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Reaction4Exp commented example:
4He+208Pb elastic and inelastic scattering

Introduction
This document describes briefly the use of the Reaction4Exp website for the case of
elastic scattering. We will use as example the 4He+208Pb reaction. The link to the
elastic scattering website is:

https://reaction4exp.us.es/elastic/index.php

1 Reminder of the optical model
In the optical model, the projectile-target interaction is described by means of an
effective interaction, U(R) (the optical potential). The scattering wavefunction, that
describes the relative motion between the projectile and target, is a solution of a
single-channel Schrodinger equation: [H − E]Ψ(R) = 0 where E is the CM energy.
This solution is conveniently expanded in spherical harmonics. For a central potential
(i.e. U = U(R)) and ignoring intrinsic spins, this yields:

Ψ(K,R) =
1

KR

∑
L

(2L+ 1)iLχL(K,R)PL(cos θ), (1)

where θ is the angle between the incident momentum K and the final momentum K′,
which corresponds to the scattering angle in the c.m. frame.

The radial functions χL(K,R) are determined inserting this expansion into the
Schrödinger equation, giving rise to an equation for each value of L,[

h̄2

2µ

d2

dR2
− h̄2

2µ

L(L+ 1)

R2
− U(R) + E

]
χL(K,R) = 0, (2)

where U(R) contains both the Coulomb and nuclear potentials.
The above Schrödinger equation is solved numerically from R = 0, starting from

the value χL(K, 0) = 0, and up to a maximum value (matching radius) Rmax. At this
distance, one imposes the boundary condition:

χL(K,R)|R=Rmax = i
2
eiσL

[
H

(−)
L (η,KRmax)− SLH

(+)
L (η,KRmax)

]
(3)

where σL are the Coulomb phase-shifts and H(±)(η,KR) are the ingoing (−) and out-
going (+) Coulomb functions. From the condition (3), one determines the coefficients
SL (S-matrix elements) which, in turn, are used to compute the elastic scattering
amplitude:

f(θ) = fC(θ) +
1

2iK

∑
L

(2L+ 1)e2iσL(SL − 1)PL(cos θ) (4)
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where fC(θ) is the scattering amplitude for pure Coulomb scattering (whose square is
the Rutherford cross section).

The differential elastic cross section is evaluated according to
dσ

dΩ
(θ) = |fC(θ) + fN(θ)|2. (5)

An important quantity is the reaction cross section, which is associated with the
flux of all non-elastic channels. In terms of the S-matrix elements it is given by:

σreac =
π

K2

∑
L

(2L+ 1)(1− |SL|2) (6)

where K is the cm wave number.

2 Optical model parameters
The projectile-target interaction is the sum of the Coulomb and the nuclear potentials.
For the Coulomb potential, the Reaction4Exp tool uses the Coulomb interaction for a
uniformly charged sphere:

Vc(r) =

{
κZ1Z2e2

2Rc

(
3− r2

R2
c

)
if r ≤ Rc

κZ1Z2e2

r
if r ≥ Rc

where Rc is related to the sum of the charge radii of the colliding nuclei. Instead of
using Rc directly, the Reaction4Exp website uses the so-called reduced radius, rc, which
is related to the physical radius as Rc = rc(A

1/3
1 +A

1/3
2 ), as is standard. In our working

example A1 = 4 and A2 = 208.
For the nuclear part, we consider the following parametrization in terms of volume

Woods-Saxon shapes, which is in fact the standard choice in the Reaction4Exp website:

Unuc(r) = −V0f(r, R0, a0)− iWvf(r, Ri, ai),

with
f(r, Rx, ax) = {1 + exp [(r −Rx)/ax]}−1 .

We will adopt the numerical values listed in table 1. In the website, reduced radii
are introduced. Then, these are converted internally to absolute (physical) radii using
the projectile and target atomic numbers: Rx = rx(A

1/3
p + A

1/3
t ).

Figure 1 shows a screenshot of the OM parameters section in the Reaction4Exp
website.

