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Chiral EFT is a systematic tool for 
derivation of nuclear forces  
below pion-production threshold
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eventually exceed the speed of light. Surprisingly, this limit carries
over into general relativity (GR), but in addition, GR predicts a
number of further constraints on compactness. Besides the addi-
tional limit imposed on the mass, GR also predicts that the mea-
surement of any neutron star mass leads to a limit on the
maximum density inside any neutron star, and is thus a limit to
the ultimate energy density of cold, static, matter in our universe.

Einstein’s equations form the equation of hydrostatic equilib-
rium, also known as the Tolman–Oppenheimer–Volkov (TOV)
equation in GR:

!p0ðrÞ
qðrÞ þ pðrÞ

¼ mðrÞ þ 4pr3pðrÞ
rðr ! 2mðrÞÞ

: ð1Þ

Here, p is the pressure, q is the mass-energy density and m(r) is the
mass interior to the radius r. From thermodynamics, if there is uni-
form entropy per nucleon, the first law gives d(q/n) = !pd(1/n)
where n is the number density. If e is the internal energy per nu-
cleon and mb is the nucleon mass), we have q = n(mb + e). Since
p = n2de/dn, dn = dq/h, where h = (q + p)/n is the enthalpy per nu-
cleon or the chemical potential.

The total number of nucleons in the star, N, is not M/mb due to
the binding energy which represents a decrease of the gravitational
mass. The nucleon number is

N ¼
Z R

0
4pr2ek=2nðrÞdr ¼

Z R

0
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r
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The binding energy BE = Nmb !M. can be approximated (Lattimer
and Prakash, 2001) as

BE=M ’ 0:6b=ð1! 0:5bÞ; ð3Þ

shown in Fig. 2 along with various EOS’s and analytical solutions.

The moment of inertia of a star in the limit of a small rotation
rate X is obtained from the expression

I ¼ 8p
3

Z R

0
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X
dr ¼ R3

2
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!xR

X

# $
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where !x is a solution of

d r4j
d !x
dr

! "
þ 4r3 !xdj ¼ 0 ð5Þ

Fig. 1. Internal structure of a neutron star. Top band illustrates potential geometric transitions from high density uniform matter to low density spherical nuclei. Superfluid
aspects of the crust and core are shown in insets.

Fig. 2. Binding energy per unit mass of neutron star models. Key to EOS’s is in
(Lattimer and Prakash, 2001). The thicker curves with larger text symbols represent
various analytic solutions. The yellow shaded band indicates approximation. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

102 J.M. Lattimer / New Astronomy Reviews 54 (2010) 101–109

Lattimer: NAR54 (2010) 101Livechart, IAEA: https://www-nds.iaea.org
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Couplings of short-range interac*ons are fixed from NN - data

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 12 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: + 5 IB operators

N2LO [Q3]: no new terms

N4LO+ [Q6]: + 4 operators (F-waves) 

# of adjustable LECs = 25 IC + 5 IB + 3 𝛑N constants = 33 parameters

Summary on NN
Employed a Bayesian approach to account for sta*s*cal and systema*c uncertain*es

Extracted 𝛑N couplings from NN data within chiral EFT

Achieved a sta*s*cally perfect descrip*on of NN data
𝛘2/dat = 1.005 for ~5000 data in the energy range Elab = 0 - 280 MeV

Reinert, HK, Epelbaum PRL126 (2021) 092501
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FIG. 1. Diagrams contributing to the leading 3ω-exchange NN potential at N3LO. Solid and dashed lines refer to nucleons and
pions, respectively, while solid dots denote the lowest-order vertices from the e!ective Lagrangians L(1)

ωN and L(2)
ω . Diagrams

resulting from the interchange of the nucleon lines are not shown (except for the class IX). Light-shaded gray areas mark
reducible-like contributions which are expected to be scheme-dependent.

four-dimensional (three-dimensional) loop integrals appearing on the left-hand (right-hand) side of the above equation
are ultraviolet divergent and require introducing the corresponding counterterms. We are, however, interested here
in the long-range contributions to the amplitude, which are not a!ected by the counterterms. It is instructive to
expand both sides of Eq. (1.1) around the static limit m → ↑. Given that Ĝ0 ↓ O(m), the dominant contribution
to the amplitude ↓ m is generated solely by the iterated static one-pion exchange potential. When working with
energy-independent and Hermitian potentials, the first relativistic corrections to the 1ω-exchange appear at orderm→2.
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Class X:

Class XI:

Class XII:

Class XIII:

Class XIV:

FIG. 2. Diagrams contributing to the subleading 3ω-exchange NN potential at N4LO. Filled circles denote the subleading
pion-nucleon vertices from the e!ective Lagrangian L(2)

ωN . For remaining notation see Fig. 1.

Accordingly, the static 2ω-exchange potential is unambiguously determined (on-the-energy-shell) by the order-O(1)

contribution to the amplitude A
g4
A

2ω . Indeed, the static expressions for the non-polynomial parts of the 2ω-exchange
potential in the energy-independent formulation calculated using di!erent methods come out identical to each other

[7, 9, 63]. On the other hand, the leading relativistic corrections to V
g4
A

2ω of order O(m→1) are scheme-dependent due

to the unitary ambiguity of the order-m→2 contributions to V
g2
A

1ω and di!erent schemes for treating relativistic e!ects
in the framework of the Schrödinger equation (which a!ect the order-m→1 corrections to G0), see Ref. [64] for details.

The above considerations can be extended to the three-pion exchange. Consider, for example, the amplitude A
g6
A

3ω
corresponding to the diagram (1) of class VIII, which is defined unambiguously and can be computed from the
Feynman graph or by iterating the Lippmann-Schwinger equation

A
g6
A

3ω =
[
V̂

g2
A

1ω Ĝ0 V̂
g2
A

1ω Ĝ0V̂
g2
A

1ω + V̂
g2
A

1ω Ĝ0 V̂
g4
A

2ω + V̂
g4
A

2ω Ĝ0 V̂
g2
A

1ω + V̂
g6
A

3ω

]

on→shell

, (1.2)

where the two- and three-pion exchange potentials are understood to include only planar box diagrams. The non-

relativistic expansion of A
g6
A

3ω starts with the order O(m2), see the first term in the square brackets, followed by the
order-m corrections from the second and third terms. The last term in the square brackets denotes the genuine static
(i.e., order O(1) in the 1/m-expansion) three-pion exchange potential we are interested in here. Contrary to the
unambiguously defined2 static two-pion exchange potential, the ambiguities in the order-m→2 (order-m→1) corrections

to V
g2
A

1ω (V
g4
A

2ω ) and in the treatment of relativistic corrections to G0 show that already the dominant static expressions

for the three-pion exchange V
g6
A

3ω are scheme-dependent. The above considerations suggest that three-pion exchange
potentials generated by reducible-like diagrams, which are highlighted with light-shaded gray areas in Figs. 1 and 2,
are ambiguously defined. Accordingly, the expressions derived in Refs. [11–13] can potentially be inconsistent with the
nuclear forces and currents from Refs. [9, 10, 18–20, 22, 23, 25, 26, 31, 36, 39–43] derived using the method of unitary
transformation (MUT). For this reason and assuming that e!ects of the three-pion exchange can, for the employed

