Chiral Interactions with Gradient-Flow Regulator

Hermann Krebs

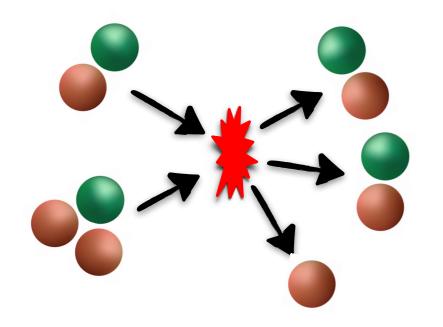
Ruhr-Universität Bochum

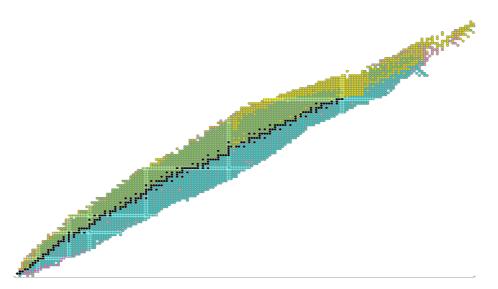
Next-Generation Ab Initio Nuclear Theory ECT* Workshop, Trento, Italy July 14, 2025

In collaboration with Evgeny Epelbaum

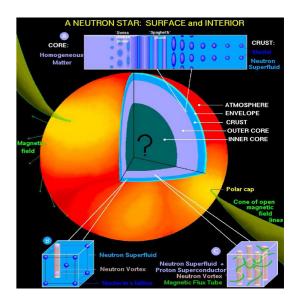
Outline

- Nuclear forces up to N³LO
- 3PE contributions to NN within unitary transformation method
- Gradient-flow regularizaton in chiral EFT
- Path-integral framework for derivation of nuclear forces
- Status report on construction of 3NF at N³LO





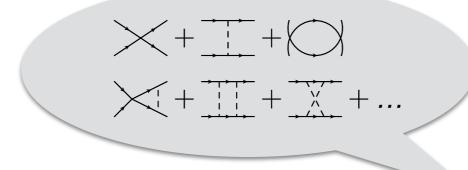
Livechart, IAEA: https://www-nds.iaea.org



Lattimer: NAR54 (2010) 101

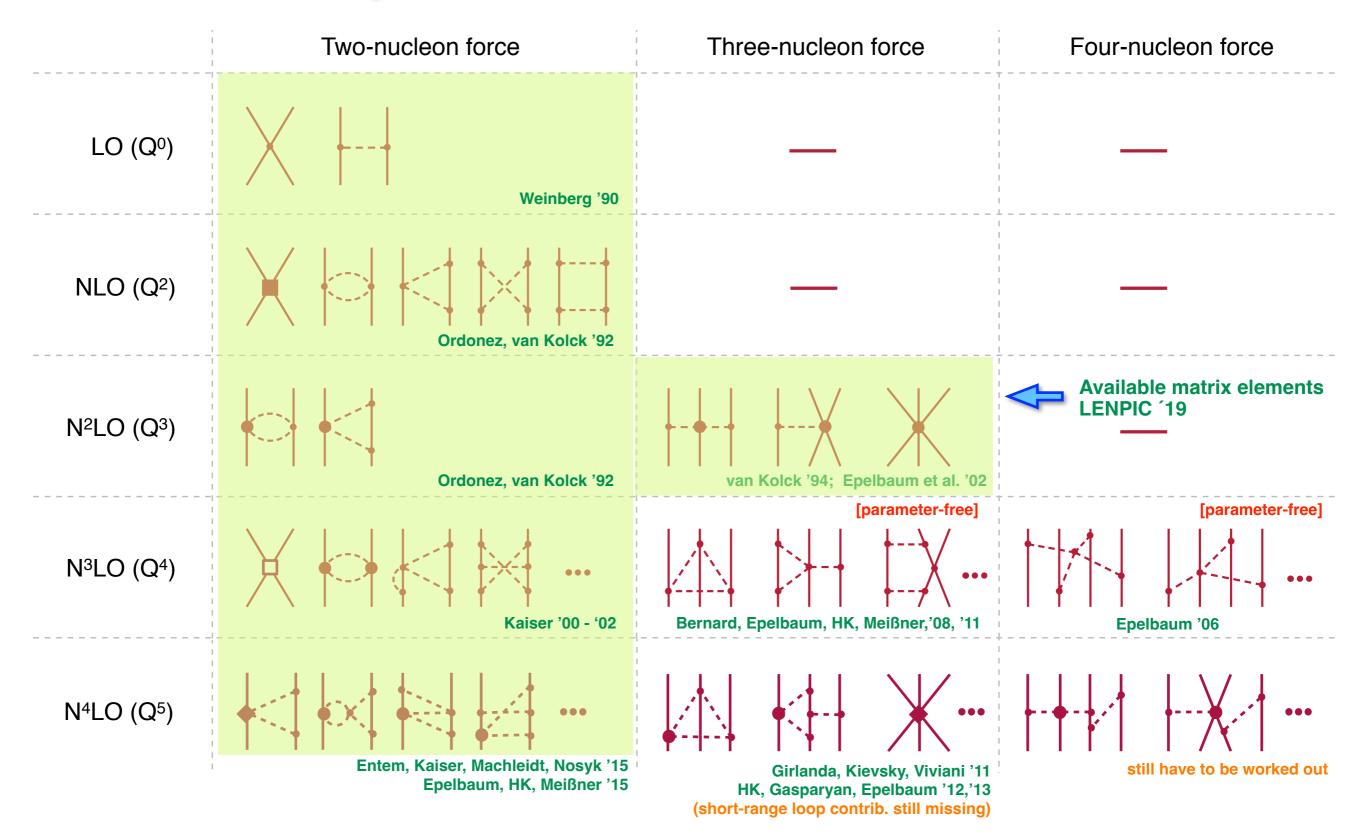
QM A-body problem

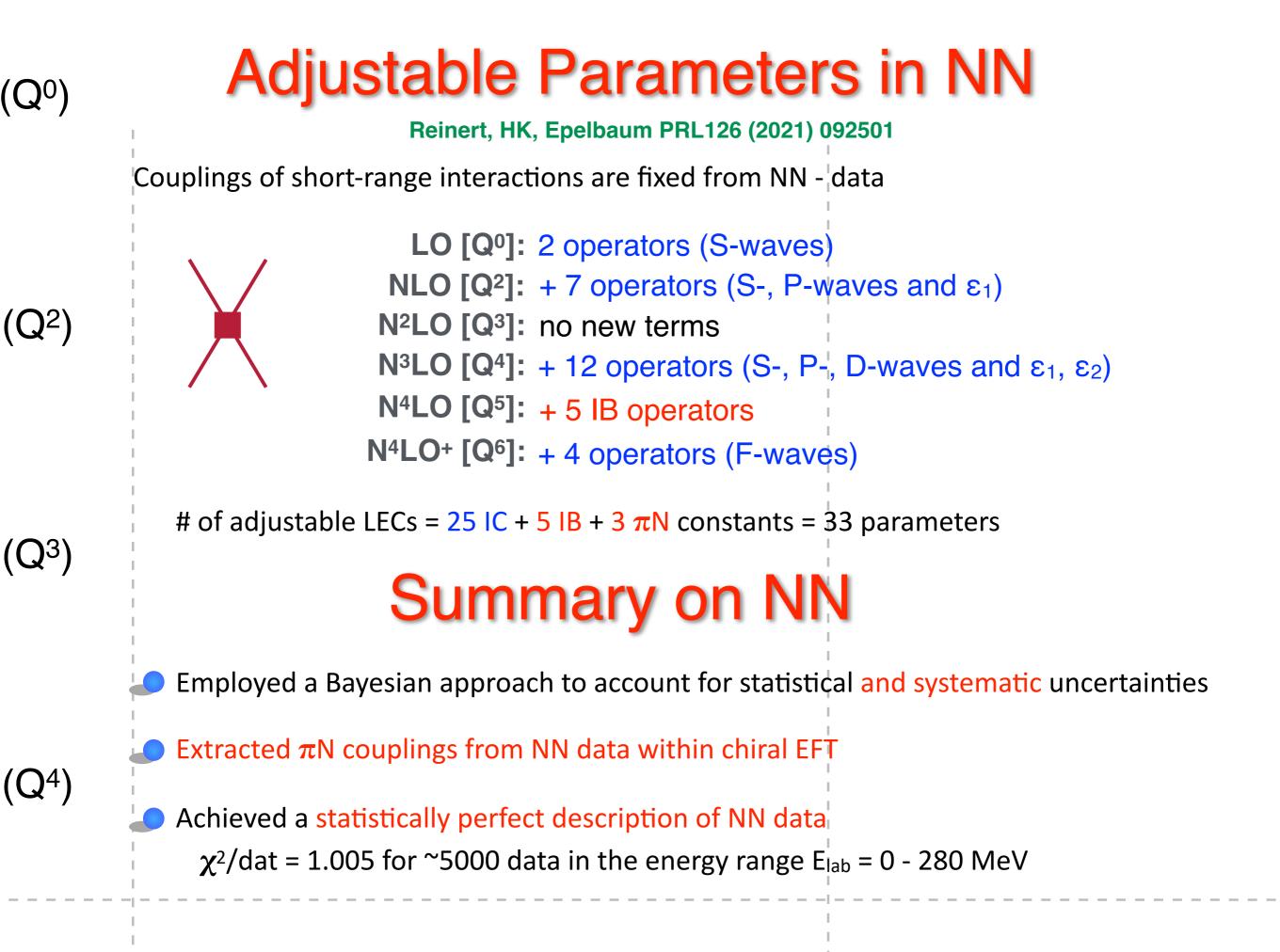
$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within ChPT}}\right] |\Psi\rangle = E|\Psi\rangle \quad \text{Weinberg '91}$$