2.1 Numerical integration parameters
In addition to the optical potentials, we need to specify some additional parameters
required for the numerical integration of the radial equation. Although the application
sets some default values, it is convenient to check that the calculations are converged
with respect to these parameters. In the Reaction4Exp website, we need to specify the
following numerical parameters:
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System V0 r0 a0 Wv ri ai rc
[MeV] [fm] [fm] [MeV] [fm] [fm] [fm]

4He+208Pb 96.44 1.085 0.625 32 0.958 0.42 1.2

Table 1: Woods-Saxon parameters for 4He+208Pb optical model. Reduced radii (rx)
are converted into absolute (physical) radii as Rx = rx(A

1/3
p + A

1/3
t ).

Figure 1: Optical parameters section of the Reaction4Exp website.

• Integration step (h): This is the radial step used for the numerical integration
of the differential equation (2). It has to be chosen smaller than the diffuseness
of the potentials and than the characteristic wavelength of the projectile. A
simple criterion is to set hk ≤ 0.2, where k is the wave number associated with
the kinetic energy. For example, for Elab=22 MeV, k = 2.01 fm−1 and so h ≤
0.2/2.01 = 0.1 fm. If the integration step is too low for the considered energy,
the website will show a notification. Note that too small values of h may lead to
numerical instabiliites.

• Matching radius. This is the distance up to which the radial equations (2) are
integrated. Beyond the matching radius, the code will assume that all interac-
tions (but the monopole Coulomb one) have vanished and so the wavefunction
has reached its asymptotic behaviour, given by Eq. (3). Thus, the matching
radius must be chosen well outside the range of the optical potential. In our
example, this potential extends up to ≈ 10 fm, so Rmax ≥ 20 fm would be a
“safe” choice. Note that too large values for the matching radius may lead to
numerical issues.

• Minimum and maximum total angular momentum. The total angular
momentum is the sum of the orbital angular momentum L and the spins of
projectile and target: J⃗T = L⃗+ J⃗p+ J⃗t. In principle, the sum in L of Eq. (4) goes
from 0 to infinity. Therefore the minimum value of the angular momentum should
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be set to 0 unless there is some interest in visualizing the effect of low values of
L. (Even if the vector coupling J⃗p+ J⃗t is half-integer, so JT is half-integer and its
minimum value 0.5, setting the minimum value to 0 will be properly recognized by
the program). In practice, convergence of the scattering observables is achieved
for finite values of L since, for large values of L, SL → 1 and hence these values do
not contribute to the sum (4). This occurs because, for large partial waves, the
nuclear potential is negligible and the corresponding nuclear phase-shift tends to
zero.
Clearly, the maximum value of L must be larger than the “grazing” angular
momentum (Lg), i.e., the value of L corresponding to classical trajectories for
which the nuclei start to feel the nuclear interaction. When the Coulomb force is
weak, Lg can be estimated from the relation between the impact parameter and
the angular momentum for a classical trajectory1:√

L(L+ 1) ≈ L+
1

2
≃ kb. (7)

Then, Lg is estimated setting b = Rg, where Rg is called “grazing” or critical
radius, and corresponds to the distance at which the nuclei begin to experience
the nuclear interaction. The value of Rg is found to be somewhat larger than
the sum of the projectile and target radii (Rg > 1.2(A

1/3
p + A

1/3
t ) fm). A simple

estimate is given by Rg ≃ 1.45(A
1/3
p + A

1/3
t ) fm. If the deflection due to the

Coulomb interaction is important, instead of Eq. (7) we may use the relation
between the angular momentum and the distance of closest approach rmin for a
classical Coulomb trajectory:√

L(L+ 1) ≈ L+
1

2
= krmin

[
1− 2η

krmin

]1/2
(8)

where η is the Sommerfeld parameter. Then, we estimate Lg as the angular
momentum for which rmin = Rg. Expressions (7) and (8) tell us that the number
of partial waves (that is, values of L) involved in the calculation scales as the
square root of the kinetic energy.
The asymptotic region will correspond to “trajectories” well beyond the grazing
impact parameter so, ideally, Jmax