2 The term “unambiguous” refers to the considered class of unitary transformations.

N3LO N4LO

1/m correc*on to 2PE is scheme dependent Scheme-dependence of 3PE

3PE calculated by Kaiser `00 - `02 can not be used in unitary transforma*on approach

Possible Improvements in NN Sector



3PE within Unitary Transformation Method (UTM): Springer, HK, Epelbaum arXiv:2505.02034

3PE contributions to NN at N3LO

V3π( ⃗r ) = VC(r) + τ1 ⋅ τ2WC(r) + ⃗σ1 ⋅ ⃗σ2 [VS(r) + τ1 ⋅ τ2WS(r)] + S12( ̂r)[VT(r) + τ1 ⋅ τ2WT(r)]

36

-0.2

-0.1

0

0.1

1 1.5 2

SMM
MUT

V S
(r)
(V
I)
[M
eV
]

r [fm]
2 2.5 3

-0.002

0

0.002

r [fm]

0

0.1

0.2

0.3

1 1.5 2

SMM
MUT

W
S(
r)(
VI
) [
M
eV
]

r [fm]
2 2.5 3

-0.001

-0.0005

0

0.0005

r [fm]

-3

-2

-1

0

1

1 1.5 2

SMM
MUT

V T
(r)
(V
I)
[M
eV
]

r [fm]
2 2.5 3

-0.01

-0.005

0

0.005

r [fm]

-3

-2

-1

0

1 1.5 2

W
T(
r)(
VI
) [
M
eV
]

r [fm]
2 2.5 3

-0.008

-0.006

-0.004

-0.002

0

r [fm]

0.002

-0.002

0.005

-0.005

-0.01

0

0

0.0005

-0.0005

-0.001

0

  [fm]r   [fm]r

  [
M

eV
]

VVI S
(r)

  [
M

eV
]

VVI T
(r)

  [
M

eV
]

W
VI S

(r)
  [

M
eV

]
W

VI T
(r)

0

2

4

6

8

10

1 1.5 2

SMM
MUT

V C
(r)
(V
III
) [
M
eV
]

r [fm]
2 2.5 3

0

0.01

0.02

0.03

r [fm]
0

2

4

6

8

10

1 1.5 2

SMM
MUT

V C
(r)
(V
III
) [
M
eV
]

r [fm]
2 2.5 3

0

0.01

0.02

0.03

r [fm]

FIG. 4. Class-VI 3ω-exchange potentials in coordinate space using the MUT (red solid lines) and the SMM (blue dashed lines).
Tie class-VI scalar potentials turn out to be the same in both the SMM and MUT and are not shown.

typically having a larger magnitude as compared to the potentials calculated from S-matrix method.

• We have also considered the subleading 3ω-exchange potential at N4LO, which also features reducible-like
diagrams in classes XI and XIII. However, in that case, we found the method of unitary transformation to yield
the same results as obtained using the S-matrix method.

The analysis carried out in this work will allow us, in the future, to extend the state-of-the-art high-precision NN
chiral potentials of Refs. [5, 36, 54, 55] by explicitly including the chiral 3ω-exchange contributions. Clearly, this will
require a proper regularization of the obtained potentials by applying a local momentum-space cuto! along the lines
of Ref. [54] 8. It is important to emphasize that given the knowledge of the relevant ωN low-energy constants [51, 52],
the leading and subleading 3ω-exchange potentials come out as parameter-free predictions within chiral EFT. For
the 2ω-exchange, such predictions have already been successfully confronted with the wealth of the available neutron-
proton and proton-proton scattering data below pion-production threshold [53, 54, 58], see also a recent work [60] for
a related discussion in the context of neutron-ε scattering. It remains to be seen if one can observe evidence of the
chiral 3ω-exchange from two-nucleon scattering data, see also Ref. [2, 16, 77] for a related discussion. Work along
these lines is in progress.
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8 A rigorous symmetry-preserving regularization method for chiral EFT has been recently introduced in Refs. [75, 76]. This novel approach
allows one to derive consistently regularized three- and more-nucleon forces as well as exchange current operators in harmony with the
chiral and gauge symmetries. For two-nucleon potentials considered in this paper, it is, however, not really nesessary to apply this
rigorous but computationally more demanding regularization approach [5].
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FIG. 1. Diagrams contributing to the leading 3ω-exchange NN potential at N3LO. Solid and dashed lines refer to nucleons and
pions, respectively, while solid dots denote the lowest-order vertices from the e!ective Lagrangians L(1)

ωN and L(2)
ω . Diagrams

resulting from the interchange of the nucleon lines are not shown (except for the class IX). Light-shaded gray areas mark
reducible-like contributions which are expected to be scheme-dependent.

four-dimensional (three-dimensional) loop integrals appearing on the left-hand (right-hand) side of the above equation
are ultraviolet divergent and require introducing the corresponding counterterms. We are, however, interested here
in the long-range contributions to the amplitude, which are not a!ected by the counterterms. It is instructive to
expand both sides of Eq. (1.1) around the static limit m → ↑. Given that Ĝ0 ↓ O(m), the dominant contribution
to the amplitude ↓ m is generated solely by the iterated static one-pion exchange potential. When working with
energy-independent and Hermitian potentials, the first relativistic corrections to the 1ω-exchange appear at orderm→2.
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FIG. 5. Class-VIII 3ω-exchange potentials in coordinate space using the MUT (red solid lines) and the SMM (blue dashed
lines).

Appendix A: Principal value integrals

In this appendix, we give an overview of some important principle value integrals and show how to solve them. We
begin with a simple example:

→

∫
1

→1

dx
1

ix→ ω
.