Chiral EFT is a systematic tool for derivation of nuclear forces below pion-production threshold

Chiral Expansion of the Nuclear Forces

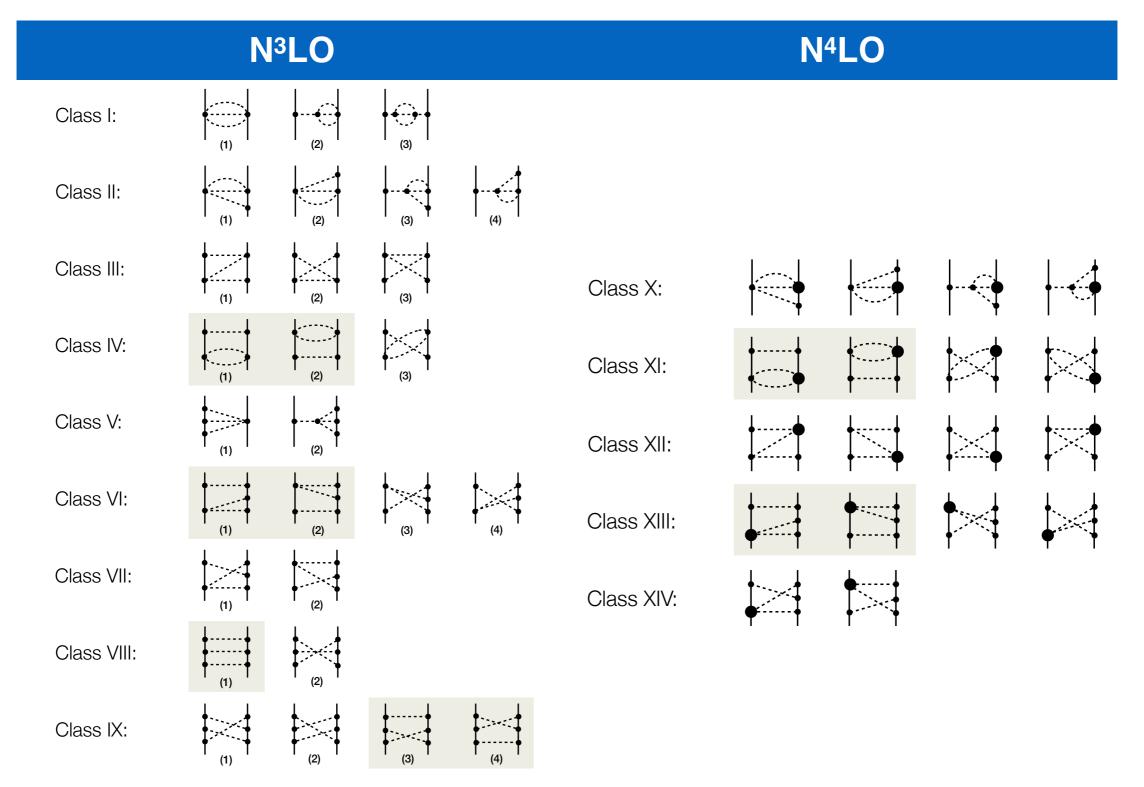




Possible Improvements in NN Sector

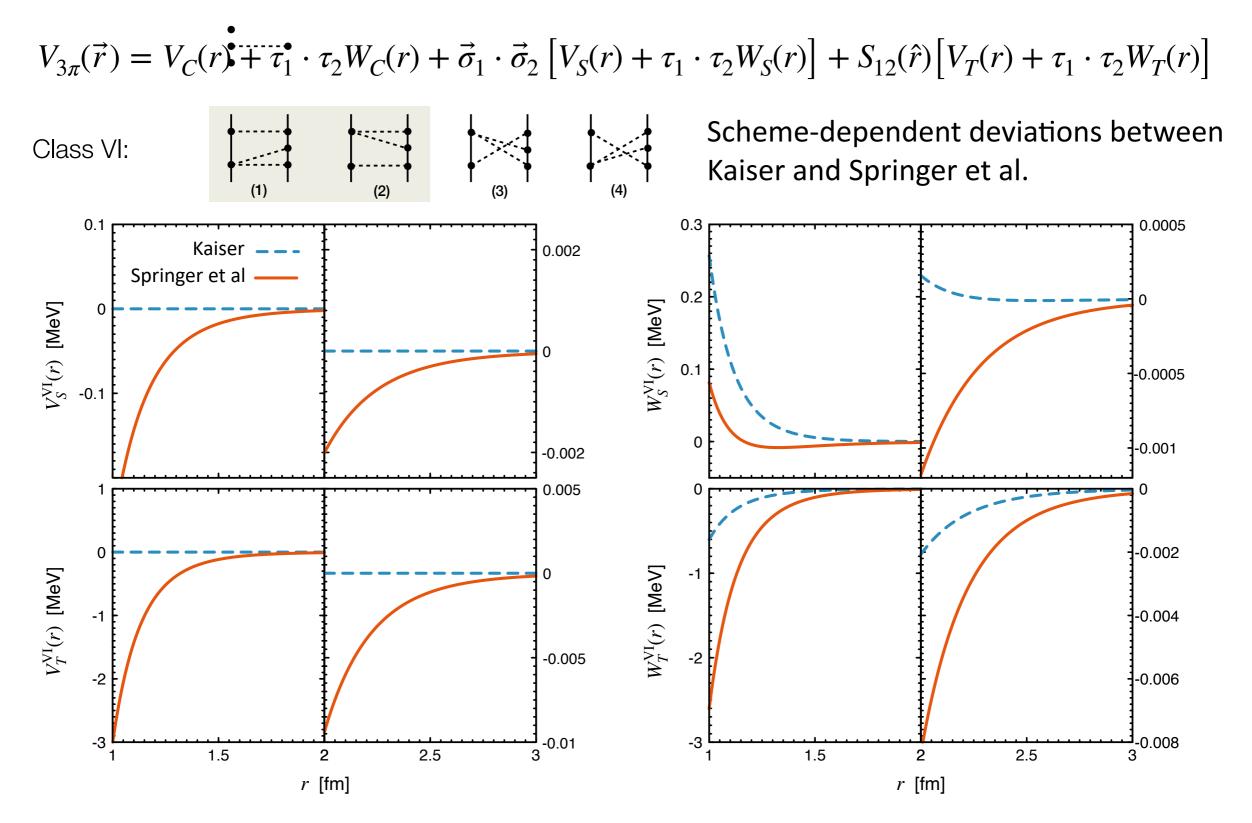
1/m correction to 2PE is scheme dependent 🔶 Scheme-dependence of 3PE

3PE calculated by Kaiser `00 - `02 can not be used in unitary transformation approach

