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Sources of uncertainty in ab initio calculations

χEFT Hamiltonian and β-decay operator are only computed up to a 
finite order in the EFT: “truncation uncertainty” model uncertainty

χEFT Hamiltonian (and operators) depend on LECs (parameters) that 
must be estimated from data of finite precision: “parametric 
uncertainty” aleatoric uncertainty

Many-body methods used to compute finite nuclei using that 
Hamiltonian truncate the Hilbert space or otherwise approximate the 
problem: “many-body uncertainty” model uncertainty

Emulators, matrix inversion, integrals, etc. only represent actual result of 
model at a finite precision.  model uncertainty

I will not discuss this last source of uncertainty here



Abstraction
Suppose I have a χEFT Hamiltonian and many-body method that predicts a set of outputs yj(θ), 
j=1,…J, with θ the LECs of the Hamiltonian

We estimate (“fit”) the LECs by using a finite number of outputs and comparing them to 
experimental data. Goal is p(θ|y1,..,yN;M), N < J. 

But  with  the central value measured by the experiment and 
each of  and  a random variable distributed as, say, a Gaussian. (This statement, by the 
way, is how one works out the correct form of the likelihood p(y1,exp,..,yN,exp|θ;Mtheory,Mstats).)

yj,exp = yj,th(θ) + δyj,th + δyj,exp yj,exp
δyj,th δyj,exp

This makes θ a random variable with its own probability distribution too: “Parametric 
uncertainty” and “model uncertainty” are both reflected in the posterior for θ.

Then we wish to predict . But . Need to propagate 
parametric uncertainty (sample p(θ|y1,..,yN;M) and do forward evaluations) and account for 
correlations θ has (or doesn’t have) with this new observable’s model uncertainty, .

yN+1,exp yN+1,exp = yN+1,th(θ) + δyN+1,th

δyN+1,th

When this is all done we have the result from one “model”: p(yN+1|M).

Maybe we also want to assess other kinds of model uncertainty, not included in . Then we 
could combine probability distributions from several MB methods: .

δyth
p(yN+1) = ∑

k
wk p(yN+1 |Mk)
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χEFT to NNLO: error model and strategy

Q is not obvious for bound state observables: make it a parameter & sample 

Also sample , the mean-square value of the higher-order coefficientsc̄2

and Q are inferred from the NNLO-NLO shift, but that result is modified 
because they form the (dominant piece of) the theory error in the 
likelihood

c̄2

NN force LECs  refit (πN LECs from Roy-Steiner analysis). Use as prior 
on higher-body observables, so  will get updated if they are sensitive to it

aNN
aNN

yexp = yth(a3N, aNN) + δyth + δyexp

yth(p) = yref(p)
3

∑
i=0

ci({aj})Qi

Q = p, mπ

Λb δyexp: normally distributed, 
uncorrelated errors (?)

δyth = yref(p)[ck+1Qk+1 + ck+2Qk+2 + …]



Example: 3N bound-state observables
Binding energy of three-nucleon nuclei: 3H

Binding energy of 4He

Charge radius of 4He

Beta-decay half-life of 3H, aka “GT matrix element”

Solve Schrödinger equation for 3He and 4He and compute radii, 
GT matrix element

Done at O(Q0), O(Q2), O(Q3)

Wesolowski, Svennson, Ekström, Forssén, Furnstahl, Melendez, DP, Phys. Rev. C (2022)

Emulation via Eigenvector Continuation make fast evaluation possible



Posterior and priors
pr(a, c̄2, Q |D, I) ∝ exp (− 1

2 rT(Σexp + Σth)−1r) exp (− a2

2ā2 ) pr(c̄2 |Q, ā, I)pr(Q |a, I)

We take uncorrelated theory errors: (Σth,uncorr)ij = (yref)2c̄2δij

∞

∑
n=k+1

Q2n

Experimental errors are negligible in comparison

 is taken to be an inverse-  distribution. Information on the 
order-to-order shifts included there
pr(c̄2 |Q, ⃗a, I) χ2

 then also affected by that information. Starts as weakly 
informative Beta distribution before any updating from NLO-LO and 
NNLO-NLO shifts

pr(Q |a, I)