Here and in what follows, the limit ω ↑ 0+ is understood. First, we rewrite this expression as

→1

ix→ ω
=

ix+ ω

x2 + ω2
= i

x

x2 + ω2
+

ω

x2 + ω2
= iP

1

x
+ εϑ(x) . (A.1)

In the last step, we used a representation of the delta-distribution as well as the definition of the principal value
indicated by the P. Thus, it follows for our simple example:

→

∫
1

→1

dx
1

ix→ ω
= i P

∫
1

→1

dx
1

x
︸ ︷︷ ︸

0

+ε

∫
1

→1

dxϑ(x)

︸ ︷︷ ︸
1

= ε .
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FIG. 1. Diagrams contributing to the leading 3ω-exchange NN potential at N3LO. Solid and dashed lines refer to nucleons and
pions, respectively, while solid dots denote the lowest-order vertices from the e!ective Lagrangians L(1)

ωN and L(2)
ω . Diagrams

resulting from the interchange of the nucleon lines are not shown (except for the class IX). Light-shaded gray areas mark
reducible-like contributions which are expected to be scheme-dependent.

four-dimensional (three-dimensional) loop integrals appearing on the left-hand (right-hand) side of the above equation
are ultraviolet divergent and require introducing the corresponding counterterms. We are, however, interested here
in the long-range contributions to the amplitude, which are not a!ected by the counterterms. It is instructive to
expand both sides of Eq. (1.1) around the static limit m → ↑. Given that Ĝ0 ↓ O(m), the dominant contribution
to the amplitude ↓ m is generated solely by the iterated static one-pion exchange potential. When working with
energy-independent and Hermitian potentials, the first relativistic corrections to the 1ω-exchange appear at orderm→2.
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Deviations Between Two Schemes 
Scheme-dependent devia*ons between  
Kaiser and Springer et al.
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FIG. 6. Class-IX 3ω-exchange potentials in coordinate space using the MUT (red solid lines) and the SMM (blue dashed lines).

We continue with a more complicated problem. Consider the following expression:

→

∫
1

→1

dx

∫ ymax(x,z)

ymin(x,z)
dy

1√
1→ x2 → y2 → z2 + 2xyz

1

(ix→ ω) (iy + ω)
.

The first thing we can do is to multiply the numerator and denominator with the complex conjugate of the denominator.
Then we can make use of definitions of the delta distribution as well as of the principal value. We find:

→1

(ix→ ω) (iy + ω)
=

xy + ω2 + ixω→ iyω

(x2 + ω2) (y2 + ω2)
= P

1

x
P
1

y
+ ε2ϑ(x)ϑ(y) + iε

[
P
1

x
ϑ(y)→ P

1

y
ϑ(x)

]
. (A.2)

The next step is to perform the integration over the distributions. We start with

P

∫
1

→1

dx
1

x
P

∫ ymax(x,z)

ymin(x,z)
dy

1√
1→ x2 → y2 → z2 + 2xyz

1

y
. (A.3)

Recall that x, y and z are actual angles and thus limited to values between →1 and 1. Further, due to the simplification
of the phase space, we have the boundary of 1 → x2

→ y2 → z2 + 2xyz > 0. From this, it follows for the integration
area of y:

ymin(x, z) = xz →
√

1→ x2 → z2 + x2z2, ymax(x, z) = xz +
√

1→ x2 → z2 + x2z2 . (A.4)
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FIG. 1. Diagrams contributing to the leading 3ω-exchange NN potential at N3LO. Solid and dashed lines refer to nucleons and
pions, respectively, while solid dots denote the lowest-order vertices from the e!ective Lagrangians L(1)

ωN and L(2)
ω . Diagrams

resulting from the interchange of the nucleon lines are not shown (except for the class IX). Light-shaded gray areas mark
reducible-like contributions which are expected to be scheme-dependent.

four-dimensional (three-dimensional) loop integrals appearing on the left-hand (right-hand) side of the above equation
are ultraviolet divergent and require introducing the corresponding counterterms. We are, however, interested here
in the long-range contributions to the amplitude, which are not a!ected by the counterterms. It is instructive to
expand both sides of Eq. (1.1) around the static limit m → ↑. Given that Ĝ0 ↓ O(m), the dominant contribution
to the amplitude ↓ m is generated solely by the iterated static one-pion exchange potential. When working with
energy-independent and Hermitian potentials, the first relativistic corrections to the 1ω-exchange appear at orderm→2.
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Two Schemes Results: Summarized
For the Classes VI, VIII and IX we get for most of the poten*als stronger 3PE contribu*ons 

Despite reducible-like diagrams we do not see any devia*on for the Class IV
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resulting from the interchange of the nucleon lines are not shown (except for the class IX). Light-shaded gray areas mark
reducible-like contributions which are expected to be scheme-dependent.

four-dimensional (three-dimensional) loop integrals appearing on the left-hand (right-hand) side of the above equation
are ultraviolet divergent and require introducing the corresponding counterterms. We are, however, interested here
in the long-range contributions to the amplitude, which are not a!ected by the counterterms. It is instructive to
expand both sides of Eq. (1.1) around the static limit m → ↑. Given that Ĝ0 ↓ O(m), the dominant contribution
to the amplitude ↓ m is generated solely by the iterated static one-pion exchange potential. When working with
energy-independent and Hermitian potentials, the first relativistic corrections to the 1ω-exchange appear at orderm→2.At N4LO we don’t see any devia*on for all classes of diagrams

We reproduced all results of Kaiser with one excep*on:
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in the long-range contributions to the amplitude, which are not a!ected by the counterterms. It is instructive to
expand both sides of Eq. (1.1) around the static limit m → ↑. Given that Ĝ0 ↓ O(m), the dominant contribution
to the amplitude ↓ m is generated solely by the iterated static one-pion exchange potential. When working with
energy-independent and Hermitian potentials, the first relativistic corrections to the 1ω-exchange appear at orderm→2.

Class V:

21

This expression is identical to the one given in Ref. [12].

We continue with the isovector tensor part. The starting point is again the four-dimensional integral representation
after performing the tensor reduction,

Im WV

T (iµ) =
→g4

A

(
µ2

→M2
ω

)→1

4ωµ2 (8ωF 2
ω )

3

∫∫

z2<1

dε1dε2

∫
1

→1

dx

∫ ymax(x,z)

ymin(x,z)
dy

1√
1→ x2 → y2 → z2 + 2xyz

1

l1l2(ix→ ϑ)(iy + ϑ)

↑
[
M4

ω

(
7µ2

→ 3l2
1
x2

→ 4l1l2xy → 3l2
2
y2 → 11µ (ε1 + ε2) + 6 (ε1 + ε2)

2
)

+M2

ω

(
µ
(
→20µ2 (ε1 + ε2) + 5µ3 + 4µ

(
4ε2

1
+ 11ε2ε1 + 4ε2

2

)
→ 12ε1ε2 (ε1 + ε2)

)

+2l2
1
x2

(
2µ2

→ 2l2
2
y2 → µ (ε1 + 3ε2) + 3ε2 (ε1 + ε2)

)
→ 2l2l

3

1
x3y

→2l2l1xy
(
l2
2
y2 + µ (µ→ 3 (ε1 + ε2))

)
+ 2l2

2
y2

(
2µ2

→ µ (3ε1 + ε2)

+3ε1 (ε1 + ε2))) + µ2
(
l2
1
x2

(
→µ2 + 4l2

2
y2 + 2µ (ε1 → 4ε2) + 10ε2 (ε1 + ε2)

)

+2l2l
3

1
x3y + 2l2l1xy

(
l2
2
y2 + µ (5 (ε1 + ε2)→ 4µ)

)
+ l2

2
y2

(
→µ2 + 2µ (ε2 → 4ε1)

+10ε1 (ε1 + ε2)) + µ (µ→ 2ε1) (µ→ 2ε2) (4µ→ 5ε1 → 5ε2))→ 2M6

ω

]
. (3.47)

The angular integration can be performed in the same way as for the spin-spin part and we obtain, after simplification,
our final result

Im WV

T (iµ) =
1

µ2
Im WV

S (iµ)→
g4
A

(
µ2

→M2
ω

)→1

µ2 (8ωF 2
ω )

3

∫∫

z2<1

dε1dε2

[(
6µ2 + 2M2

ω

)
(ε1 + ε2)

→µ
(
4µ2 + 3M2

ω

)] [((
µ2 +M2

ω

) (
2ε1 →

µ

2

)
→ 2µε1ε2

) arccos(→z)

l1l2
↓
1→ z2

+ µ+ 2zε1

l2
l1

]
. (3.48)

This expression agrees with the one obtained by Kaiser in Ref. [12] up to the sign in front of the second term on the
right-hand side, which is not correct [72].

