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Sources of uncertainty In ab initio calculations

wEFT Hamiltonian and 3-decay operator are only computed up to a
finite order in the EFT:“truncation uncertainty” model uncertainty

wEFT Hamiltonian (and operators) depend on LECs (parameters) that
must be estimated from data of finite precision:“parametric
uncertainty’’ aleatoric uncertainty

Many-body methods used to compute finite nuclei using that
Hamiltonian truncate the Hilbert space or otherwise approximate the
problem:“many-body uncertainty” model uncertainty

Emulators, matrix inversion, integrals, etc. only represent actual result of
model at a finite precision. model uncertainty

| will not discuss this last source of uncertainty here



Abstraction

Suppose | have a ¥EFT Hamiltonian and many-body method that predicts a set of outputs y;(0),
i=1,...J, with O the LECs of the Hamiltonian

We estimate (“fit”’) the LECs by using a finite number of outputs and comparing them to
experimental data. Goal is p(0|yi,..,yn;M), N < J.

But ¥, exp = YVin(@) + 8Y; i + 6V, exp With ¥; oy, the central value measured by the experiment and
each of 0y, and 0y, ., 2 random variable distributed as, say,a Gaussian. (This statement, by the
way, is how one works out the correct form of the likelihood p(Y1,exps-YN,exp|0;Mtheory,Mstats).)

This makes 0 a random variable with its own probability distribution too:“Parametric
uncertainty” and “model uncertainty” are both reflected in the posterior for 0.

Then we wish to predict Yy, | cxp BUt Yy exp = Yva1.m(0) + Yy - Need to propagate

parametric uncertainty (sample p(0]yi,..,yn;M) and do forward evaluations) and account for
correlations © has (or doesn’t have) with this new observable’s model uncertainty, dyy. | -

When this is all done we have the result from one “model”: p(yn+1|M).

Maybe we also want to assess other kinds of model uncertainty, not included in dy,,. Then we
could combine probability distributions from several MB methods: p(yy., ;) = Z Wi DV | My).
k
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wEFT to NNLO: error model and strategy

s ity i + Oyt %

Ny

OYexp: Normally distributed,
uncorrelated errors (?)

3
(P) = Veet(P) {a Q'
AT ; A OYih = yref(p)[ck+1Qk+1 3 Ck+2QkJr2 + ...

Q is not obvious for bound state observables: make it a parameter & sample

Also sample ¢, the mean-square value of the higher-order coefficients

¢%and Q are inferred from the NNLO-NLO shift, but that result is modified
because they form the (dominant piece of) the theory error in the
likelihood

NN force LECs a,, refit (TN LECs from Roy-Steiner analysis). Use as prior
on higher-body observables, so a,, will get updated if they are sensitive to it



Fxample: 3N bound-state observables

Wesolowski, Svennson, Ekstrom, Forssen, Furnstahl, Melendez, DP, Phys. Rev. C (2022)

Binding energy of three-nucleon nuclei: 3H

Binding energy of 4He

Charge radius of 4He

Beta-decay half-life of 3H, aka “GT matrix element”

Solve Schrodinger equation for 3He and 4He and compute radii,
GT matrix element

Done at O(QY), O(Q?2), O(Q?3)

Emulation via Eigenvector Continuation make fast evaluation possible



Posterior and priors

1
pr(aa 529 Q | Da I) X eXp <_5rT(ZeXp

_11.) exp ( 0,a,Dpr(Q|a,l)

Truncation errors Y D) Nattloralness
We take uncorrelated theory errors: (2, ypcorr)ij = (yref)2525i]- Z 07"
n=k+1

Experimental errors are negligible in comparison

pr(¢%| 0, a,I) is taken to be an inverse-y* distribution. Information on the
order-to-order shifts included there

pr(Q|a, ) then also affected by that information. Starts as weakly

informative Beta distribution before any updating from NLO-LO and
NNLO-NLO shifts



Results for 3NF parameters,Q, ¢

1

5 pr(Z, Q| Yexp, 1)
! i I’rior
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Q inferred from data,
convergence pattern

t distributions!