T ∼ Lmax ≫ Lg. This gives a hint to choose a
suitable value of Jmax

T . In practice, one increases progressively Jmax
T until conver-

gence of the studied observable is achieved. One can also verify that the reaction
cross section has dropped to 0 for Jmax

T . Note that too large values for Jmax
T may

lead to numerical problems in the calculation.
In some situations, we can estimate Rg (and hence Lg from the relations above)
from the elastic angular distribution. This is the case of Fresnel and Fraunhofer
scattering:

1This expression arises from the relation between the impact parameter and the angular momentum
in a classical trajectory due to a central potential, i.e., |L⃗| = mv b = p b. In quantum mechanics the
modulus of the angular momentum is

√
L(L+ 1)h̄ and the linear momentum is related to the wave

number by p = h̄k. Then, the relation above becomes
√
L(L+ 1) = kb.
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Figure 2: Numerical integration parameters section.

1. In Fresnel scattering, Lg is sometimes estimated as the value of L which
satisfies |SL|=0.5. Another common prescription is the quarter-point recipe.
In this case, one determines a “grazing” angle, θg, defined as the angle for
which the elastic cross section drops to 1/4 of the Rutherford cross section.
From this, one estimates the grazing angular momentum as

Lg + 1/2 ≈ η cot

(
θg
2

)
(9)

and Rg as the distance of closest approach for that Coulomb orbit:

Rg =
η

k

(
1 +

1

sin(θg/2)

)
(10)

2. In Fraunhofer scattering, the separation ∆θ of successive maxima or min-
ima gives a measure of the grazing angular momentum,

∆θ ≈ π/Lg, (11)

and then Rg can be estimated from kRg ≃ Lg+1/2. As in Fresnel scattering,
another estimate of Lg can be obtained from the S-matrix as |SLg |=0.5.

Figure 2 shows a screenshoot of the R4E section for the numerical inte-
gration parameters.

3 Interpretation of the results
In Table 2 we list some kinematical parameters, namely, the wave number (k), the Som-
merfeld parameter (η), and distance of closest approach in head-on Coulomb collision
(rmin). These quantities can be computed with the expressions,

k =

√
2µEcm

h̄2 =

√
2µElab

h̄2

At

At + Ap

; η =
ZpZte

2

h̄v
=

ZpZte
2µ

h̄2k
; rmin = κ

Z1Z2e
2

Ecm

where κ = 1/(4πϵ0). Note that this expression is more easily evaluated in a system of
units with κ = 1.
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Elab Ecm k η rmin
(MeV) (MeV) (fm−1) (fm)

5 4.91 0.960 23.1 48.1
10 9.81 1.36 16.3 24.1
22 21.6 2.01 11.0 10.9
27 26.5 2.23 9.94 8.9
60 58.9 3.32 6.67 4.0

Table 2: Useful kinematical parameters for the 4He+208Pb reaction at several incident
energies. The parameters k, η and rmin correspond, respectively, to the wave number,
the Sommerfeld parameter, and the distance of closest approach for a head-on collision.

Figure 3: Real and imaginary parts of the optical potential, as displayed by the Reac-
tion4Exp website.

3.1 Coulomb barrier
The nominal height of the Coulomb barrier can be estimated from the maximum of the
real (Coulomb plus nuclear) potential. According to Fig. 3 we see that this is around
22 MeV. This is consistent with the simple estimate:

Vb ≈
Z1Z2e

2

Rb

; Rb ≈ 1.44(A
1/3
1 + A

1/3
2 ) fm

which, in this case, gives Vb ≈ 21.8 MeV and Rb = 10.8 fm.

3.2 Differential cross sections
The elastic differential cross section is shown in Fig. 4 for several incident energies: 10,
22, 27 and 60 MeV, plotted relative to the Rutherford cross section. We can see that:
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Figure 4: Elastic differential cross sections relative to Rutherford cross section at
Elab=10, 22, 27 and 60 MeV (from left to right and top to bottom).

• At E=10 MeV, the ratio is almost 1, that is, we are in a situation of pure
Coulomb scattering and is well described by the Rutherford formula. At this
energy, the projectile does not feel the nuclear interaction. This is consistent with
large value of rmin listed in Table 2.