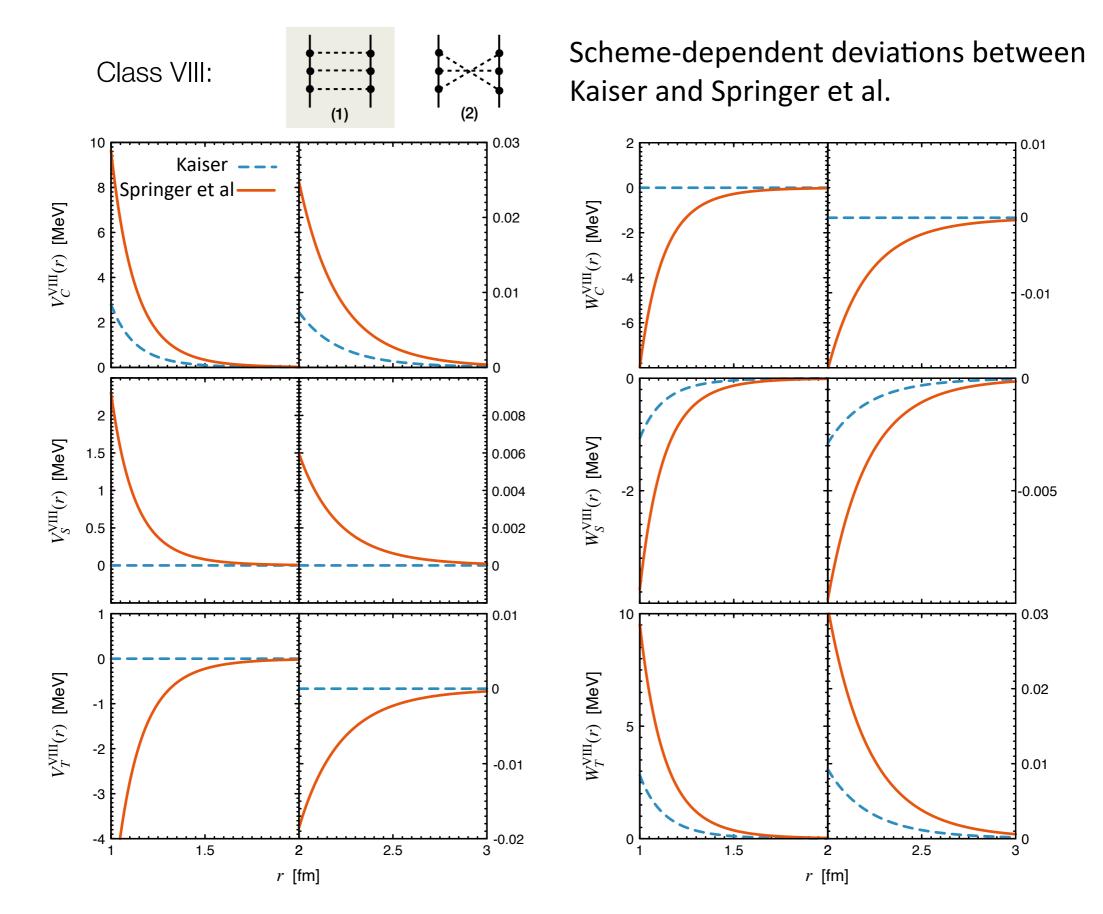


3PE contributions to NN at N³LO

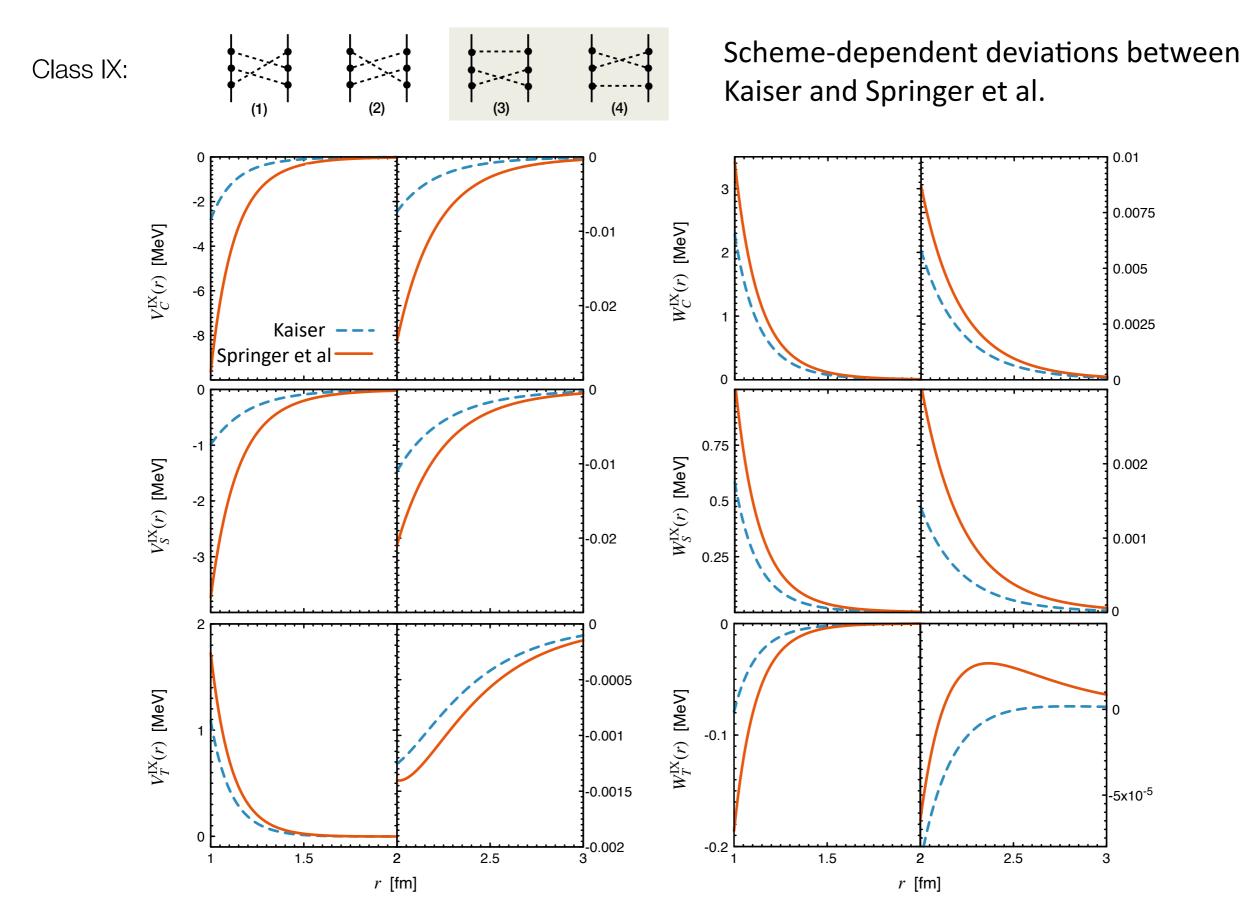
3PE within Unitary Transformation Method (UTM): Springer, HK, Epelbaum arXiv:2505.02034



Deviations Between Two Schemes



Deviations Between Two Schemes



Two Schemes Results: Summarized

For the Classes VI, VIII and IX we get for most of the potentials stronger 3PE contributions

Despite reducible-like diagrams we do not see any deviation for the Class IV

We reproduced all results of Kaiser with one exception:

Class V:
(1)
Different sign in Kaiser PRC 62 (2000) 024001, Eq. (8)
Im
$$W_T^{\rm V}(i\mu) = \frac{1}{\mu^2} \text{Im } W_S^{\rm V}(i\mu) - \frac{g_A^4 (\mu^2 - M_\pi^2)^{-1}}{\mu^2 (8\pi F_\pi^2)^3} \iint_{z^2 < 1} d\omega_1 d\omega_2 \left[\left(6\mu^2 + 2M_\pi^2 \right) (\omega_1 + \omega_2) - \mu \left(4\mu^2 + 3M_\pi^2 \right) \right] \left[\left(\left(\mu^2 + M_\pi^2 \right) \left(2\omega_1 - \frac{\mu}{2} \right) - 2\mu\omega_1\omega_2 \right) \frac{\arccos(-z)}{l_1 l_2 \sqrt{1 - z^2}} + \mu + 2z\omega_1 \frac{l_2}{l_1} \right]$$

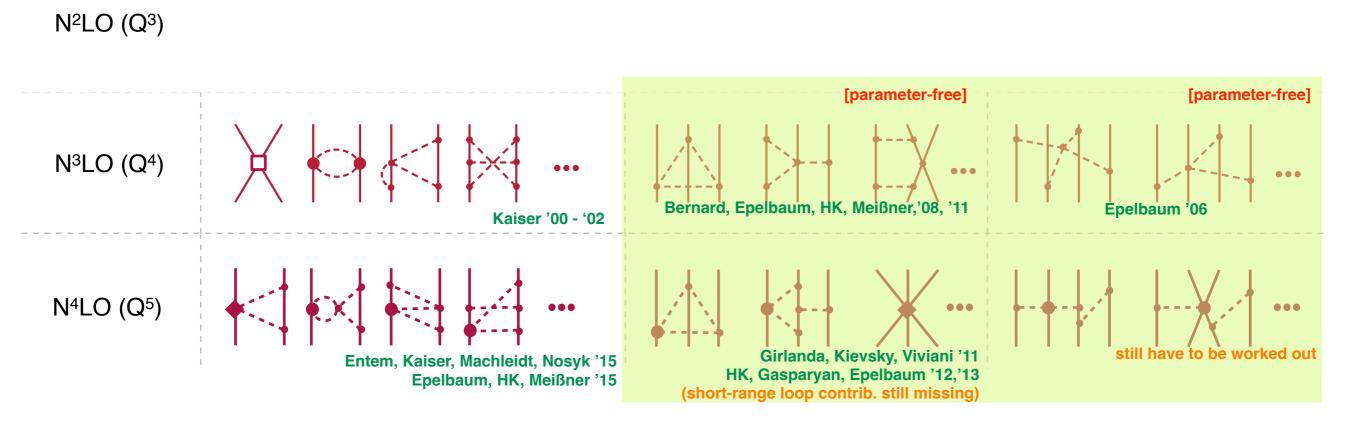
At N⁴LO we don't see any deviation for all classes of diagrams

Remains to be seen if we observe an evidence of 3PE from NN scattering data. Work in progress LO (Q⁰)

Symmetry Preserving Regulator

NLO (Q²) A must for accessing 3NF's and 4NF's at N³LO and beyond

HK, Epelbaum, PRC 110 (2024) 4, 044004



Gradient-Flow Equation (GFE)

Balitsky, Yung, PL168B (1986) 113; Irwin, Manton, PLB 385 (1996) 187

Yang-Mills gradient flow in QCD: Lüscher, JHEP 04 (2013) 123

 $\partial_{\tau}B_{\mu} = D_{\nu}G_{\nu\mu}$ with $B_{\mu}|_{\tau=0} = A_{\mu} \& G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$

 B_{μ} is a regularized gluon field

Apply this idea to ChPT: HK, Epelbaum, PRC 110 (2024) 4, 044004 (Proposed in various talks by D. Kaplan for nuclear forces) Introduce a smoothed pion field W with $W|_{\tau=0} = U$ satisfying GFE

 $\partial_{\tau}W = i w \operatorname{EOM}(\tau) w$ with $w = \sqrt{W}$ and $\operatorname{EOM}(\tau) = [D_{\mu}, w_{\mu}] + \frac{i}{2}\chi_{-} - \frac{i}{4}\operatorname{Tr}(\chi_{-})$

$$w_{\mu} = i(w^{\dagger}(\partial_{\mu} - ir_{\mu})w - w(\partial_{\mu} - il_{\mu})w^{\dagger}), \quad \chi_{-} = w^{\dagger}\chi w^{\dagger} - w\chi^{\dagger}w, \quad \chi = 2B(s + ip)$$