NaturalnessTruncation errors r = yexp − yth



Results for 3NF parameters, , Q c̄2

t distributions! Q inferred from data, 
convergence pattern



The role of different constraints and of truncation errors



From LECs to prediction in a Toy Model

Given data D={(dk,σk):k=1,...,N} taken at points xk and a fit function 
f(x;a) that depends on LECs a={a0,…,akmax}, determine the first k+1 

BUT, be careful! f only describes data in a limited domain

Schindler, DRP, Ann. Phys., 2009

Wesolowski, Klco, Furnstahl, Phillips, Thapaliya, JPG, 2016
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g(x) = 0.25 + 1.57x + 2.47x2 + …



(b)  Data set: D1(5%)           
Naturalness prior

Parameter estimation
pr(a |D, k, kmax) ∝ exp (− 1

2 rT(Σexp)−1r) exp (− a2

2ā2 ) r = yexp − yth

→equivalent to likelihood with  after 
marginalization over 

Σth
{ak+1, ak+2, …, akmax

}



Prediction

Use the posterior at third order for θ, fit simultaneously with a fourth-
order “model discrepancy”, a4x4, to obtain the posterior for fk(x; θ) + δy(x)

g(x) = fk(x; θ) + δy(x)
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Prediction

Use the posterior at third order for θ, fit simultaneously with a fourth-
order “model discrepancy”, a4x4, to obtain the posterior for fk(x; θ) + δy(x)

But the parametric & 
model errors are each as 
large, or larger, than the 
total uncertainty

Because they’re anti-
correlated

Neglect that and you 
overestimate the 
uncertainty of your 
prediction

Carter, Furnstahl, Melendez, DP, to appear

g(x) = fk(x; θ) + δy(x)

ρ(x) = ⟨a4x4( f3(x; a) − ⟨ f3(x; a)⟩)⟩

āx4 ⟨ f 2
3(x)⟩ − ⟨ f3(x)⟩2



Modeling correlations in theory uncertainties

Our hypothesis:
EFT coefficients at different orders can be modeled as independent 

draws from a Gaussian Process with a stationary kernel

Gaussian distribution at each point

With correlation structure parameterized by a single   and ℓ at all ordersc̄2

y = yref

k

∑
n=0

cn(p/mπ)Qn Function cn is not a constant.
But the cn’s at different values of p aren’t 

independent random variables either

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)



Example: E/N for pure neutron matter
Order-by-order uncertainties for pure neutron matter 

Obtained by applying BUQEYETM approach to truncation errors

Drischler, Melendez, Furnstahl, DP, PRL, PRC (2020) 
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Example: NN differential cross section
Millican, Furnstahl, Melendez, DP, Pratola (2024)

NN differential cross section at 60o for SMS 500 MeV

But….

, Λb=570 MeV,  meff
π = 138 MeV Q = meff

π + p
meffπ + Λb



You can see a lot by looking
Millican et al., in preparation (2025)
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You can see a lot by looking

Even/odd orders have different sizes for soft potentials

Length scale of curves gets shorter as momentum gets higher

Millican et al., in preparation (2025)



The GP is not 2D stationary in (p,θcm)

 to within uncertainties 

“Warp” input space to account for 1/p effect

ℓθ ∼ 1/p

Millican et al., in preparation (2025)

SMS
500 
MeV PRELIMINARY

ℓθ(p) = ℓθ ( 405 MeV
p )



Results for  : SMS potentialsΛb Millican et al., in preparation (2025)
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Results for  : SMS potentialsΛb

, GP diagnostics are 
not better (or worse) for 
meff

π = 138 MeV

meff
π = 200 MeV
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Results for  : SMS potentialsΛb

, GP diagnostics are 
not better (or worse) for 
meff

π = 138 MeV

meff
π = 200 MeV

“Downsampling” to stop over-
representation of coefficients at 
small momenta

450 MeV & 500 MeV potentials have 
Λb ≈600 MeV consistent across 
orders

550 MeV shows Λb increasing with 
order

Millican et al., in preparation (2025)

PRELIMINARY

SMS 
450 
MeV

SMS 
500 
MeV

SMS 
550 
MeV



Other non-soft potentials

SCS 
1.0 
fm

SCS 
0.9 
fm

EMN
500 
MeV

PRELIMINARY



Other non-soft potentials

SCS 
1.0 
fm

SCS 
0.9 
fm

EMN
500 
MeV

meff
π = 138 MeV

EMN has fantastic GP diagnostics

PRELIMINARY



Other non-soft potentials

SCS 
1.0 
fm

SCS 
0.9 
fm

EMN
500 
MeV

meff
π = 138 MeV

EMN has fantastic GP diagnostics

Is the increase from N3LO to 
N4LO due to overfitting at N3LO?