• At E=22 MeV, the distribution departs from the Rutherford formula, as a con-
sequence of the nuclear interaction. Beyond a certain angle (θc.m. ≈ 60◦), the
cross section drops quickly. This is typical of the “shadow” region observed in
diffraction that occurs in Fresnel scattering.

• At E=27 MeV, the elastic angular distribution displays a typical Fresnel diffrac-
tion pattern. We recall that a prerequisite for the observation of this pattern is
that Lg ≫ 1 and η ≫ 1. According to Table 2, at this energy η = 8.9, so the
latter condition is fulfilled. The grazing angular momentum can be estimated
from the condition |SL| = 0.5 which occurs for L ≃ 10.

• At E=60 MeV, the angular distribution displays a more oscillatory structure,
thus departing from the Fresnel pattern and approaching to what we have called
Fraunhofer scattering.

3.3 S-matrix elements
Reaction4Exp provides also the nuclear S-matrix2, which is related to the coefficient of
the outgoing waves for a given partial wave L [see Eq. (3)]. This is usually expressed
as

SL = e2iδL ,

2More precisely, the Coulomb modified nuclear S-matrix
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Figure 5: Modulus of the elastic S-matrix as a function of the total angular momentum
JT for energies Elab=10, 22, 27 and 60 MeV (from left to right and top to bottom).

where δL are the phase shifts of the Lth partial wave. Let us recall some properties of
the S-matrix and their associated phase shifts:

• In absence of nuclear potentials δL = 0 and SL = 1 ∀L

• If there are only real potentials, |SL| = 1 ∀L.

• When an imaginary potential is present, |SL| < 1 for small L but, for large L,
|SL| → 1 .

The fact that |SL| < 1 for small values of L reflects the loss of flux caused by the
imaginary potential. Classically, it can be understood through the relation (7) and
(8). Small impact parameters correspond to closer trajectories, and hence to a higher
sensitivity to the short-range potentials.

The Reaction4Exp website provides the modulus of the S-matrix. As an example,
we plot in Fig. 5, the modulus of the S-matrix at four different energies: 10, 22, 27
and 60 MeV. We see that:

• At E = 10 MeV, the modulus is almost 1 for all partial waves. This is telling us
that there is no effect from the nuclear potential.

• At E=22, 27 and 60 MeV, there is a range of values of L for which |SL| < 1.
Moreover, this absorptive effect becomes more important for increasing incident
energy.

• The range of values of L for which |SL| < 1 increases for increasing energy.
This can be understood as the increase of the grazing angular momentum with
increasing incident energy, according to Eq. (7).

Reaction4Exp also provides the Argand plot and the phaseshifts as a function of J,
but they will not be discussed at this point.
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3.4 Near-side and far-side decomposition of the elastic cross
section

In addition to the elastic cross section the Reaction4Exp website provides also the
nearside and farside components. In Fig. 6 this decomposition is shown for the 3
energies considered above. We can see that:

• At 10 and 27 MeV, the cross section is almost entirely due to the nearside tra-
jectories.

• At E=60 MeV, there are smooth regions dominated by either the nearside or
the farside components. However, around θcm ≈ 60◦ and θcm ≈ 170◦ both com-
ponents have similar magnitude, and their interference produces the observed
oscillations in the elastic scattering.

4 Inelastic scattering: 4He+208Pb → 4He+208Pb(3−)
at 23.5 MeV

This document describes briefly the use of the Reaction4Exp website for the case of
inelastic scattering. We will use as example the 4He+208Pb → 4He+208Pb(3−) reaction
at 23.5 MeV. This physics case is taken from the reference of Lilley et al, Nuclear
Physics A342, p. 165 (1980), Ref. I hereafter.