F. Class-VI diagrams

Class-VI diagrams diagrams involve reducible-like topologies, and the resulting potentials are thus expected to be
scheme-dependent. Using the MUT, we start with calculating the energy denominators for the two irreducible class-
VI diagrams by evaluating the matrix elements of the operators in Eqs. (2.4), (2.7) for the corresponding topology:

EDVI

(4)
= →EDVI

(3)
= →

ε2
1
+ ε2ε1 + ε2

2

4ε3
1
ε3
2
(ε1 + ε2)ε3

→
1

4ε3
1
ε2
2
(ε1 + ε3)

+
1

4ε2
1
ε3
2
(ε2 + ε3)

+
1

2ε2
1
ε2
2
(ε2 + ε3) 2

+
ε1 + 2ε2

4ε3
1
ε2
2
(ε1 + ε2) (ε1 + ε2 + ε3)

. (3.49)

For the class-VI diagrams, we label the pion momenta at the second nucleon from bottom to top as {l3, l2, l1},
{l1, l2, l3}, {l2, l3, l1} and {l1, l3, l2} for diagrams (1)–(4), in order. For the irreducible diagrams (1) and (2), we expect
the same result to emerge in the S-matrix method. We have verified that this is indeed the case by considering the
corresponding Feynman diagrams and performing the integrations over the zeroth components of the loop momenta
l0
1
and l0

2
.

For the two reducible-like diagrams, the MUT leads to the expression

EDVI,MUT

(2)
= →EDVI,MUT

(1)
= →EDVI

(4)
+

1

2ε2
1
ε2
2
ε2
3

. (3.50)

This result di!ers from the one obtained in the SMM by the last term,

EDVI, SMM

(2)
= →EDVI, SMM

(1)
= →EDVI

(4)
, (3.51)

Different sign in Kaiser PRC 62 (2000) 024001, Eq. (8)

Remains to be seen if we observe an evidence of 3PE from NN scajering data.
Work in progress



Symmetry Preserving Regulator
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Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Kaiser ’00 - ‘02 Bernard, Epelbaum, HK, Meißner,’08, ’11 Epelbaum ’06

Entem, Kaiser, Machleidt, Nosyk ’15
Epelbaum, HK, Meißner ’15

  

Girlanda, Kievsky, Viviani ’11
HK, Gasparyan, Epelbaum ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

A must for accessing 3NF’s and 4NF’s at N3LO and beyond

HK, Epelbaum, PRC 110 (2024) 4, 044004



Gradient-Flow Equation (GFE)

Yang-Mills gradient flow in QCD: Lüscher, JHEP 04 (2013) 123

∂τBμ = DνGνμ with Bμ |τ=0 = Aμ & Gμν = ∂μBν − ∂νBμ + [Bμ, Bν]

 is a regularized gluon fieldBμ

Apply this idea to ChPT:
(Proposed in various talks by D. Kaplan for nuclear forces)

Introduce a smoothed pion field  with  satisfying GFEW W |τ=0 = U

 with  and ∂τW = i w EOM(τ) w w = W EOM(τ) = [Dμ, wμ] +
i
2

χ− −
i
4

Tr(χ−)

wμ = i(w†(∂μ − i rμ)w − w(∂μ − i lμ)w†), χ− = w†χw† − wχ†w, χ = 2B(s + ip)

Note: The shape of regularization is dictated by the choice of the right-hand side of GFE

Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN

HK, Epelbaum, PRC 110 (2024) 4, 044004

Balitsky, Yung, PL168B (1986) 113; Irwin, Manton, PLB 385 (1996) 187



Gradient-Flow Equation

[∂τ − (∂x
μ∂x

μ − M2)]ϕ(1)
b (x, τ) = 0, ϕ(1)

b (x,0) = πb(x)

In the absence of external sources we have

[∂τ − (∂x
μ∂x

μ − M2)]ϕ(3)
b (x, τ) = (1 − 2α)∂μϕ(1) ⋅ ∂μϕ(1)ϕ(1)

b − 4α∂μϕ(1) ⋅ ϕ(1)∂μϕ(1)
b

+
M2

2
(1 − 4α)ϕ(1) ⋅ ϕ(1)ϕ(1)

b , ϕ(3)
b (x,0) = 0

Iterative solution in momentum space:

ϕ̃(1)
b (q) = e−τ(q2+M2)π̃b(q)

ϕ̃(n)(q, τ) = ∫ d4x eiq⋅xϕ(n)
b (x, τ)

ϕ̃(3)
b (q) = ∫

d4q1

(2π)4

d4q2

(2π)4

d4q3

(2π)4
(2π)4δ(q − q1 − q2 − q3)∫

τ

0
ds e−(τ−s)(q2+M2)e−s∑3

j=1 (q2
j +M2)

× [4α q1 ⋅ q3 − (1 − 2α)q1 ⋅ q2 +
M2

2
(1 − 4α)]π̃(q1) ⋅ π̃(q2)π̃b(q3)

Integration over momenta of pion fields with Gaussian prefactor introduces smearing

Analytic solution is possible of  - expanded gradient flow equation:1/F

W = 1 + iτ ⋅ ϕ(1 − αϕ2) −
ϕ2

2 [1 + (1
4

− 2α)ϕ2] + 𝒪(ϕ5), ϕb =
∞

∑
n=0

1
Fn

ϕ(n)
b



Properties under Chiral Transformation

Chiral transformation: by induction, one can show 

U → RUL† W → RWL†

Replace all pion fields in pion-nucleon Lagrangians :ℒ(1)
πN, …, ℒ(4)

πN U → W

Regularized pion fields transform under  - independent transformationsτ

ℒ(1)
πN = N†(D0 + g u ⋅ S)N → N†(D0

w + g w ⋅ S)N

N → KN, K = LU†R†R U

Nucleon fields transform in  - dependent wayτ

N → KτN, Kτ = LW†R†R W



Regularization for Nuclear Forces
To regularize long-range part of the nuclear forces and currents

