}

 \clubsuit while a specific constant c_{E_i} may explain data for one observable at certain angles, it does not necessarily do so for others.

> high-precision data from multiple spin observables in *d*-*p* elastic scattering

 \rightarrow essential to determine 11 c_{E_i}

Further step H. Witala, J. Golak, R. Skbinski, H. Sakai, K.S , Phys. Rev. C 111, 044003(2025) - Double Spin Polarization Observables are very sensitive to 3NFs. K^{y'}_{y,y} pol. deuteron KuJyaku 0.5 Analysis target proton pol. proton 0 E=135 MeV -0.5 120 60 [deg] c.m

p-³He scattering

Sevent Approach iso-spin dependence of 3NFs

T=3/2 3NFs

for neutron-rich nuclei, neutron star

4-nucleon scattering

First Step from Few to Many

Larger effects of 3NFs ?

2N system

3N system

4N system

p-³He scattering

Theory in Progress

Calculations above 4-nucleon breakup threshold energy open new possibilities of 3NF study in 4N-scattering. up to 35 MeV

A. Deltuva and A.C. Fonseca Phys. Rev. C 87, 054002 (2013)

Discrepancies in cross section minimum at higher energies

New rooms for 3NF study

20

at 5.54 MeV

- No signature of 3NFs in cross section - Ay(p) puzzle : 3NFs sensitive to *p*-shell nuclei improve the agreement to the data.

How about spin observables at higher energy?

Experiments of $p+{}^{3}$ He at Intermediate Energies from RCNP & CYRIC

• Pol.³He gas target : Alkali-Hybrid SEOP type

polarization : 30-40% as of 2018 (beam on target)

²¹ 21

New Data of $p+{}^{3}$ He at Intermediate Energies

A.Watanabe et al., Phys. Rev. C 103, 044001 (2021)A.Watanabe et al., Phys. Rev. C 106, 054002 (2022)

New Data of $p+^{3}$ He at Intermediate Energies

A.Watanabe et al., Phys. Rev. C 103, 044001 (2021)A.Watanabe et al., Phys. Rev. C 106, 054002 (2022)

New Data of $p+^{3}$ He at Intermediate Energies

A.Watanabe et al., Phys. Rev. C 103, 044001 (2021)A.Watanabe et al., Phys. Rev. C 106, 054002 (2022)

ERATO Three-Nucleon Force Project

TOMOE

Term Oct. 2023-Mar.2029

Summary (1/2)

Three-Nucleon Forces

are key elements to fully understand nuclear properties. e.g. nuclear binding energies, EOS of nuclear matter

Few-Nucleon Scattering

is a good probe to investigate the dynamics of 3NFs. - Momentum, Spin & Iso-spin dependence - .

Nucleon-Deuteron Scattering - 3N Scattering -

Precise data of $d\sigma/d\Omega$ and spin observables at 70- 300 MeV/nucleon

Cross Sections : Large discrepancy at backward angles. 3NFs are clearly needed.

Spin Observables : 3NF effects are spin dependent.

Serious discrepancy at backward angles at higher energies : short-range terms of 3NFs?

Cross section minimum region at around 100 MeV : Golden windows for χEFT 3NFs

Summary (2/2)

Proton-³He Scattering - 4N Scattering -

- Approach to Iso-spin states of T=3/2 3NF
- Rigorous numerical calculations : New possibilities for 3NF study in 4N Scatt.

New Data from CYRIC & RCNP : ³He & p Analyzing powers, & Spin Correlation Coefficient

Cross section minimum region at higher energies : Source of rich information of 3NFs

Spin correlation coefficient : Very sensitive to dynamics of Nuclear forces

New Project in Japan : TOMOE

- - Measurement of spin correlation coefficients at 100 MeV/nucleon for investigation of N4LO 3NFs.
 - Determination of LECs N4LO 3NFs from dp scattering data
- Descriptions of various nuclear phenomena

- High precision 3NFs from Few-Nucleon Experiments & χEFT Nuclear forces

based on High precision NN+NNN

RIBF-d. Collaboration

RIKEN Nishina Center

A. Watanabe, Y. Saito, N. Sakamoto, H. Sakai, T. Uesaka,

M. Sasano, Y. Shimizu, K. Tateishi

Department of Physics, Science Tokyo

H. Sugahara, D. Takahashi, K. Suzuki, S. Takahashi, K. Fukuda **Department of Physics, Tohoku University**

Y. Wada, D. Eto, T. Akieda, H. Kon,

J. Miyazaki, T. Taguchi, U. Gebauer, K. Takahashi, T. Mashiko, K. Miki,

Y. Maruta, T. Matsui, K. Kameya, R. Urayama

Kyushu University

T. Wakasa, S. Sakaguchi, H. Nishibata,

J. Yasuda, A. Ohkura, S. Shindo, U. Tabata, K. Aradono,

K. Hirasawa

Miyazaki University

Y. Maeda

RCNP, Osaka University

H. Okamura

Kyungpook National University

S. Chebotaryov, E. Milman

RIKEN RIBF (2009)

ERATO TOMOE exp. @ RIKEN RIBF (2024)

p-³He Collaboration

Department of Physics, Tohoku University

K. Sekiguchi, Y. Wada, Y. Shiokawa, A. Watanabe, S. Nakai, K. Miki,

T. Mukai, S. Shibuya, M. Watanabe, K. Kawahara, D. Sakai,

T. Taguchi, D. Eto, T. Akieda, H. Kon, M. Inoue, Y. Utsuki CYRIC, Tohoku University

M. Itoh

KEK

T. Ino

RCNP, Osaka University

K. Hatanaka, A. Tamii, H.J. Ong, H. Kanda,

N. Kobayashi, A. Inoue, S. Nakamura, D. T. Tran Kyushu University

T. Wakasa, S. Goto, Y. Hirai, D. Inomoto,

H. Kasahara, S. Mitsumoto, H. Oshiro

Miyazaki University

Y. Maeda, K. Nonaka

RIKEN Nishina Center

H. Sakai

RIKEN RANS

Y. Otake, A. Taketani, Y. Wakabayashi NIRS

T. Wakui

Theoretical Supports from

Ruhr-Universität, Bochum

E. Epelbaum, H. Krebs, A. Filin, S. Heihoff, J. Sola Cava, P. Walkowiak

(Maybe I miss some colleagues...)

W. Glöckle

Jagellonian University

H.Witała, J. Golak, R. Skibinski

Kyushu Institute of Technology

H. Kamada

Forshungszentrum of Jülich

A. Nogga

Vilnius University

A. Deltuva

Hannover University

P.U. Sauer, S. Nemoto

Lisbon University

A. Sa. Fonseca

Hosei University S. Ishikawa

Bochum (2024)