UQ can still be done on 
potentials at a particular order, 
physical meaning of Λb then 
unclear

Is that okay as long as Λb goes up 
with order?

PRELIMINARY



Global model combination

Bayesian Model Averaging involves combining probability distributions 
according to: 

But one can, of course, also combine pdfs using other weights, e.g., 

Weights can be adjusted to optimize predictive performance, e.g., 
“stacking”

In such an approach the weights do not have a rigorous probabilistic 
interpretation

pr(yN+1 |D, I) = ∑
k

pr(yN+1 |Mk, D, I)pr(Mk |D, I)

pr(yN+1 |D, I) = ∑
k

wMk
pr(yN+1 |Mk, D, I)

Yao et al., Bayesian Analysis 13 (2018), 917-1007

Höge, Guthke, Nowak, Journal of Hydrology 572 (2019) 96–107 



Combined pdf from many many-body methods

ytrue
N+1 = yN+1(θ, η; λ) + δyN+1,th(λ)For a set of models Mk:

 LEC that may be needed if this is 
not a binding energy. η determined 

using different reaction/nucleus

parameters of nuclear 
Hamiltonian, calibrated to 

data
Control parameters 

associated with many-
body method

Cirigliano et al., J. Phys. G (2022) 



Combined pdf from many many-body methods
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Combined pdf from many many-body methods

We then marginalize over θ, η, and the model discrepancy to generate a pdf for 
each model . Here y is the data set used to calibrate the 
Hamiltonian and yη is the data set used to obtain η.

p(yN+1 |y, yη, Mk)

Assess ability of model Mk to describe yN+1 using another set of observables yev

Combine model pdfs: . Could derive 

weights from model evidence . But there may be better options…

p(yN+1 |yev, y) =
K

∑
k=1

wk(yev)p(yN+1 |y, yη, Mk)

p(yev |Mk)

ytrue
N+1 = yN+1(θ, η; λ) + δyN+1,th(λ)For a set of models Mk:

 LEC that may be needed if this is 
not a binding energy. η determined 

using different reaction/nucleus

parameters of nuclear 
Hamiltonian, calibrated to 

data
Control parameters 

associated with many-
body method

Cirigliano et al., J. Phys. G (2022) 



Diagnosing & removing model correlations

How to ensure that there are not multiple copies of the same model in 
the combination? I.e., want to try and combine models that are actually 
independent, and not keep adding redundant (degenerate) models

Consider predictions of models for N observables, indexed by i: 

These define an N-dimensional vector Y(k) for each model. We subtract 
the average of that vector over the models, and then break the rest into 
principal components

y(k)
i

y(k)
i − ȳi = UN×NSN×kVT

k×k ≈ UN×pSp×pVT
p×p

Columns of U contain p principal components of 
models for the data Y, ;k=1,…p

It is more efficient (less degenerate) to mix 

ϕ(k)
i

ϕ(k)(x)

Giuliani, Godbey, Kejzlar, Nazarewicz, Phys. Rev. Res. (2024)  



Summary
Discrepancy modeling provides a tool to account for “model discrepancies” aka 
“theory uncertainties” 

χEFT prescribes how the model discrepancy should increase with Q

But what is Q? Information on Λb in order-by-order behavior and through 
likelihood

Correlations matter; need to learn↔model those correlations across input 

space and between different observables 

Posterior for parameters broadened by χEFT uncertainty, but that of predicted 
observable may not be if prediction is highly correlated with calibration data 
set

Combining predictions from different many-body methods could improve UQ 
for nuclear observable: best choice of scoring scheme is a research frontier

Need to also ensure absence of degenerate models (and degenerate modelers)



General χEFT series for observable to order k: : 

Then cn are “order 1” 

y = yref

k

∑
n=0

cn(ptyp/mπ)Qn

Q =
(ptyp, mπ)

Λb
; Λb ≈ 600 MeV

Modeling correlated truncation errors
Consider χEFT, where we have two light scales, p and mπ 

Higher-order uncertainties

Exist

Have a characteristic size 

Are correlated across the input space

Have a characteristic correlation length of order the light scale

Can be modeled statistically

∼ Qk+1



A bit more on Gaussian Processes
Non-parametric, probabilistic model for a function

Specify how f(y) is correlated with f(x1), f(x2), …..; don’t specify underlying 
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability 
distribution. 