Leave pionic Lagrangians  unregularized (essential)ℒ(2)
π & ℒ(4)

π

Replace all pion fields in pion-nucleon Lagrangians :ℒ(1)
πN, …, ℒ(4)

πN U → W

ℒ(1)
πN = N†(D0 + g u ⋅ S)N → N†(D0

w + g w ⋅ S)N

∼ e−τ(q2+M2) ∼ e−2τ(q2+M2) 1
q2 + M2

For  this regulator reproduces SMS regularization of OPEτ =
1

2Λ2



Path-Integral Framework 
for Derivation of Nuclear Forces

HK, Epelbaum, PRC110 (2024) 4, 044003

Regularized pion-nucleon vertices include time-derivatives:

Difficulties in formulation of regularized chiral EFT

 - dependence in exponential leads to second and higher order time-derivatives 
       in pion-nucleon interactions
q0

Canonical quantization of the regularized theory becomes difficult 
(Ostrogradski - approach, Constrains, …)

∼ e−τ(q2+M2) q2 = q2
0 + q2

1 + q2
2 + q2

3with



Canonical vs Path-Integral Quantization

Path-Integral approach is a natural choice in pionic and single-nucleon sector
Gasser, Leutwyler, Annals Phys. 158 (1984) 142; 
Bernard, Kaiser, Kambor, Meißner, Nucl. Phys. B 388 (1992) 315

In two - and more - nucleon sector Weinberg used canonical quantization language
Weinberg Nucl. Phys. B 362 (1991) 3 

To see the origin of these infrared divergences, consider the simple one-

loop graph shown in Figure I for nucleon-nucleon scattering at zero kinetic 

energy. Using the approximation (I) for the nucleon propagator, this gives a 

matrix element proportional to 

1 d'q (qo + i<ft(qo _ ;,)-t(q' + m;)-' P(q) 

where P(q) is a polynomial in the pion four-momentum q. This polynomial 

includes terms that are non-vanishing in the limit q0 ---+ 0, so the integral 

over q0 has an infrared divergence: 

1 dqo(qo + i<)-t(q"- i<ft . 

The contour of integration is pinched between the two poles at q0 = =fit:, and 

so cannot be distorted to avoid these singularities. In contrast, for the crossed 

ladder graph both poles are on the same side of the integration contour, while 

in one-nucleon processes there is only one pole, so in these cases there are no 

infrared divergences. 

Of course the infrared divergence in Figure 1 is not real; it only arises 

because we use the approximation (3) for the nucleon propagators. Including 

the term q2 in ( P + qf in the denominators of the nucleon propagators shifts 

the poles to q0 "' ± (q 2 /2mN- i<), so that the q0 integral has the finite value 

2mNi7r / ij2 • Equivalently, the infrared divergence forces us to include in the 

Lagrangian the nucleon kinetic energy term: 

C.,n = N\12 N /2mN . (9) 

7 

The important point is that although with these corrections the q0 integral 

is finite, it is not of the order I Ql- 1 called for by our power-counting rules, 

but is larger by a factor of order mN/It/1. The failure of perturbation theory 

that is manifested in nuclear binding is to be blamed on such large factors. 

Rather than try to keep track of these nearly infrared-divergent graphs, 

it is much more convenient to switch over to old-fashioned perturbation the-

ory, where the integrals are only over three-momenta, and the problem with 

our power counting is one of small energy denominators rather than nearly 

infrared divergent integrals over energies. Intermediate states that contain 

pions have energy denominators of order Q, while those containing only nu-

cleons have much smaller energy denominators, of order Q2 /mN. To avoid 

the small energy denominators, we define an effective potential as the sum of 

connected old-fashioned perturbation theory graphs for the T-matrix exclud-

ing those with pure-nucleon intermediate states. As shown in I, the number 

v of powers of Q in each term of perturbation theory for the effective po-

tential is again given by Eq. (7). In particular, the leading terms for the 

effective potential are given by tree graphs (i. e., L :::; 0), constructed from 

the simplest chiral-invariant interactions, satisfying Eq. (8). 

In using old· fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of 

canonical quantization to the leading terms in (1) and (9) yields the total 

8 

Can we choose a formulation where we can work with the Lagrangian?

Canonical Quantization of QFT Path-Integral Quantization of QFT

Creation/annihilation operators

Hamiltonian & Hilbert space

Time-ordered perturbation theory

Lagrangian & action

Summation over all classical paths

Loop expansion & Feynman rules



Lagrangian Formulation of Chiral EFT
Lagrangian formulation of chiral EFT so far

Path-integral formulation of chiral EFT with instant interactions on the lattice
Borasoy, Epelbaum, HK, Lee, Meißner, EPJA 31 (2007)105

Lagrangian formulation with subtractions: diagrammatic approach
Kaiser, Brockmann, Weise, Nucl. Phys. A 625 (1997) 758

Less transparent in quantification of off-shell ambiguities

Irreducible part of
the box diagram

Instant interactions generate only iterative part of the NN amplitude

Lagrangian formulation with instant subtractions: T - matrix approach
Gasparyan, Epelbaum, Phys. Rev. C 105 (2022) 2, 024001

Nucleon-field transformation in a derivation of isospin violating nuclear forces
Friar, van Kolck, Rentmeester, Timmermans, Phys. Rev. C 70 (2004) 044001



Illustration fo Yukawa Model
We start with generating functional:

ℒ = N†(i
∂

∂x0
+

⃗∇2

2m
+

g
2F

⃗σ ⋅ ⃗∇ π ⋅ τ)N +
1
2 (∂μπ ⋅ ∂μπ − M2π2)

Yukawa toy-model:

Perform a Gaussian path-integral over the pion fields

Z[η†, η] = ∫ [DN†][DN]exp(i SN + i ∫ d4x(η†(x)N(x) + N†(x)η(x)))

Z[η†, η] = ∫ [DN†][DN][Dπ]exp(i ∫ d4x(ℒ + η†(x)N(x) + N†(x)η(x)))

SN = ∫ d4x N†(x)(i
∂

∂x0
+

⃗∇2

2m )N(x) − VNN
Non-instant one-pion-exchange 
interaction 

VNN = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x) ΔF(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y)

with non-instant pion propagator: ΔF(x) = ∫
d4q

(2π)4

e−i q⋅x

q2 − M2 + i ϵ



Instant Interactions from Path-Integral 
To transform        into an instant form we rewrite a pion propagatorVNN

1
q2

0 − ω2
q

= −
1

ω2
q

+
1

q2
0 − ω2

q
+

1
ω2

q
= −

1
ω2

q
+ q2

0
1

ω2
q

1
q2

0 − ω2
q

, ωq = ⃗q2 + M2

In coordinate space this corresponds to                                          withΔF(x) = ΔS(x) −
∂2

∂x2
0

ΔFS(x)