Note: The shape of regularization is dictated by the choice of the right-hand side of GFE

Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN

Gradient-Flow Equation

Analytic solution is possible of 1/F - expanded gradient flow equation:

$$W = 1 + i\tau \cdot \phi (1 - \alpha \phi^2) - \frac{\phi^2}{2} \left[1 + \left(\frac{1}{4} - 2\alpha\right) \phi^2 \right] + \mathcal{O}(\phi^5), \quad \phi_b = \sum_{n=0}^{\infty} \frac{1}{F^n} \phi_b^{(n)}$$

In the absence of external sources we have

$$\begin{split} \left[\partial_{\tau} - (\partial_{\mu}^{x}\partial_{\mu}^{x} - M^{2})\right]\phi_{b}^{(1)}(x,\tau) &= 0, \quad \phi_{b}^{(1)}(x,0) = \pi_{b}(x) \\ \left[\partial_{\tau} - (\partial_{\mu}^{x}\partial_{\mu}^{x} - M^{2})\right]\phi_{b}^{(3)}(x,\tau) &= (1 - 2\alpha)\partial_{\mu}\phi^{(1)} \cdot \partial_{\mu}\phi^{(1)}\phi_{b}^{(1)} - 4\alpha\partial_{\mu}\phi^{(1)} \cdot \phi^{(1)}\partial_{\mu}\phi_{b}^{(1)} \\ &+ \frac{M^{2}}{2}(1 - 4\alpha)\phi^{(1)} \cdot \phi^{(1)}\phi_{b}^{(1)}, \quad \phi_{b}^{(3)}(x,0) = 0 \end{split}$$

Iterative solution in momentum space: $\tilde{\phi}^{(n)}(q,\tau) = \int d^4x \, e^{iq \cdot x} \phi_b^{(n)}(x,\tau)$

$$\begin{split} \tilde{\phi}_{b}^{(1)}(q) &= e^{-\tau(q^{2}+M^{2})}\tilde{\pi}_{b}(q) \\ \tilde{\phi}_{b}^{(3)}(q) &= \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{d^{4}q_{3}}{(2\pi)^{4}} (2\pi)^{4} \delta(q-q_{1}-q_{2}-q_{3}) \int_{0}^{\tau} ds \, e^{-(\tau-s)(q^{2}+M^{2})} e^{-s\sum_{j=1}^{3}(q_{j}^{2}+M^{2})} \\ &\times \left[4\alpha \, q_{1} \cdot q_{3} - (1-2\alpha)q_{1} \cdot q_{2} + \frac{M^{2}}{2} (1-4\alpha) \right] \tilde{\pi}(q_{1}) \cdot \tilde{\pi}(q_{2}) \tilde{\pi}_{b}(q_{3}) \end{split}$$

Integration over momenta of pion fields with Gaussian prefactor introduces smearing

Properties under Chiral Transformation

Replace all pion fields in pion-nucleon Lagrangians $\mathscr{L}_{\pi N}^{(1)}, ..., \mathscr{L}_{\pi N}^{(4)}$: $U \to W$

$$\mathscr{L}_{\pi N}^{(1)} = N^{\dagger} \Big(D^0 + g \, u \cdot S \Big) N \to N^{\dagger} \Big(D_w^0 + g \, w \cdot S \Big) N$$

Chiral transformation: by induction, one can show

$$U \to RUL^{\dagger} \longrightarrow W \to RWL^{\dagger}$$

Regularized pion fields transform under τ - independent transformations

Nucleon fields transform in τ - dependent way

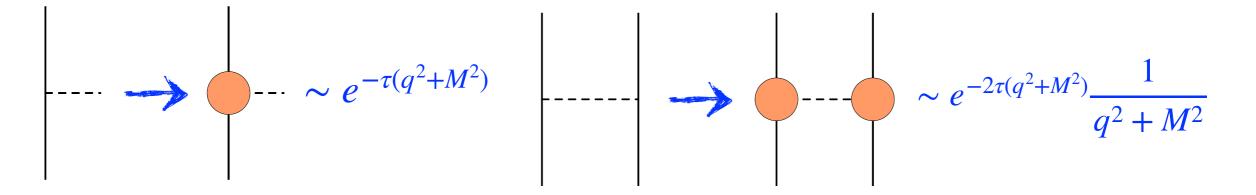
 $N \to KN, \quad K = \sqrt{LU^{\dagger}R^{\dagger}}R\sqrt{U} \quad \longrightarrow \quad N \to K_{\tau}N, \quad K_{\tau} = \sqrt{LW^{\dagger}R^{\dagger}}R\sqrt{W}$

Regularization for Nuclear Forces

To regularize long-range part of the nuclear forces and currents

- Leave pionic Lagrangians $\mathscr{L}^{(2)}_{\pi} \& \mathscr{L}^{(4)}_{\pi}$ unregularized (essential)
- Seplace all pion fields in pion-nucleon Lagrangians $\mathscr{L}_{\pi N}^{(1)}, \ldots, \mathscr{L}_{\pi N}^{(4)}$: U → W

$$\mathscr{L}_{\pi N}^{(1)} = N^{\dagger} \Big(D^0 + g \, u \cdot S \Big) N \to N^{\dagger} \Big(D_w^0 + g \, w \cdot S \Big) N$$



For $\tau = \frac{1}{2\Lambda^2}$ this regulator reproduces SMS regularization of OPE

Path-Integral Framework for Derivation of Nuclear Forces

HK, Epelbaum, PRC110 (2024) 4, 044003

Difficulties in formulation of regularized chiral EFT

Regularized pion-nucleon vertices include time-derivatives:

$$- \cdots \sim e^{-\tau(q^2 + M^2)} \text{ with } q^2 = q_0^2 + q_1^2 + q_2^2 + q_3^2$$

 q_0 - dependence in exponential leads to second and higher order time-derivatives in pion-nucleon interactions

Canonical quantization of the regularized theory becomes difficult (Ostrogradski - approach, Constrains, ...)

Canonical vs Path-Integral Quantization

Canonical Quantization of QFT

Hamiltonian & Hilbert space

Creation/annihilation operators

Time-ordered perturbation theory

 \longleftrightarrow

Path-Integral Quantization of QFT

Lagrangian & action

Summation over all classical paths

Loop expansion & Feynman rules

Path-Integral approach is a natural choice in pionic and single-nucleon sector

Gasser, Leutwyler, Annals Phys. 158 (1984) 142; Bernard, Kaiser, Kambor, Meißner, Nucl. Phys. B 388 (1992) 315

In two - and more - nucleon sector Weinberg used canonical quantization language Weinberg Nucl. Phys. B 362 (1991) 3

In using old-fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of

canonical quantization to the leading terms in (1) and (9) yields the total

Can we choose a formulation where we can work with the Lagrangian?

Lagrangian Formulation of Chiral EFT

Lagrangian formulation of chiral EFT so far

Lagrangian formulation with subtractions: diagrammatic approach

Kaiser, Brockmann, Weise, Nucl. Phys. A 625 (1997) 758

-----> Less transparent in quantification of off-shell ambiguities

Irreducible part of the box diagram

Lagrangian formulation with instant subtractions: T - matrix approach Gasparyan, Epelbaum, Phys. Rev. C 105 (2022) 2, 024001

- Nucleon-field transformation in a derivation of isospin violating nuclear forces Friar, van Kolck, Rentmeester, Timmermans, Phys. Rev. C 70 (2004) 044001
- Path-integral formulation of chiral EFT with instant interactions on the lattice Borasoy, Epelbaum, HK, Lee, Meißner, EPJA 31 (2007)105

Instant interactions generate only iterative part of the NN amplitude

Illustration fo Yukawa Model

We start with generating functional:

$$Z[\eta^{\dagger},\eta] = \int [DN^{\dagger}][DN][D\pi] \exp\left(i \int d^4x \left(\mathscr{L} + \eta^{\dagger}(x)N(x) + N^{\dagger}(x)\eta(x)\right)\right)$$

Yukawa toy-model:

$$\mathscr{L} = N^{\dagger} \left(i \frac{\partial}{\partial x_0} + \frac{\overrightarrow{\nabla}^2}{2m} + \frac{g}{2F} \overrightarrow{\sigma} \cdot \overrightarrow{\nabla} \boldsymbol{\pi} \cdot \boldsymbol{\tau} \right) N + \frac{1}{2} \left(\partial_{\mu} \boldsymbol{\pi} \cdot \partial^{\mu} \boldsymbol{\pi} - M^2 \boldsymbol{\pi}^2 \right)$$

Perform a Gaussian path-integral over the pion fields

$$Z[\eta^{\dagger},\eta] = \int [DN^{\dagger}][DN] \exp\left(iS_N + i\int d^4x \left(\eta^{\dagger}(x)N(x) + N^{\dagger}(x)\eta(x)\right)\right)$$