The link to the inelastic scattering website is:
https://reaction4exp.us.es/cc_fresco/fresco_cc.php

5 Brief reminder of the DWBA approximation
To describe an inelastic process of the form a+A → a+A∗ (target excitation) within
the DWBA approximation the projectile–target interaction is conveniently written as:

V (R, ξ) = V0(R) + ∆V (R, ξ), (12)

where V0(R) contains in general nuclear and Coulomb parts, and describes the relative
motion of the projectile and target, and ∆(R, ξ) is the part of the projectile–target
interaction which is responsible for the inelastic process. It depends on the internal
coordinates of the nucleus being excited ({ξ}) as well as on the projectile–target relative
coordinate (R).

We consider that the target nucleus is initially in its ground state, described by
some wavefunction ϕi(ξ), and is excited to some state ϕf (ξ). Within the DWBA
approximation, the scattering amplitude for this process is given by:

ffi(θ) = − µ

2πh̄2

∫
dR χ

(−)∗
f (Kf ,R)∆Vif (R)χ

(+)
i (Ki,R), (13)
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Figure 6: Far-side (orange) /near-side (blue) decomposition of the elastic cross cross
section 4He+208Pb at Elab=10, 27 and 60 MeV (top to bottom).

10



React4Exp Trento 2025

where θ is the scattering angle (in c.m. frame) and ∆Vif (R) is the transition potential

∆Vif (R) =

∫
dξϕ∗

f (ξ)∆V (ξ,R)ϕi(ξ). (14)

In Eq. (13), χ(+)
i (Ki,R) is the distorted-wave describing the projectile-target relative

motion in the incident channel. This distorted-wave is the solution of the Schrödinger
equation with the average potential V0(R):[

− h̄2

2µaA

∇2
R + V0(R)− Ei

]
χ
(+)
i (Ki,R) = 0 (15)

where Ei is the c.m. kinetic energy in the entrance channel. Typically, the nuclear
part of the optical potential V0(R) is parametrized in terms of some convenient form
(e.g. Woods-Saxon shape) and the parameters adjusted to reproduce the elastic angular
distribution. Analogously, χ(−)

f (Ki,R) is the corresponding distorted wave for the final
channel. In practice, we use the same potential as for the incident channel.

6 Radial formfactors in the collective model
In many practical situations, such as in the collective models considered here, it is
possible to write:

∆V (R, ξ) =
∑
λ>0

Fλ(R)
∑
µ

Tλ,µ(ξ)Yλµ(R̂) (16)

The transition potential is given by:

∆Vif (R) ≡ ⟨IfMf |∆V (R, ξ)|IiMi⟩ =
∑
λ>0

Fλ(R)⟨IfMf |Tλµ(ξ)|IiMi⟩Yλµ(R̂) (17)

where the formfactor Fλ(R) contains the radial dependence and Tλµ is a given multipole
operator depending on the structure model. Using the Wigner-Eckart theorem:

⟨IfMf |Tλµ(ξ)|IiMi⟩ = (2If + 1)−1/2⟨IfMf |IiMiλµ⟩⟨If∥Tλ(ξ)∥Ii⟩BM (18)

where ⟨If∥Tλ(ξ)∥Ii⟩ are the so-called reduced matrix elements.
We consider two important cases:

6.1 Coulomb excitations
The coupling potentials are given by:

∆Vif (R) ≡ ⟨f ; IfMf |∆V |i; IiMi⟩ =
∑
λ>0,µ

4πκ

2λ+ 1

Zte

Rλ+1
⟨f ; IfMf |M(Eλ, µ)|i; IiMi⟩Yλµ(R̂)

(19)
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where we see that Tλ,µ → M(Eλ, µ) is the electric multipole operator. Its reduced
matrix elements are related to the electric transition probability

B(Eλ; i → f) =
1

2Ii + 1
|⟨f ; If ||M(Eλ)||i; Ii⟩|2. (20)

In the collective rotor model, the B(Eλ) value can be related to the so-called
intrinsic reduced matrix element (Mn(Eλ)):√

B(Eλ; Ii → If ) = iIi−If+|Ii−If |⟨IiKλ0|IfK⟩Mn(Eλ) (21)

where K is the bandhead for the rotational band (for low-lying states of even-even nuclei
K is usually 0). If the initial state has spin Ii = 0, then Mn(Eλ) = ±

√
B(Eλ; 0 → If ).