ΔS(x) = − ∫
d4q

(2π)4

e−i q⋅x

ω2
q

= − δ(x0)∫
d3q

(2π)3

ei ⃗q⋅ ⃗x

ω2
q

, ΔFS(x) = ∫
d4q

(2π)4

e−i q⋅x

ω2
q(q2

0 − ω2
q)

The decomposition                                          can be generalizedΔF(x) = ΔS(x) −
∂2

∂x2
0

ΔFS(x)

G(x) = ∫
d4q

(2π)4
e−i q⋅xG̃(q2

0 , q2) and               is differentiable at G̃(q2
0 , q2) q0 = 0

    Defining                                              andGS(x) = ∫
d4q

(2π)4
e−i q⋅xG̃(0,q2) GFS(x) = ∫

d4q
(2π)4

e−i q⋅x G̃(q2
0, q2) − G̃(0,q2)

q2
0

G(x) = GS(x) −
∂2

∂x2
0

GFS(x)



VNN = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x) ΔF(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y)

Instant Interactions from Path-Integral 

is instant

Perform an instant decomposition of the pion propagator ΔF(x) = ΔS(x) −
∂2

∂x2
0

ΔFS(x)

VNN = VOPE + VFS

VOPE = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x) ΔS(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y)

VFS =
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N†(x) ⃗στ]N(x)
∂2

∂x2
0

ΔFS(x − y) ⃗∇y ⋅ [N†(y) ⃗στ]N(y) is non-instant

VFS        is time-derivative dependent and thus can be eliminated 
                by a non-polynomial field redefinition

N(x) → N′ (x) = N(x) + i
g2

8F2 ∫ d4y [ ⃗στN(x)] ⋅ [ ⃗∇x
∂

∂x0
ΔFS(x − y)] ⃗∇y ⋅ [N†(y) ⃗στN(y)]

N†(x) → N′ †(x) = N†(x) − i
g2

8F2 ∫ d4y ⃗∇y ⋅ [N†(y) ⃗στN(y)][ ⃗∇y
∂

∂y0
ΔFS(y − x)] ⋅ [N†(x) ⃗στ]



Instant Interactions from Path-Integral 

VOPE = −
g2

8F2 ∫ d4x d4y ⃗∇x ⋅ [N′ †(x) ⃗στ]N′ (x) ΔS(x − y) ⃗∇y ⋅ [N′ †(y) ⃗στ]N′ (y)

Non-local field transformations remove time-derivative dependent two-nucleon
interactions but generate time-derivative dependent three-nucleon interactions. 

These contributions can be eliminated by similar field transformations

Z[η†, η] = ∫ [DN′ †][DN′ ] det (δ(N′ †, N′ )
δ(N†, N) )exp(i SN(N′ †,N′ ) + i ∫ d4x(η†(x)N(N′ †, N′ )(x) + N(N′ †, N′ )†(x)η(x)))

≃ ∫ [DN′ †][DN′ ] det (δ(N′ †, N′ )
δ(N†, N) )exp(i SN(N′ †,N′ ) + i ∫ d4x(η†(x)N′ (x) + N′ †(x)η(x)))

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.

SN(N′ †,N′ ) = ∫ d4x N′ †(x)(i
∂

∂x0
+

⃗∇2

2m )N′ (x) − VOPE + 𝒪(g4)

Instant one-pion-exchange interaction



One-Loop Corrections to Interaction
One loop corrections to NN & NNN interaction come from functional determinant

det (δ(N′ †, N′ )
δ(N†, N) ) = exp(Tr log

δ(N′ †, N′ )
δ(N†, N) )

Due to non-local structure of field transformations det (δ(N′ †, N′ )
δ(N†, N) ) ≠ 1

SN(N′ †,N′ ) = ∫ d4x N′ †(x)(i
∂

∂x0
+

⃗∇2

2m
+

3g2M3

32πF2 )N′ (x) − VOPE + 𝒪(g4)

Nucleon mass-shift 
is reproduced from functional determinant

Note: The Z-factor of the nucleon is equal to one. This is due to the replacement 

η†N + N†η → η†N′ + N′ †η in the generating functional Z[η†, η]

The original Z-factor of the nucleon is reproduced if we remove this replacement

Z = 1 −
9M2g2

2F2 (λ̄ +
1

16π2 (log
M
μ

+
1
3

−
π
2

M
μ

)))

Langacker, Pagels, PRD 10 (1974) 2904



 Path-integral Approach
We start with generating functional:

Z[η†, η] = ∫ [DN†][DN][Dπ]exp(i ∫ d4x(ℒπ + ℒπN + ℒNN + ℒNNN + η†(x)N(x) + N†(x)η(x)))
Integrate over pion fields via loop-expansion of the action

expansion of the action around the classical pion solution

Perform instant decomposition of the remaining interactions between nucleons

Perform nucleon-field redefinitions to eliminate non-instant part of the interaction

Calculate functional determinant to get one-loop corrections to few-nucleon forces

Unitary transformation (Okubo) & path-integral approaches lead to the same chiral EFT 
nuclear forces up to N4LO

Checks in dimensional regularization



Status Report on 3NF
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Status Report on 3N at N3LO
We calculated all long- and short-range contributions to 3NF & 4NF at N3LO 
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3NF’s are given in terms of integrals over Schwinger parameters 

V2π−1π
3N = τ1 ⋅ τ2 × τ3 ⃗q1 ⋅ ⃗σ1 × ⃗σ2 ⃗q3 ⋅ ⃗σ3

e− q2
3 + M2π

Λ2

q2
3 + M2

π ( −
g4

A

F6
π

q1

2048π ∫
∞

0
dλ erfi( q1λ

2Λ 2 + λ )
exp( −

q2
1 + 4M2

π

4Λ2 (2 + λ))
2 + λ

+ …) + …

Dimension of integrals over Schwinger parameters depends on topology

Space

Momentum 2 1 3

Coordinate 4 1 0
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Selected Profile Functions
V ring

3N = F1(r12, r23, r13) + … + τ2 ⋅ τ3 ⃗σ1 ⋅ ⃗σ2F5(r12, r23, r13) + … F5(r) = F5(r, r, r) [MeV]

F 5
(r

)

r [fm]r [fm]

At  regularized 3NF reproduce dim. reg. results fromΛ → ∞ Bernard et al. PRC77 (08)

F 5
(r

)
F 5

(r
)

F 5
(r

)

r [fm]r [fm]
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Short Range 3NF at N3LO
We provide two versions of 3NF

Version 1: Non-local short-range 3NF which can be used with SMS potential

Local short-range 3NF to be used with the new NN potential Version 2:

Space

Momentum 1 1

Space

Momentum 1 1

Coordinate 0 0

2.4 MB

0.4 MB



Summary

Calculation of gradient-flow regularized 3NF at N3LO is finished

3PE contribution to NN has been calculated within unitary transformation approach