 $S_N = \int d^4x \, N^{\dagger}(x) \left(i \frac{\partial}{\partial x_0} + \frac{\vec{\nabla}^2}{2m} \right) N(x) - V_{NN} \quad \longleftarrow \quad \text{Non-instant one-pion-exchange}$

$$V_{NN} = -\frac{g^2}{8F^2} \int d^4x \, d^4y \overrightarrow{\nabla}_x \cdot \left[N^{\dagger}(x) \overrightarrow{\sigma} \tau \right] N(x) \, \Delta_F(x-y) \, \overrightarrow{\nabla}_y \cdot \left[N^{\dagger}(y) \overrightarrow{\sigma} \tau \right] N(y)$$

with non-instant pion propagator: $\Delta_F(x) = \int \frac{d^4q}{(2\pi)^4} \frac{e^{-iq \cdot x}}{q^2 - M^2 + i\epsilon}$

Instant Interactions from Path-Integral

To transform V_{NN} into an instant form we rewrite a pion propagator

$$\frac{1}{q_0^2 - \omega_q^2} = -\frac{1}{\omega_q^2} + \frac{1}{q_0^2 - \omega_q^2} + \frac{1}{\omega_q^2} = -\frac{1}{\omega_q^2} + q_0^2 \frac{1}{\omega_q^2} \frac{1}{q_0^2 - \omega_q^2}, \quad \omega_q = \sqrt{\vec{q}^2 + M^2}$$

In coordinate space this corresponds to $\Delta_F(x) = \Delta_S(x) - \frac{\partial^2}{\partial x_0^2} \Delta_{FS}(x)$ with

$$\Delta_{S}(x) = -\int \frac{d^{4}q}{(2\pi)^{4}} \frac{e^{-iq \cdot x}}{\omega_{q}^{2}} = -\delta(x_{0}) \int \frac{d^{3}q}{(2\pi)^{3}} \frac{e^{i\vec{q}\cdot\vec{x}}}{\omega_{q}^{2}}, \quad \Delta_{FS}(x) = \int \frac{d^{4}q}{(2\pi)^{4}} \frac{e^{-iq \cdot x}}{\omega_{q}^{2}(q_{0}^{2} - \omega_{q}^{2})}$$

The decomposition
$$\Delta_F(x) = \Delta_S(x) - \frac{\partial^2}{\partial x_0^2} \Delta_{FS}(x)$$
can be generalized

$$G(x) = \int \frac{d^4q}{(2\pi)^4} e^{-iq \cdot x} \tilde{G}(q_0^2, q^2) \text{ and } \tilde{G}(q_0^2, q^2) \text{ is differentiable at } q_0 = 0$$

Defining
$$G_{S}(x) = \int \frac{d^{4}q}{(2\pi)^{4}} e^{-iq \cdot x} \tilde{G}(0,q^{2}) \text{ and } G_{FS}(x) = \int \frac{d^{4}q}{(2\pi)^{4}} e^{-iq \cdot x} \frac{\tilde{G}(q_{0}^{2},q^{2}) - \tilde{G}(0,q^{2})}{q_{0}^{2}}$$

 \checkmark $G(x) = G_{S}(x) - \frac{\partial^{2}}{\partial x_{0}^{2}} G_{FS}(x)$

Instant Interactions from Path-Integral

Perform an instant decomposition of the pion propagator $\Delta_F(x) = \Delta_S(x) - \frac{\partial^2}{\partial x^2} \Delta_{FS}(x)$

$$V_{NN} = -\frac{g^2}{8F^2} \int d^4x \, d^4y \, \vec{\nabla}_x \cdot \left[N^{\dagger}(x) \vec{\sigma} \boldsymbol{\tau} \right] N(x) \, \Delta_F(x-y) \, \vec{\nabla}_y \cdot \left[N^{\dagger}(y) \vec{\sigma} \boldsymbol{\tau} \right] N(y)$$

 $V_{NN} = V_{OPE} + V_{FS}$

 $V_{OPE} = -\frac{g^2}{8F^2} \int d^4x \, d^4y \vec{\nabla}_x \cdot \left[N^{\dagger}(x) \vec{\sigma} \tau \right] N(x) \, \Delta_S(x-y) \vec{\nabla}_y \cdot \left[N^{\dagger}(y) \vec{\sigma} \tau \right] N(y) \quad \text{is instant}$

$$V_{FS} = \frac{g^2}{8F^2} \int d^4x \, d^4y \, \vec{\nabla}_x \cdot \left[N^{\dagger}(x) \vec{\sigma} \tau \right] N(x) \frac{\partial^2}{\partial x_0^2} \Delta_{FS}(x-y) \, \vec{\nabla}_y \cdot \left[N^{\dagger}(y) \vec{\sigma} \tau \right] N(y) \quad \text{is non-instant}$$

 V_{FS} is time-derivative dependent and thus can be eliminated by a non-polynomial field redefinition

$$N(x) \to N'(x) = N(x) + i \frac{g^2}{8F^2} \int d^4 y \left[\vec{\sigma} \tau N(x) \right] \cdot \left[\vec{\nabla}_x \frac{\partial}{\partial x_0} \Delta_{FS}(x-y) \right] \vec{\nabla}_y \cdot \left[N^{\dagger}(y) \vec{\sigma} \tau N(y) \right]$$

 $N^{\dagger}(x) \to N^{\dagger}(x) = N^{\dagger}(x) - i\frac{g^2}{8F^2} \int d^4y \overrightarrow{\nabla}_y \cdot [N^{\dagger}(y)\vec{\sigma}\tau N(y)] [\overrightarrow{\nabla}_y \frac{\partial}{\partial y_0} \Delta_{FS}(y-x)] \cdot [N^{\dagger}(x)\vec{\sigma}\tau]$

Instant Interactions from Path-Integral

Non-local field transformations remove time-derivative dependent two-nucleon interactions but generate time-derivative dependent three-nucleon interactions.

These contributions can be eliminated by similar field transformations

$$Z[\eta^{\dagger},\eta] = \int [DN'^{\dagger}][DN'] \det\left(\frac{\delta(N'^{\dagger},N')}{\delta(N^{\dagger},N)}\right) \exp\left(iS_{N(N'^{\dagger},N')} + i\int d^{4}x \left(\eta^{\dagger}(x)N(N'^{\dagger},N')(x) + N(N'^{\dagger},N')^{\dagger}(x)\eta(x)\right)\right)$$

$$\simeq \int [DN'^{\dagger}][DN'] \det\left(\frac{\delta(N'^{\dagger},N')}{\delta(N^{\dagger},N)}\right) \exp\left(iS_{N(N'^{\dagger},N')} + i\int d^{4}x \left(\eta^{\dagger}(x)N'(x) + N'^{\dagger}(x)\eta(x)\right)\right)$$

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.

$$S_{N(N^{\dagger},N')} = \int d^{4}x \, N'^{\dagger}(x) \left(i \frac{\partial}{\partial x_{0}} + \frac{\overrightarrow{\nabla}^{2}}{2m} \right) N'(x) - V_{OPE} + \mathcal{O}(g^{4})$$

$$V_{OPE} = -\frac{g^{2}}{8F^{2}} \int d^{4}x \, d^{4}y \, \overrightarrow{\nabla}_{x} \cdot \left[N'^{\dagger}(x) \overrightarrow{\sigma} \tau \right] N'(x) \, \Delta_{S}(x-y) \, \overrightarrow{\nabla}_{y} \cdot \left[N'^{\dagger}(y) \overrightarrow{\sigma} \tau \right] N'(y)$$
Instant one-pion-exchange interaction

One-Loop Corrections to Interaction

One loop corrections to NN & NNN interaction come from functional determinant

$$\det\left(\frac{\delta(N^{\dagger}, N')}{\delta(N^{\dagger}, N)}\right) = \exp\left(\operatorname{Tr}\log\frac{\delta(N^{\dagger}, N')}{\delta(N^{\dagger}, N)}\right)$$

Due to non-local structure of field transformations det $\left(\frac{\delta(N^{\dagger}, N')}{\delta(N^{\dagger}, N)}\right) \neq 1$

$$S_{N(N^{\dagger},N^{\prime})} = \int d^4x \, N^{\prime\dagger}(x) \left(i \, \frac{\partial}{\partial x_0} + \frac{\overrightarrow{\nabla}^2}{2m} + \frac{3g^2 M^3}{32\pi F^2} \right) N^{\prime}(x) \, - \, V_{OPE} + \mathcal{O}(g^4)$$

Nucleon mass-shift Langacker, Pagels, PRD 10 (1974) 2904 is reproduced from functional determinant

Note: The Z-factor of the nucleon is equal to one. This is due to the replacement $\eta^{\dagger}N + N^{\dagger}\eta \rightarrow \eta^{\dagger}N' + N'^{\dagger}\eta$ in the generating functional $Z[\eta^{\dagger}, \eta]$

The original Z-factor of the nucleon is reproduced if we remove this replacement

$$Z = 1 - \frac{9M^2g^2}{2F^2} \left(\bar{\lambda} + \frac{1}{16\pi^2} \left(\log \frac{M}{\mu} + \frac{1}{3} - \frac{\pi}{2} \frac{M}{\mu} \right) \right) \right)$$

Path-integral Approach

We start with generating functional:

 $Z[\eta^{\dagger},\eta] = \int [DN^{\dagger}][DN][D\pi] \exp\left(i \int d^4x \left(\mathscr{L}_{\pi} + \mathscr{L}_{\pi N} + \mathscr{L}_{NN} + \mathscr{L}_{NNN} + \eta^{\dagger}(x)N(x) + N^{\dagger}(x)\eta(x)\right)\right)$