6.2 Nuclear excitations
For small nuclear deformations the projectile-target nuclear interaction can be ex-
panded as:

V (R, ξ) ≃ V (R−R0)−
∑
λ,µ

δ̂λµ
dV (R−R0)

dR
Yλµ(θ, ϕ) + . . . (22)

where δ̂λ are deformation length operators. Hence, the transition potentials for nuclear
excitations (with λ > 0) are

Vif (R) = −dV (R−R0)

dR
⟨f ; IfMf |δ̂λµ|i; IiMi⟩Yλµ(R̂) (23)

The required structure input are the reduced matrix elements of the deformation oper-
ator which, in Reaction4Exp is given as a signed real number, the deformation length:

⟨f ;KIf∥δ̂λ∥i;KIi⟩ = δλ⟨IiKλ0|IfK⟩ (24)

Note that, in the rotor model, the sign of δλ and Mn(Eλ) is the same. The
Reaction4Exp calculations require the Mn(Eλ) and δλ parameters.

In general, both the Coulomb and nuclear interactions will contribute to the ex-
citation and so the transition potential will be the sum of the nuclear and Coulomb
transition potentials and, consequently, the corresponding scattering amplitude will be
given by the coherent sum of the individual nuclear and Coulomb amplitudes, i.e.,

fif (θ) = fN
if (θ) + fC

if (θ). (25)

Since the corresponding inelastic cross section is proportional to the square of fif (θ),
interference effects will occur between the nuclear and Coulomb parts.

It is common to use a dimensionless parameter, the deformation parameter β, to
describe the deformation, which can be related to the inputs for the Reaction4Exp
calculations through:
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Figure 7: Optical model parameters from Lilley et al, NPA 342, 165 (1980).

βC =
4π⟨IiKλ0|IfK⟩Mn(Eλ)

3ZeRλ
c

(26)

βN =
δλ
Rn

, (27)

where Z is the charge of the deformed nucleus, Rc its average charge radius and Rn its
average mass radius.

7 Reaction4Exp calculations
For the Reaction4Exp calculations, we will use the optical model potential C of Table 1
of Lilley et al (see Fig. 7). The considered excitation, 0+ → 3− has necessarily λ = 3 so
we will need the corresponding intrinsic reduced Coulomb matrix element and nuclear
deformation length. Note that the reduced radius is defined as R = RR(I)A

1/3
T so in

React4Exp Ap = 0 and At = 208
For the Coulomb part, we will consider a reduced Coulomb radius rC = 1.2 fm and

a value for βC = 0.113, taken from Table 2 in Ref 1 for potential set C. The deformation
can be extracted from this table as well δN = βNRN = 0.85 fm.

Some important issues to take into account for a correct implementation of these
calculations:

• The energy of the first 3− state of 208Pb can be consulted in https://www.nndc.bnl.gov/nudat3/

• In this case the target is the one excited. As such the parameters for the defor-
mation must be given for the target. As well, only the deformation for λ = 3 is
relevant in this calculation.

• A large value for the maximum total angular momentum JT > 100 is required
for convergence. Make sure to set absend to -1 to avoid an early cutoff.

The results obtained for the elastic and inelastic cross sections are displayed in
Fig. 8.
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Figure 8: Left: Elastic differential cross section (relative to Rutherford cross section).
Right: inelastic differential cross section.
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It is illustrative to study the separate effect of the Coulomb and nuclear couplings
in the inelastic cross sections. For this purpose, we can set to zero the corresponding
input in the calculation. The results are also included in Fig. 8. From these curves,
several conclusions can be drawn:

• The Coulomb excitation mechanism is dominant at intermediate angles, whereas
the nuclear excitation dominates the larger and smaller scattering angles. This
is a direct consequence of the “long-range” versus “short-range” nature of these
interactions and to the sharp decrease of Coulomb excitation at small angles.

• Around θc.m. ≈ 25◦ and 75◦ the Coulomb and nuclear cross sections are of sim-
ilar magnitude, and hence the interference effect between both contributions is
apparent at these angles. Moreover, we see that this interference presents both
constructive and destructive effects.
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