Outlook

PWD is computationally more expensive, due to higher dimension of integrals 
over Schwinger parameters

Partial wave decomposition (PWD): K. Hebeler, A. Nogga & K. Topolnicki

Gradient-flow regularization provides a regularization in a symmetry preserving way

Path-integral approach for derivation of nuclear forces



Short Range 3NF at N3LO
Complication in calculation of short-range 3NF due to non-local regulator of LO NN

Non-local regulator of short-range NN at LO 
introduces additional momentum in loop functions

Structure functions of short-range 3NF can become complex

Time-reversal transformation (T): ⃗σj → − ⃗σj, τy
j → − τy

j , ⃗qj → ⃗qj, ⃗kj → − ⃗kj

Hermitian conjugation (h.c.): ⃗σj → ⃗σj, τj → τj, ⃗qj → − ⃗qj, ⃗kj → ⃗kj

exp( −
(2( ⃗k2 − ⃗k3) + ⃗q2)2

8Λ2 ) + exp( −
(2( ⃗k2 − ⃗k3) − ⃗q2)2

8Λ2 ) Invariant under T and h.c.

i [exp( −
(2( ⃗k2 − ⃗k3) + ⃗q2)2

8Λ2 ) − exp( −
(2( ⃗k2 − ⃗k3) − ⃗q2)2

8Λ2 )] Invariant under T and h.c.

Combination of these functions are allowed to appear in structure functions

Structure functions might be complex: not related to unitarity cut (phase)



Short Range 3NF at N3LO
Complex structure functions of short-range part of 3NF require complex PWD

Is there a nucleon-field transformation which would make 3NF’s real?

Idea: Constrain field transformations needed to make interactions instant

Every  in field transformations should be accompanied with an „ “ϵijk i

Indeed, we achieved with these transformations an instant 3NF
and get real structure functions for short-range 3NF

Solution 1:

Change the regulator of short-range NN interaction at LO to local oneSolution 2:

Short-range 3NF’s at N3LO becomes local and automatically real

Expressions for local short-range 3NF’s at N3LO are simpler

PWD of local 3NF’s is less expensive

But: we need to generate a new NN force



NN phase shifts and mixing angles
δ[

de
g]

1S0

δ[
de

g]

1P1

δ[
de

g]

3S1

3P0

3P1

ϵ1

3D1

3D2

ϵ2

1D2

3P2

3D3

Elab [GeV] Elab [GeV] Elab [GeV] Elab [GeV]

Local short-range regulator at LO: ,  exp(−q2/Λ2) χ2 = 1.0069

Non-local short-range regulator at LO: , exp( − (p′ 2 + p2)/Λ2) χ2 = 1.0062

Λ = 450 MeV

Quality of nuclear force 
does not change when  
we change the regulator 
of the LO short-range NN 
interac*on

Local regulariza*on 
of the LO short-range NN 
leads to simpler 3NF 
at N3LO 

Heihoff et al. : forthcoming



Pion-Nucleon Scattering up to Q3

Calculation of pion-nucleon scattering with gradient-flow regulator required

TPE topology includes pion-nucleon amplitude as a subprocess

a b c d e f

EpelbaumFig05.pdf   1   4/5/12   1:41 PM

Pion-nucleon amplitude with gradient-flow regulator depends on ’s ci

Patrick Walkowiak’s master thesis

Appendix D: Figures

FIG. 1: Tree graphs for the reaction ⇡N ! ⇡N . The black/gray/white blob denotes an insertion
of the ci/di/ei- vertices. Crossed diagrams are not shown.
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FIG. 2: One-loop graphs for the reaction ⇡N ! ⇡N . For notation see Fig. 1.
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FIG. 3: Transition from leading to next-to-leading order loop graphs. For notation see Fig. 1.
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FIG. 4: Leading-order � pole diagram. The double solid line refers to �. For notation see Fig. 1.
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Fit LECs to pion-nucleon 
sub-threshold coefficients 
which are determined from 
Roy-Steiner equation

 ci  di

( )P. Buttiker, U.-G. MeißnerrNuclear Physics A 668 2000 97–112¨ 99

Fig. 1. Mandelstam plane. The Mandelstam triangle is the inside of the thick lines. The star marks the so-called
‘‘ideal point’’ explained in Section 4.

these calculations at the order they have been performed. In contrast to previous
investigations, we confine ourselves to the inside of the Mandelstam triangle for the
reasons mentioned above.
The manuscript is organized as follows. Some formalism pertaining to elastic

pion–nucleon scattering pertinent to our investigation is given in Section 2. In Section 3
we construct the invariant amplitudes inside the Mandelstam triangle by use of disper-
sion relations. The chiral perturbation theory amplitudes are fitted to these dispersive
amplitudes in Section 4. Further results on subthreshold parameters and the s-term are
discussed in Section 5. The summary and conclusions follow in Section 6.

2. Formal aspects of elastic pion–nucleon scattering

Consider elastic pion–nucleon scattering,

p a q qN p p b q qN p , 1Ž . Ž . Ž . Ž . Ž .1 1 2 2

Ž .with ‘a,b’ cartesian pion isospin indices and q , p the four-momenta of the pions andi i
the nucleons, respectively. The scattering amplitude is usually decomposed in terms of

"Ž . "Ž . Žthe four invariant functions A s,t and B s,t where the superscript ‘"’ refers to
.the isoscalarrisovector part ,

1ba q ba y b aw xT s,t sT s,t d qT s,t t ,t ,Ž . Ž . Ž .pN p N p N 2

m1" " "T s,t su p ,l A s,t q q qq g B s,t u p ,l , 2Ž . Ž . Ž . Ž . Ž . Ž . Ž .pN 2 2 2 1 m 1 12

2' Ž .with s the cms energy and ts q yq the invariant momentum transfer squared.1 2
Ž .The l is1,2 denote the helicities of the incomingroutgoing nucleon. In whati

follows, we also need the linear combinations related to the physical channels pqp
pqp and pyp pyp. These are related to the isospin amplitudes by

1" " 4X s,t s X s,t "X s,t , Xs A ,B . 3Ž . Ž . Ž . Ž .Ž .y q2



Cutoff Dependence of ci LECs

Fit ’s to pion-nucleon sub-threshold coefficients which are determined 
from Roy-Steiner equation

ci

Calculation of pion-nucleon scattering with gradient-flow regulator required

Patrick Walkowiak’s master thesis
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Saturation towards dim-reg results ( ) is fastΛ → ∞
For  the absolute value of  is smaller compared to  in dim-reg.Λ ∼ 500 MeV ci ci



Call for Consistent Regularization
Violation of chiral symmetry due to different regularizations: Dim. reg. vs cutoff reg.