The role of different constraints and of truncation errors
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From LECs to prediction in a Toy Model

Schindler, DRP, Ann. Phys., 2009
Wesolowski, Klco, Furnstahl, Phillips, Thapaliya, JPG, 2016

Given data D={(dk,0k):k=1,...,,N} taken at points xk and a fit function
f(x;a) that depends on LECs a={ay,...,akmax}, determine the first k+|

BUT, be careful! f only describes data in a limited domain
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Given data D={(dk,0k):k=1,...,N} taken at points xx and a fit function
f(x;a) that depends on LECs a={ao,...,akmax}, determine the first k+|

BUT, be careful! f only describes data in a limited domain

Fit function: f(x) = ay + a;x + a,x* + ... + @ x*
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Toy example: data from
g(x) = (1/2 + tan(zx/2))?
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From LECs to prediction in a Toy Model

Schindler, DRP, Ann. Phys., 2009
Wesolowski, Klco, Furnstahl, Phillips, Thapaliya, JPG, 2016

Given data D={(dk,0k):k=1,...,N} taken at points xx and a fit function
f(x;a) that depends on LECs a={ao,...,akmax}, determine the first k+|

BUT, be careful! f only describes data in a limited domain

Fit function: f(x) = ay + a;x + a,x* + ... + @ x*

oy function with data D1 and first terms in expansion

Toy example: data from
g(x) = (1/2 + tan(zx/2))?
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Parameter estimation

1
T ~1
pr(a|D, k, k,,) x exp (—Er (Ziexp) r> exp

—equivalent to likelihood with 2, after
marginalization over {a;, |, d; >, ..., a;
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Prediction

g(x) = fi(x; 0) + 6y(x)

Use the posterior at third order for 6, fit simultaneously with a fourth-
order “model discrepancy”, asx4, to obtain the posterior for f,(x; 0) + 6y(x)

1.6
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Prediction

g(x) = fi(x; 0) + 6y(x)

Use the posterior at third order for 0, fit simultaneously with a fourth-
order “model discrepancy”, asx#, to obtain the posterior for f,(x; @) + 6y(x)

1.6 - Parametric uncertainty

BUt the Parametrlc & ) Truncation uncertainty
model errors are each as 1.4 -
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total uncertainty
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Prediction

g(x) = fi(x; 0) + 6y(x)

Use the posterior at third order for 6, fit simultaneously with a fourth-
order “model discrepancy”, asx4, to obtain the posterior for f,(x; 0) + 6y(x)

But the parametric &
model errors are each as
large, or larger, than the
total uncertainty

_ (a0 a) - (A0 )
ax'y [(F3) = (A0)?

p(x)

Because they’re anti-
correlated Tl 3
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Prediction

Carter, Furnstahl, Melendez, DP, to appear

g(x) = fi(x; 0) + 6y(x)

Use the posterior at third order for 6, fit simultaneously with a fourth-
order “model discrepancy”, asx#, to obtain the posterior for f,(x; @) + 6y(x)

1.6 1 Correlated uncertainties

BUt the Parametrlc & ' Uncorrelated uncertainties
model errors are each as 1.4 1
large, or larger, than the .
total uncertainty

1.0 -

: (x)

Because they’re anti- >

0.8 -
correlated

0.6 -
Neglect that and you
overestimate the 0-47
uncertainty Ofyour f—':::: 111 [ | [ [ | [ | [ | [ |

PrediCtion 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
X



Modeling correlations in theory uncertainties

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

X 2 Function cnis not a constant.
it yrefz c,(p/m,)0 But the c¢’s at different values of p aren’t
n=0 independent random variables either

Our hypothesis:

EFT coefficients at different orders can be modeled as independent
draws from a Gaussian Process with a stationary kernel

/

]

Gaussian distribution at each point

With correlation structure parameterized by a single ¢* and £ at all orders



Example: E/N for

oure neutron matter

Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020)

Order-by-order uncertainties for pure neutron matter

Obtained by applying BUQEYE™ approach to truncation errors
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Example: E/N for pure neutron matter

Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020)

Order-by-order uncertainties for pure neutron matter

Obtained by applying BUQEYE™ approach to truncation errors
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Exam

NN differential cross section at 60° for SMS 500 MeV

ble: NN differentia
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Millican, Furnstahl, Melendez, DP, Pratola (2024)
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You can see a lot by looking