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

 uniform pr(c̄2 | I) ∼ χ−2(ν0, τ2
0); pr(ℓ | I)

k( f(x), f(y)) = c̄2 exp (− (x − y)2

2ℓ2 )



A bit more on Gaussian Processes
Non-parametric, probabilistic model for a function

Specify how f(y) is correlated with f(x1), f(x2), …..; don’t specify underlying 
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability 
distribution. 

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

 uniform pr(c̄2 | I) ∼ χ−2(ν0, τ2
0); pr(ℓ | I)

k( f(x), f(y)) = c̄2 exp (− (x − y)2

2ℓ2 )
Statistical 

model 
choices

ν = ν0 + nc;
ντ2 = ν0τ2

0 + ⃗c2
k



Model checking Melendez et al. (2019), Millican et al. (2024),  
Bastos & O’Hagan (2009)

https://github.com/buqeye/gsum

https://github.com/buqeye/gsum


Unwarped vs warped coefficients



What about amplitudes?

K = 1
2 (p + p′ ); q = p′ − p; n = p × p′ 

A: central part
C: spin-orbit M, G, and H: tensor effects

Wolfenstein 
amplitudes

Wolfenstein & Ashkin (1952)

McClung, Elster, DP, PRC (2025)



Works well for amplitudes at 100 MeV
yref=Im(A)

Q = max(p, q) + mπ

Λb + mπ



Works well for amplitudes at 100 MeV
yref=Im(A)

Q = max(p, q) + mπ

Λb + mπ

See  is constant with energy ℓq



The M-open/M-closed distinction
BMA converges to true model in M-closed situation

And in this situation weights can indeed be interpreted as 
probability of model Mk being true

Höge, Guthke, Nowak, Journal of Hydrology 572 (2019) 96–107 



Mixing moments locally

 “mean mixing”

Where  is the (possibly discrepancy corrected) mean of the kth model

“No single model in [the set] adequately describes M†” [the underlying model]

“a locally weighted combination of models in the set will provide a better description of 
M† than any single model in the set”

“Dirichlet mixing”:  

The (uncorrelated) uncertainty σ is fit to data at the same time as the hyper parameters 
of the Dirichlet distributions from which the weights are drawn 

BART: ; wk(x) not simplexed and modeled as sum of trees

y(xi) ∼ 𝒩 (
p

∑
k=1

wk(xi) ̂fk(xi), c( ⋅ ))
̂fk

y(xi) ∼ 𝒩 (
p

∑
k=1

wk(xi) ̂fk(xi), σ2)

y(xi) ∼ 𝒩 (
p

∑
k=1

wk(xi) ̂fk(xi), σ2)

Kejzlar, Neufcourt, Nazarewicz, 
Scientific Reports (2023), 19600; 
Gneiting et al., Mon. Weather 
Review (2005) 



Evaluating wk(yev)
We expect a significant portion of the error is due to systematic method deficiencies and 
so will be correlated across observable space

Want observables closely related to . Don’t want to dilute weights, or spend time 
evaluating things that don’t tell us which method has highest evidence

Candidates: 

Single beta-decay rates in neighboring nuclei

β-strength distributions

Known 2νββ rates

Magnetic moments and B(M1) rates in the three nuclei involved in a particular 0νββ 
decay

Energies of lowest Jπ=2+ states and B(E2,2+→0+) rates in initial and final nuclei

Charge radii

Observables probing a 100 MeV momentum-transfer scale, e.g., in muon capture

Assess correlation between members of yev set and 0νββ matrix element. (Significant work 
along these lines already done using lower-resolution methods for nuclei.) Correlations 
incorporated into scoring criteria.

ℳ0ν

Emulators will 
play a crucial role