Naive local cut-off regularization of the current and potential

1/m - corrections to TPE 3NF ∼ g2
A

&

First iteration with OPE NN potential

No such D-like term in chiral Lagrangian

The problematic divergence is canceled by the one             if calculated via cutoff regularization

In dim. reg.            =                + … is finite

V Q0,⇤
1⇡ = � g2A

4F 2
⇡

⌧1 · ⌧2
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(7)(1) (2) (3) (4) (5) (6)

FIG. 3. Tree diagrams contributing to the two-pion-exchange and one-pion-exchange-contact topology of the 3NF at N3LO. The solid
boxes denote insertions of either subsubleading di vertices from the effective pion-nucleon Lagrangian or the leading 1/m corrections. For
notation see Fig. 1.

there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
identities

(
τ 3σ

i
3 + τ 2σ

i
2

)
A23 = 1

4

(
τ 3σ

i
3 + τ 2σ

i
2 − τ 3σ

i
2 − τ 2σ

i
3

+ τ 2 × τ 3[σ⃗2 × σ⃗3]i
)

≡ Bi ,

(τ 2 × τ 3[σ⃗2 × σ⃗3]i)A23 = 2Bi ,
(
τ 3σ

i
2 + τ 2σ

i
3

)
A23 = −Bi , (2.4)

where the superscript i refers to the Cartesian component of
the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form

(X)A23 ≡ 1
2

(
X − 1 + σ⃗2 · σ⃗3

2
1 + τ 2 · τ 3

2
X

)
. (2.5)

It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.

III. TWO-PION-EXCHANGE-CONTACT TOPOLOGY

We now turn to the two-pion-exchange-contact diagrams
shown in Fig. 4. Evaluating the matrix elements of the
operators listed in Eq. (A1)

for diagrams (1)–(7) in this figure we find the g4
ACS and g4

ACT contributions to the two-pion-exchange-contact topology of the
form

V2π-cont = g4
ACT

8F 4
π

∫
d3l

(2π )3

[
τ 1 · τ 2

{(
1

ω4
+ω2

−
+ 1

ω2
+ω4

−

)[
q2

1 (q⃗1 · σ⃗2) (q⃗1 · σ⃗3) + 2q2
1 l2 (σ⃗2 · σ⃗3) − q2
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FIG. 3. Tree diagrams contributing to the two-pion-exchange and one-pion-exchange-contact topology of the 3NF at N3LO. The solid
boxes denote insertions of either subsubleading di vertices from the effective pion-nucleon Lagrangian or the leading 1/m corrections. For
notation see Fig. 1.

there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
identities
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3
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where the superscript i refers to the Cartesian component of
the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form

(X)A23 ≡ 1
2
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2
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2
X

)
. (2.5)

It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.

III. TWO-PION-EXCHANGE-CONTACT TOPOLOGY

We now turn to the two-pion-exchange-contact diagrams
shown in Fig. 4. Evaluating the matrix elements of the
operators listed in Eq. (A1)

for diagrams (1)–(7) in this figure we find the g4
ACS and g4
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form
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FIG. 3. Tree diagrams contributing to the two-pion-exchange and one-pion-exchange-contact topology of the 3NF at N3LO. The solid
boxes denote insertions of either subsubleading di vertices from the effective pion-nucleon Lagrangian or the leading 1/m corrections. For
notation see Fig. 1.

there are also no contributions at N3LO from tree diagrams
involving one insertion of the higher-order di vertices in the
effective Lagrangian [see graphs (6) and (7) in Fig. 3] except
for the relativistic corrections which will be considered in
Sec. IV. As explained in Ref. [4], the contributions from these
diagrams are suppressed by at least one power of Q/m where
Q denotes a genuine soft scale.

We are thus left with Eqs. (2.1) and (2.3) as the only
nonvanishing contributions to the one-pion-exchange-contact
3NF topology. We now show that these terms cancel each
other exactly if one takes into account the antisymmetric
nature of few-nucleon states. In particular, we use the
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where the superscript i refers to the Cartesian component of
the Pauli spin matrices and A23 denotes antisymmetrization
with respect to nucleons 2 and 3, which, for a momentum-
independent operator X, can be written in the form
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It is easy to see that adding the contribution from interchanging
the nucleons 2 and 3 to Eqs. (2.1) and (2.3) and performing
antisymmetrization with respect to these nucleons leads to
a vanishing result. Therefore, we conclude that there are no
one-pion-exchange-contact terms in the 3NF at N3LO.
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Iterative solution in Coordinate Space

Solid line stands for Green-function:
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FIG. 3: Schematic graphical representation of the solution of the gradient flow equation in coordinate space in the absence
of external sources. Solid dots denote a point xµ, ⌧ , while solid lines refer to the Green’s function defined in Eq. (4.32).
Light shaded areas visualize the smearing in Euclidean space-time, whose characteristic size is ⇠

p
2⌧ . Pion fields live on the

boundary with ⌧ = 0.

The boundary condition for �(3)(x, 0) can be derived by examining the matrix W (x, ⌧):
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where we have used that �(2)(x, ⌧) = 0. Given that �(1)
b (x, 0) = ⇡b(x), we obtain
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Using W |⌧=0 = U and matching Eq. (4.45) to Eq. (3.12), we finally obtain the boundary condition �(3)(x, 0) = 0.
We then write the solution of Eq. (4.43) in the form
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The corresponding momentum-space expression is given by
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By looking at the regulator
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one observes that not every pion field gets regularized since the first Gaussian regulator in the right-hand side of
Eq. (4.48) only acts on the total pion momentum q = q1+q2+q3. However, as will be argued below, this regularization
is su�cient for our purposes. Notice further that the above expression is non-singular for all values of the momenta
qi and q.

The above considerations help to elucidate the general structure of the solution of the gradient flow equation �(x, ⌧),
which is schematically depicted in Fig. 3. Specifically, the field �(x, ⌧) is expressed in terms of an increasing number
of smeared pion fields that live on the boundary ⌧ = 0, with the extent of smearing being controlled by the parameterp

2⌧ . In the limit ⌧ ! 0, all multi-pion contributions to � get suppressed and the field � turns to the pion field ⇡.
After these preparations, we are now in the position to define our regularization scheme using the gradient flow

method. In the Goldstone boson sector, we employ the standard (i.e., unregularized) Lagrangian L⇡ = L
(2)
⇡ +L

(4)
⇡ +. . .,

Light-shaded area visualizes smearing in Euclidean space of size ∼ 2τ
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ϕ(3)
b (x, τ) = ∫

τ

0
ds∫ d4y G(x − y, τ − s)[(1 − 2α)∂μϕ(1)(y, s) ⋅ ∂μϕ(1)(y, s)ϕ(1)

b (y, s)

− 4α ∂μϕ(1)(y, s) ⋅ ϕ(1)(y, s)∂μϕ(1)
b (y, s) +

M2

2
ϕ(1)(y, s) ⋅ ϕ(1)(y, s)ϕ(1)

b (y, s)]

G(x, τ) = θ(τ)∫
d4q

(2π)4
e−τ(q2+M2)e−i q⋅x