Millican et al., in preparation (2025)
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You can see a lot by looking

Millican et al., in preparation (2025)

Prel Prel
100 200 300 100 100 200 300 100

- SMS 500

| L L 1
—05 0.0 (.5 —-0.5 0.0 0.5

— cos(0) — cos(0)

Even/odd orders have different sizes for soft potentials



You can see a lot by looking

Millican et al., in preparation (2025)

Prel
100 200

Even/odd orders have different sizes for soft potentials



You can see a lot by looking

Millican et al., in preparation (2025)

Prel
100 200 300 400

Length scale of curves gets shorter as momentum gets higher

Even/odd orders have different sizes for soft potentials



The GP is not 2D stationary in (p,0cm)

Millican et al., in preparation (2025)
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Results for Ay, : SMS potentials

Millican et al., in preparation (2025)
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Results for Ay, : SMS potentia

or(An| ¥e £) |
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mt = 138 MeV, GP diagnostics are
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mt = 200 MeV
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representation of coefficients at
small momenta

PRELIMINARY



Results for Ay, : SMS potentia

or(An| ¥e £) |
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Millican et al., in preparation (2025)

mt = 138 MeV, GP diagnostics are
not better (or worse) for

mt = 200 MeV

“Downsampling” to stop over-
representation of coefficients at
small momenta

450 MeV & 500 MeV potentials have
N\p =600 MeV consistent across
orders

550 MeV shows A increasing with
order
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Other non-soft
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Other non-soft
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Other non-soft
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Is the increase from N3LO to
N4LO due to overfitting at N3LO?

UQ can still be done on
potentials at a particular order,
physical meaning of A, then
unclear

Is that okay as long as A\, goes up
with order?
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Global model combination

Bayesian Model Averaging involves combining probability distributions
according to: pr(yy, | D, 1) = 2 pr(yn.i | My, D, Dpr(M, | D, )
k

But one can, of course, also combine pdfs using other weights, e.g.,
prOng 1 | D 1) = ) Wy prOny | My, D.T)
k

Weights can be adjusted to optimize predictive performance, e.g.,

(44 o I
stacking Yao et al., Bayesian Analysis 13 (2018), 917-1007

In such an approach the weights do not have a rigorous probabilistic
interpretation Hoge, Guthke, Nowak, Journal of Hydrology 572 (2019) 96—107



Combined pdf from many many-body methods

Cirigliano et al., J. Phys. G (2022)

For a set of models Mic ~ yytS = yN+1 (/9+\5yN+1,th
parameters of nuclear ¢

Hamiltonian, calibrated to | EC that may be needed if this is Control parameters
associated with many-
body method

data not a binding energy. n determined
using different reaction/nucleus



Combined pdf from many many-body methods

Cirigliano et al., J. Phys. G (2022)

¢ true __
For a set of models M. yy. | = yN+1 (/)+\5yN+1,th
parameters of nuclear ¢

Hamiltonian, calibrated to | EC that may be needed if this is Control parameters
associated with many-
body method

data not a binding energy. n determined
using different reaction/nucleus

We then marginalize over 6, n, and the model discrepancy to generate a pdf for
each model p(yy, | ¥, ¥,, M). Here y is the data set used to calibrate the

Hamiltonian and yy, is the data set used to obtain 1.
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Cirigliano et al., J. Phys. G (2022)

¢ true __
For a set of models M. yy .| = yN+1 (/)+\5yN+1,th
parameters of nuclear ¢

Hamiltonian, calibrated to | EC that may be needed if this is Control parameters

data not a binding energy. N determined ~ associated with many-
using different reaction/nucleus body method

We then marginalize over 6, n, and the model discrepancy to generate a pdf for
each model p(yy, | ¥, ¥,, M). Here y is the data set used to calibrate the
Hamiltonian and yy, is the data set used to obtain 1.