Integrate over pion fields via loop-expansion of the action

 \rightarrow expansion of the action around the classical pion solution

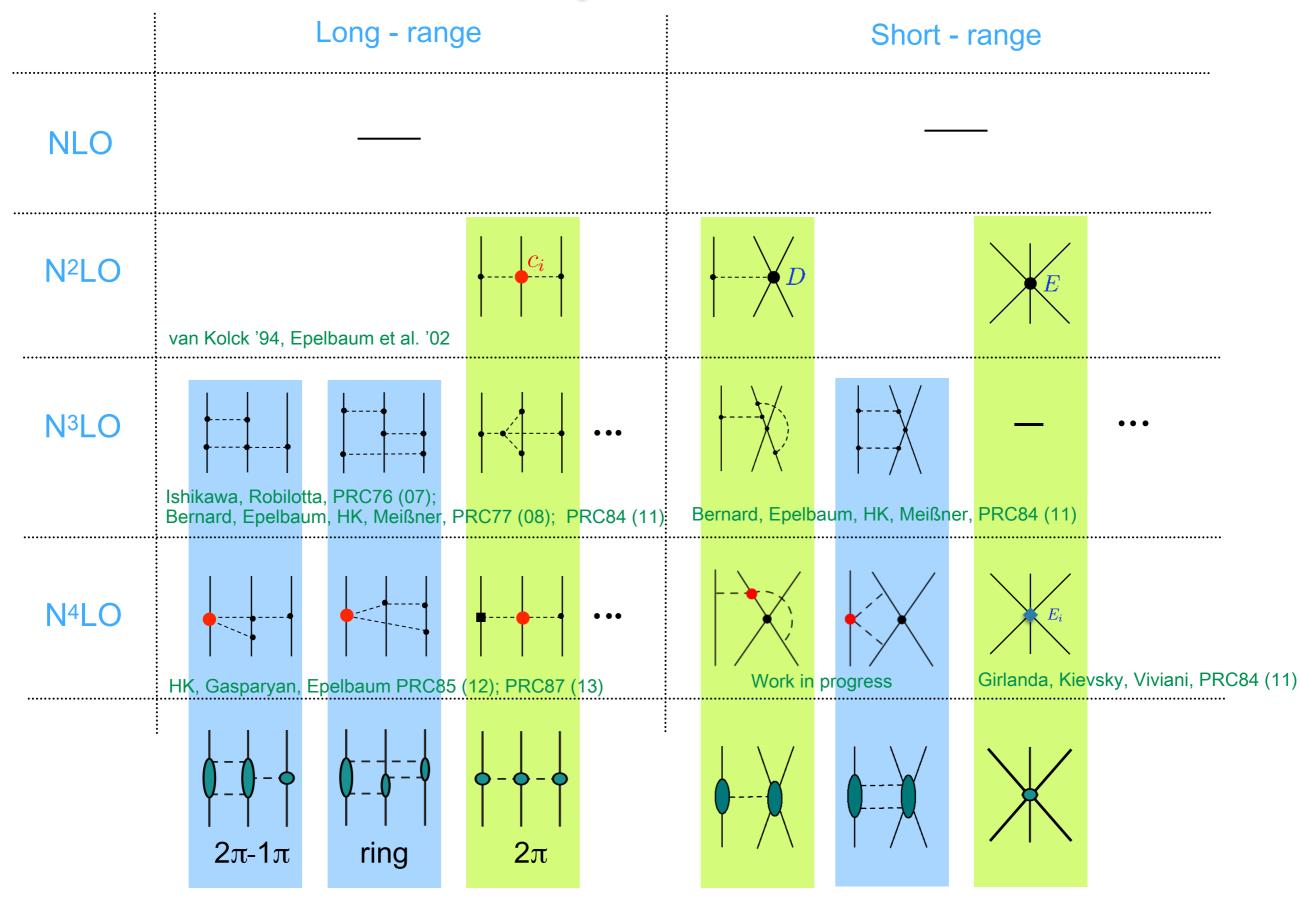
- Perform instant decomposition of the remaining interactions between nucleons
- Perform nucleon-field redefinitions to eliminate non-instant part of the interaction
- Calculate functional determinant to get one-loop corrections to few-nucleon forces

Checks in dimensional regularization

Unitary transformation (Okubo) & path-integral approaches lead to the same chiral EFT nuclear forces up to N⁴LO

Status Report on 3NF

3NF up to N⁴LO



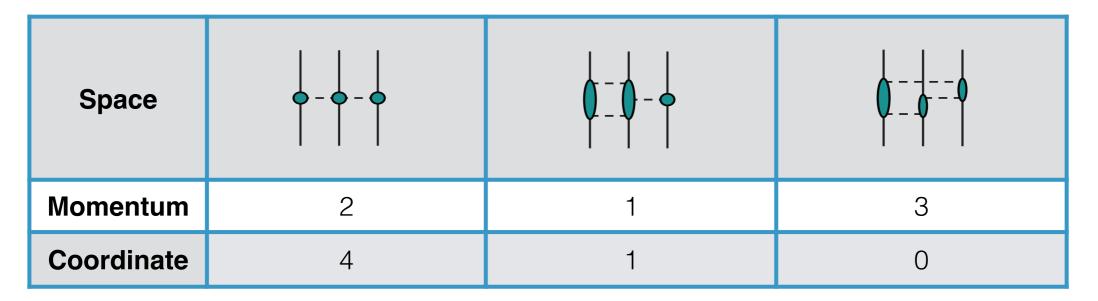
Status Report on 3N at N³LO

We calculated all long- and short-range contributions to 3NF & 4NF at N³LO

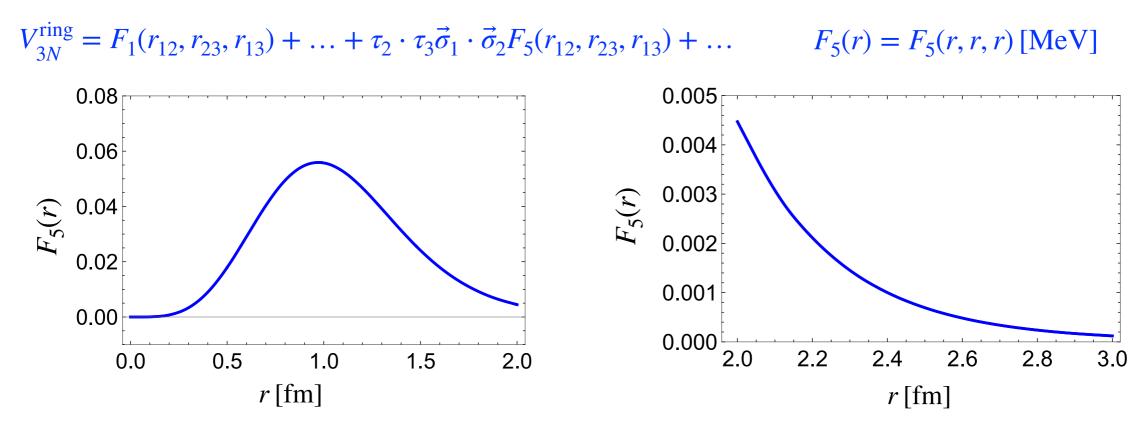
3NF's are given in terms of integrals over Schwinger parameters

$$V_{3N}^{2\pi-1\pi} = \tau_1 \cdot \tau_2 \times \tau_3 \vec{q}_1 \cdot \vec{\sigma}_1 \times \vec{\sigma}_2 \vec{q}_3 \cdot \vec{\sigma}_3 \frac{e^{-\frac{q_3^2 + M_{\pi}^2}{\Lambda^2}}}{q_3^2 + M_{\pi}^2} \left(-\frac{g_A^4}{F_{\pi}^6} \frac{q_1}{2048\pi} \int_0^{\infty} d\lambda \operatorname{erfi}\left(\frac{q_1\lambda}{2\Lambda\sqrt{2+\lambda}}\right) \frac{\exp\left(-\frac{q_1^2 + 4M_{\pi}^2}{4\Lambda^2}(2+\lambda)\right)}{2+\lambda} + \dots \right) + \dots$$

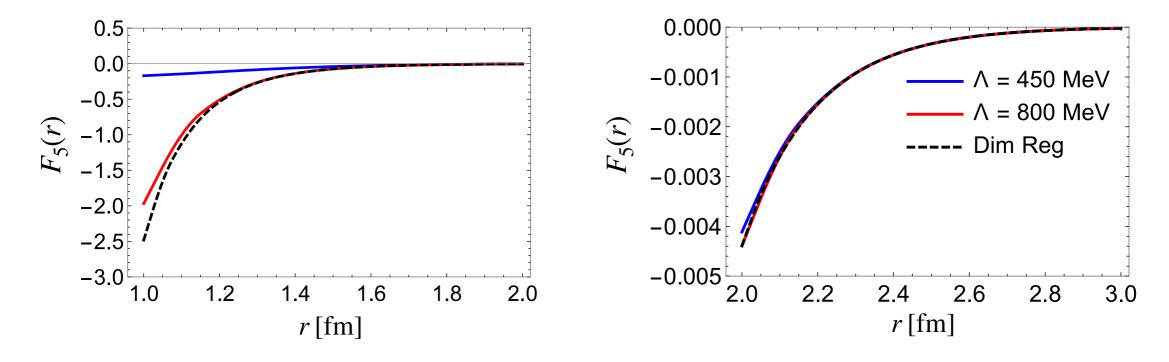
Dimension of integrals over Schwinger parameters depends on topology