Assess ability of model Mk to describe yn+ using another set of observables yey



Combined pdf from many many-body methods

Cirigliano et al., J. Phys. G (2022)

¢ true __
For a set of models M. yy .| = yN+1 (/)+\5yN+1,th
parameters of nuclear ¢

Hamiltonian, calibrated to | EC that may be needed if this is Control parameters

data not a binding energy. N determined ~ associated with many-
using different reaction/nucleus body method

We then marginalize over 6, n, and the model discrepancy to generate a pdf for
each model p(yy, | ¥, ¥,, M). Here y is the data set used to calibrate the
Hamiltonian and yy, is the data set used to obtain 1.

Assess ability of model Mk to describe yn+ using another set of observables yey

K

Combine model pdfs: p(yy11 | Yoy V) = Z Wi(Ye)POns1 | Y5 ¥, M,). Could derive
k=1

weights from model evidence p(y,, | M,). But there may be better options...



Diagnosing & removing model correlations

Giuliani, Godbey, Kejzlar, Nazarewicz, Phys. Rev. Res. (2024)

How to ensure that there are not multiple copies of the same model in
the combination!? |.e., want to try and combine models that are actually
independent, and not keep adding redundant (degenerate) models

Consider predictions of models for N observables, indexed by i:yl.(k)

These define an N-dimensional vector Y for each model.We subtract
the average of that vector over the models, and then break the rest into
principal components

T el STt 7
yl-( ) — W s UNXNSNXkaxk s UNXPSPXPVPXP

Columns of U contain p principal components of
models for the dataY, ¢l.(k);k= 5P

It is more efficient (less degenerate) to mix ¢®(x)



Summary

Discrepancy modeling provides a tool to account for “model discrepancies” aka
“theory uncertainties”

XEFT prescribes how the model discrepancy should increase with Q

But what is Q? Information on Ay in order-by-order behavior and through
likelihood

Correlations matter; need to learn~model those correlations across input

space and between different observables

Posterior for parameters broadened by XEFT uncertainty, but that of predicted
observable may not be if prediction is highly correlated with calibration data
set

Combining predictions from different many-body methods could improve UQ
for nuclear observable: best choice of scoring scheme is a research frontier

Need to also ensure absence of degenerate models (and degenerate modelers)



Modeling correlated truncation errors

Consider xEFT, where we have two light scales, p and mn

k
General (EFT series for observable to order k:y = yrefz Co(Pryp/ M) O™

(Piyps M) =0
0=—"2X"". A, ~600MeV
Ab

Then ¢, are “order |”

Higher-order uncertainties

Exist

P k+1
Have a characteristic size ~ QO
Are correlated across the input space

Have a characteristic correlation length of order the light scale

Can be modeled statistically



A bit more on Gaussian Processes

Non-parametric, probabilistic model for a function

Specify how f(y) is correlated with f(x)), f(x2), .....; don’t specify underlying
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability
distribution.

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

LN
K(f), () = & exp (_@C ) )

005

pr(¢?|I) ~ ;(_2(1/0, Tg); pr(Z | I) uniform



A bit more on Gaussian Processes

Non-parametric, probabilistic model for a function

Specify how f(y) is correlated with f(x)), f(x2), .....; don’t specify underlying
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability
distribution.

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

s Statistical
k(f(x), f(y)) = ¢*exp (— 7 ) model
choices

pr(¢?|I) ~ ;(_2(1/0, Tg); pr(Z | I) uniform

(pr(2?)
V=1Lly+n,;

vr? = I/OTg + Z,% 0 vr2 /(v — 2)

Marginal Variance (¢*)




Model checking

https://github.com/bugeye/gsum

Melendez et al. (2019), Millican et al. (2024),
Bastos & O Hagan (2009)

/ N yes |, |Compute s and K. J
gy e y N 25 |SeeEq. (12), (13) [20] T Koy
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Mativation
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Failure

Vieuclize the function

Mahalanobhis Distance

(f‘.d —_ m)"K'l(fN - m:

Doz f,,; lecok like a cdrow
from a GP? What kind of
GP?

Can we guanfify how much
the fa looks like a GP?

Can we understand why
Dip is failing?

Do 100P% cradible inter-
vals waplure data roughly
100P% of the tima?

f,s “lecoke eimilar” to drawe
from a GP

Di; follows its theoretical
distribution (x34)

At each index, pomnts follcw
stendard Gaussian

Plot De(P) for P 2 [0, 1];
the curve should be wilhin

errors of Des(P) = P

f.n ‘“etands out” compored
w GP draws

Dip lies too far sway from
e expected value of M

Meny cases (see below)

Dci(P) is far from 100P%,
particularly for large 100P%
(e.g.. 68% and 95%).

Dim
Fvoted Cholesky G (fyw —m)
Dee
1 M
Credible Interval i I_al[f"" « € CL(P)]
Dci(P) for P € 0,1] =1
Variance Lergth Scale

Obsarved Patiern in Dy

OUxt = Otrue

Twr = Crrun

fast = Lerue

-goul > elnu

Points bbok well distributed at small index but expand to a too-large ranze at high index

Poiuts are distributed as a standerd Gaussian, with o patlern acress index (eg., only = 5% ol puinis vutside 2o lines),

Tone = Trrue
Ut = Yo

Ot < Otrue

-'CJ\ (- t‘f\lt
’f«l =y ttruo

fost = Lerue

Points lnok well distributed at small index but skrink to a too-small range at kigh index
Points are distributed in a too-small range at all indices.

Points are distributed in a too-large range at all indices.



https://github.com/buqeye/gsum

Unwarped vs warped coefficients
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VWhat about amplitudes!?

McClung, Elster, DP, PRC (2025)

Wolfenstein
M(q,0) =A(q,6)1 amplitudes

Wolfenstein & Ashkin (1952)

o-q)(o2-9q)
g ’C)(O‘z . k:)

A
~

+H@ﬁﬂ

1
S AR EPLg=D - PE P
A: central part

: . M, G, and H: tensor effects
C: spin-orbit



Works well for am
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Works well for amplitudes at 100 MeV

Yref— Im (A)

See 7 is constant with ener
max(p, q) + m, G sy
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The M-o

hen/M-closec

distinction

BMA converges to true model in ¥¥)-closed situation

And in this situation weights can indeed be interpreted as
probability of model My being true

Multi-modeling

Winner-take-all

Model
selection

Generalization

Cross-validation
(AIC(¢), DIC, ...)

perspective

Process
identification

BMS =
(BIC, KIC)

Team of rivals

Model

averaging

Forecast-driven
weighting

> MNodel
combination

Uncertainty in
identification

BMC

BMA =

Philosophical

modeling perspective

Hoge, Guthke, Nowak, Journal of Hydrology 572 (2019) 96—107



Mixing moments locally

p
) ~ ( Z e HEANEE )> “mean mixing”
k=1

Wherefk is the (possibly discrepancy corrected) mean of the kth model

“No single model in [the set] adequately describes 1)+’ [the underlying model]

“a locally weighted combination of models in the set will provide a better description of
o¥Y); than any single model in the set”

D Kejzlar, Neufcourt, Nazarewicz,
STl e a5 % 9 Scientific Reports (2023), 19600;
Dirichlet mixing™ y (xi) N ( Z wk(xi)f k(xi)’ 2 ) Gmeiting et al., Mon. Weather
k=il Review (2005)

The (uncorrelated) uncertainty O is fit to data at the same time as the hyper parameters
of the Dirichlet distributions from which the weights are drawn

p
BART: y(x;) ~ A < Z wi(x;)f (X)), 02); wi(x) not simplexed and modeled as sum of trees
ho=1



Fvaluating wi(Yey)

We expect a significant portion of the error is due to systematic method deficiencies and
so will be correlated across observable space

Want observables closely related to .#y,. Don’t want to dilute weights, or spend time
evaluating things that don’t tell us which method has highest evidence

Candidates: ;
Single beta-decay rates in neighboring nuclei Emulators will

B-strength distributions play a crucial role

Known 2V[3[3 rates

Magnetic moments and B(M1) rates in the three nuclei involved in a particular OV[33
decay

Energies of lowest |7=2* states and B(E2,2*—0%) rates in initial and final nuclei
Charge radii
Observables probing a 100 MeV momentum-transfer scale, e.g., in muon capture
Assess correlation between members of ye, set and OV[3[3 matrix element. (Significant work

along these lines already done using lower-resolution methods for nuclei.) Correlations
incorporated into scoring criteria.