Selected Profile Functions



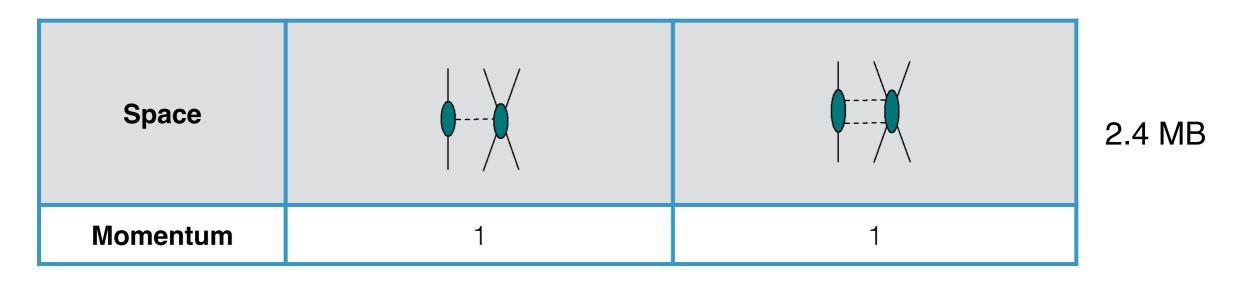
At $\Lambda \rightarrow \infty$ regularized 3NF reproduce dim. reg. results from Bernard et al. PRC77 (08)



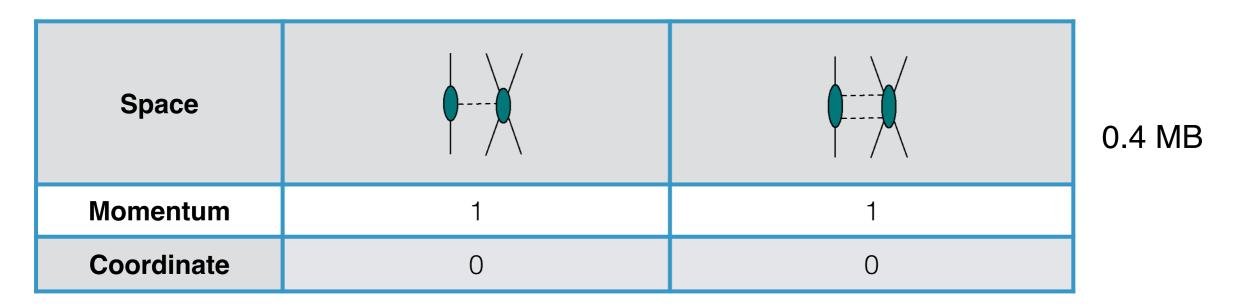
Short Range 3NF at N³LO

We provide two versions of 3NF

Version 1: Non-local short-range 3NF which can be used with SMS potential



Version 2: Local short-range 3NF to be used with the new NN potential



Summary

3PE contribution to NN has been calculated within unitary transformation approach

- Gradient-flow regularization provides a regularization in a symmetry preserving way
- Path-integral approach for derivation of nuclear forces
- Calculation of gradient-flow regularized 3NF at N³LO is finished

Outlook

Partial wave decomposition (PWD): K. Hebeler, A. Nogga & K. Topolnicki

PWD is computationally more expensive, due to higher dimension of integrals over Schwinger parameters

Short Range 3NF at N³LO

Complication in calculation of short-range 3NF due to non-local regulator of LO NN

Non-local regulator of short-range NN at LO introduces additional momentum in loop functions

Structure functions of short-range 3NF can become complex

Time-reversal transformation (T): $\vec{\sigma}_j \rightarrow - \vec{\sigma}_j, \tau_j^y \rightarrow - \tau_j^y, \vec{q}_j \rightarrow \vec{q}_j, \vec{k}_j \rightarrow - \vec{k}_j$

Hermitian conjugation (h.c.): $\vec{\sigma}_j \rightarrow \vec{\sigma}_j, \tau_j \rightarrow \tau_j, \vec{q}_j \rightarrow - \vec{q}_j, \vec{k}_j \rightarrow \vec{k}_j$

 $\exp\left(-\frac{(2(\vec{k}_{2}-\vec{k}_{3})+\vec{q}_{2})^{2}}{8\Lambda^{2}}\right) + \exp\left(-\frac{(2(\vec{k}_{2}-\vec{k}_{3})-\vec{q}_{2})^{2}}{8\Lambda^{2}}\right)$ Invariant under T and h.c.

 $i\left[\exp\left(-\frac{(2(\vec{k}_2-\vec{k}_3)+\vec{q}_2)^2}{8\Lambda^2}\right)-\exp\left(-\frac{(2(\vec{k}_2-\vec{k}_3)-\vec{q}_2)^2}{8\Lambda^2}\right)\right]$ Invariant under T and h.c.

Combination of these functions are allowed to appear in structure functions

Structure functions might be complex: not related to unitarity cut (phase)

Short Range 3NF at N³LO

Complex structure functions of short-range part of 3NF require complex PWD

Solution 1: Is there a nucleon-field transformation which would make 3NF's real?

Idea: Constrain field transformations needed to make interactions instant

Every ϵ_{ijk} in field transformations should be accompanied with an "*i*"

Indeed, we achieved with these transformations an instant 3NF and get real structure functions for short-range 3NF

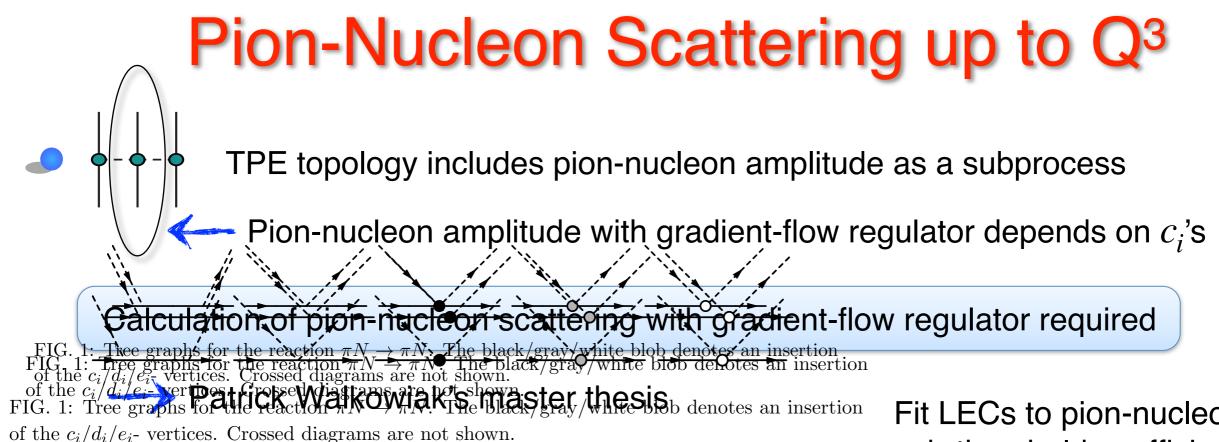
Solution 2: Change the regulator of short-range NN interaction at LO to local one

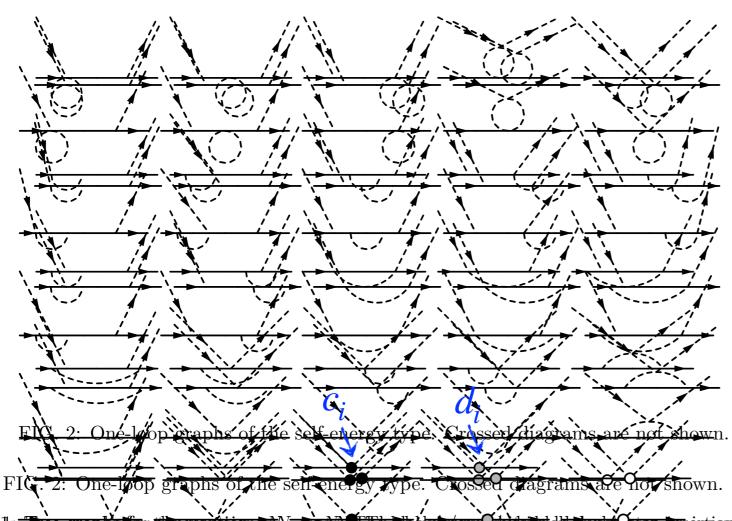
Expressions for local short-range 3NF's at N³LO are simpler

PWD of local 3NF's is less expensive

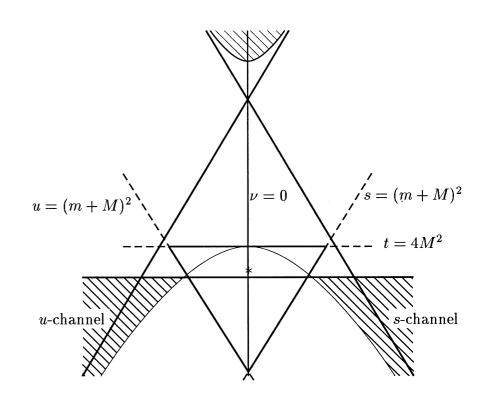
But: we need to generate a new NN force

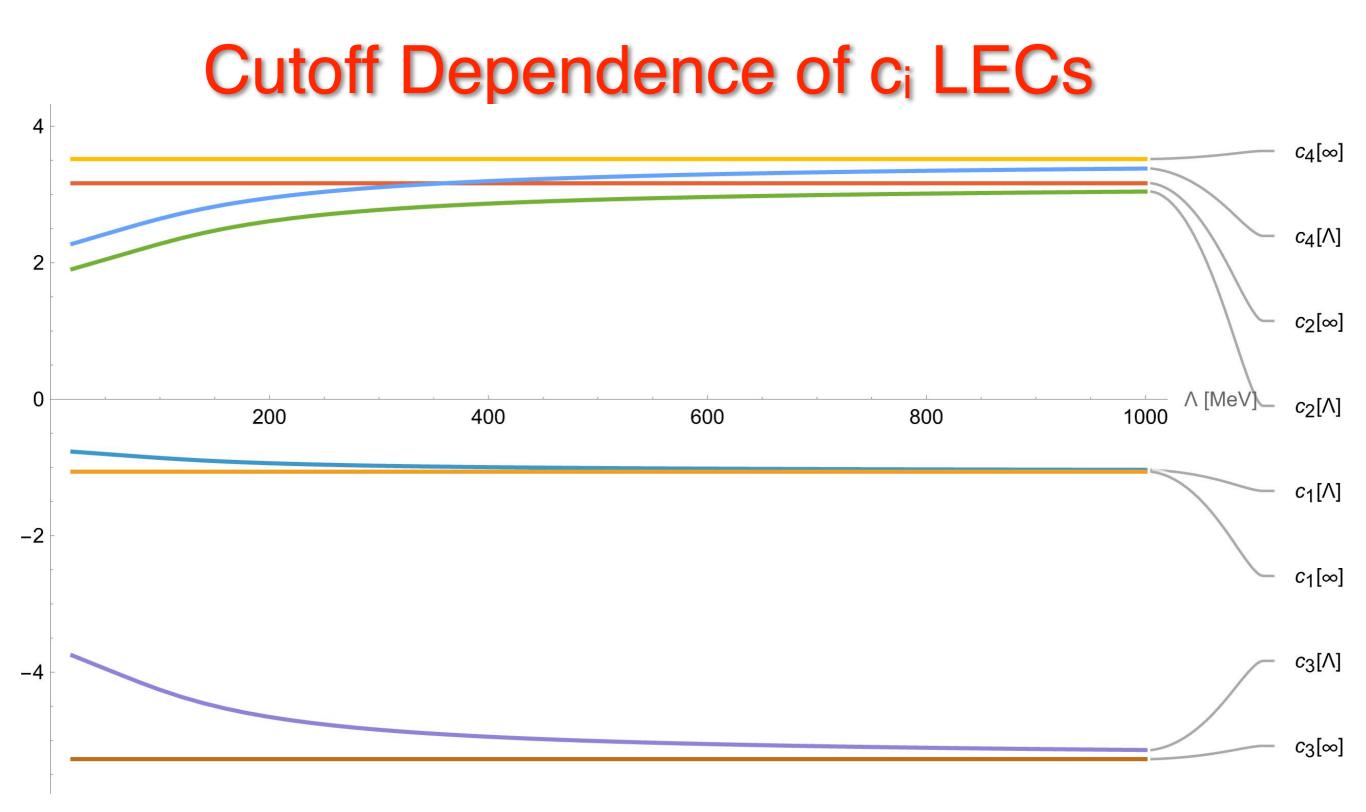






Fit LECs to pion-nucleon sub-threshold coefficients which are determined from Roy-Steiner equation





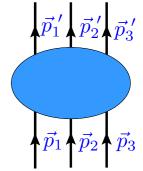
Saturation towards dim-reg results ($\Lambda \to \infty$) is fast

For $\Lambda \sim 500 \,\text{MeV}$ the absolute value of c_i is smaller compared to c_i in dim-reg.

Call for Consistent Regularization

Violation of chiral symmetry due to different regularizations: Dim. reg. vs cutoff reg. Epelbaum, HK, Reinert, Front. in Phys. 8 (2020) 98

$$\checkmark$$
 1/m - corrections to TPE 3NF $\sim g_A^2$



$$V_{2\pi,1/m}^{g_A^2} = i \frac{g_A^2}{32mF_\pi^4} \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{(q_1^2 + M_\pi^2)(q_3^2 + M_\pi^2)} \tau_1 \cdot (\tau_2 \times \tau_3) (2\vec{k}_1 \cdot \vec{q}_3 + 4\vec{k}_3 \cdot \vec{q}_3 + i \, [\vec{q}_1 \times \vec{q}_3] \cdot \vec{\sigma}_2) \qquad \vec{q}_i = \vec{p}_i' - \vec{p}_i$$
$$\vec{k}_i = \frac{1}{2} \left(\vec{p}_i' + \vec{p}_i \right) \left(\vec{q}_i + \vec{p}_i \right) \vec{q}_i = \vec{q}_i' - \vec{p}_i$$

Naive local cut-off regularization of the current and potential

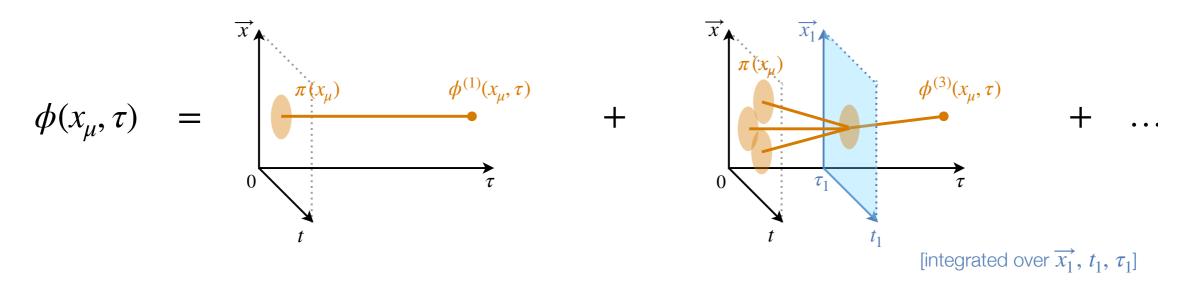
$$V_{2\pi,1/m}^{g_A^2,\Lambda} = V_{2\pi,1/m}^{g_A^2} \exp\left(-\frac{q_1^2 + M_\pi^2}{\Lambda^2}\right) \exp\left(-\frac{q_3^2 + M_\pi^2}{\Lambda^2}\right) \quad \& \quad V_{1\pi}^{Q^0,\Lambda} = -\frac{g_A^2}{4F_\pi^2}\tau_1 \cdot \tau_2 \frac{\vec{q}_1 \cdot \vec{\sigma}_1 \vec{q}_1 \cdot \vec{\sigma}_2}{q_1^2 + M_\pi^2} \exp\left(-\frac{q_1^2 + M_\pi^2}{\Lambda^2}\right)$$

First iteration with OPE NN potential

þ

$$V_{2\pi,1/m}^{g_{A}^{2},\Lambda} \frac{1}{E - H_{0} + i\epsilon} V_{1\pi}^{Q^{0},\Lambda} + V_{1\pi}^{Q^{0},\Lambda} \frac{1}{E - H_{0} + i\epsilon} V_{2\pi,1/m}^{g_{A}^{2},\Lambda} = \Lambda \frac{g_{A}^{4}}{128\sqrt{2}\pi^{3/2}F_{\pi}^{6}} (\tau_{2} \cdot \tau_{3} - \tau_{1} \cdot \tau_{3}) \frac{\vec{q}_{2} \cdot \vec{\sigma}_{2}\vec{q}_{3} \cdot \vec{\sigma}_{3}}{q_{3}^{2} + M_{\pi}^{2}} + \dots$$
No such D-like term in chiral Lagrangian
$$V_{2\pi-1\pi} \text{ if calculated via cutoff regularization}$$
In dim. reg. $V_{2\pi-1\pi} = 1 + \dots + \dots + \dots + \dots + \dots$

Iterative solution in Coordinate Space



Light-shaded area visualizes smearing in Euclidean space of size $\sim \sqrt{2\tau}$ Solid line stands for Green-function:

$$\begin{split} \left[\partial_{\tau} - (\partial_{\mu}^{x}\partial_{\mu}^{x} - M^{2})\right]G(x - y, \tau - s) &= \delta(x - y)\delta(\tau - s)\\ G(x, \tau) &= \theta(\tau) \int \frac{d^{4}q}{(2\pi)^{4}}e^{-\tau(q^{2} + M^{2})}e^{-iq\cdot x}\\ \phi_{b}^{(1)}(x, \tau) &= \int d^{4}y \,G(x - y, \tau)\pi_{b}(y)\\ \phi_{b}^{(3)}(x, \tau) &= \int_{0}^{\tau} ds \int d^{4}y \,G(x - y, \tau - s) \left[(1 - 2\alpha)\partial_{\mu}\phi^{(1)}(y, s) \cdot \partial_{\mu}\phi^{(1)}(y, s)\phi_{b}^{(1)}(y, s)\right.\\ &\left. - 4\alpha \,\partial_{\mu}\phi^{(1)}(y, s) \cdot \phi^{(1)}(y, s)\partial_{\mu}\phi_{b}^{(1)}(y, s) + \frac{M^{2}}{2}\phi^{(1)}(y, s) \cdot \phi^{(1)}(y, s)\phi_{b}^{(1)}(y, s)\right] \end{split}$$