Do you know how to use Reaction4Exp platform?

Carla Tatiana Muñoz Chimbo

Access and general options

Customize styles plot, download results, external input.

Optical Model (FRESCO) and Classical Potential generator / SPP2.

Inelastic Scattering - FRESCO

Rotational Model / Deformations.

Transfer reactions - FRESCO Q-value, prior and post interaction.

Coulomb break up - EPM

Discrete and continuous distribution.

Welcome to Reaction4Exp!

Virtual access Infraestructure - University of Seville

Theo4Exp

EURO-LABS

Contact us

Start your calculation

Select the type of nuclear reaction and explore results

Coulomb break up

Elastic scattering

https://reaction4exp.us.es

Inelastic scattering

Access

https://iam-eurolabs.ijclab.in2p3.fr/login

1. Choose eduGain or Orcid for identification

2. EduGain: Look for your institution

3. Use your institutional username and password

General Options

Reaction data, potentials, results, plot options

Reaction information

- Projectile and target data
- Potentials
- Integration parameters

Reaction information

 $^{4}He + ^{13}C at Elab = 72 MeV$

- Projectile and target data
- Potentials
- Integration parameters

Potential options:

- Fresco format
- Global potential generator.
- Only available in elastic reactions (SPP2, external potential)

React	ion		Potentials		Integr	ration Parame	ters	
A _p and A _t for radii conversion								
-	$\mathbf{R}_0 = \mathbf{r}_0(\mathbf{A}_p)$	^{1/3} +A _t ^{1/3})	A _p	3	A _t 14			
In most nucleon-nucleus	reactions, <i>ap</i> in the rad the	lius conversi e mass numl	ion formula is typi pers (A) of the inv	cally zero. In olved elemen	nucleus-nucleu ts.	s reactions, <i>ap</i> and a	at represents	
Generate potential								
Coulomb potential	r _c (fm) 0,	65	Switch off Coulomb					
Nuclear potential								
Туре	Shape		V ₀ (MeV)	r ₀ (fm)	a ₀ (fm)	W ₀ (MeV)	r _i (fm)	a _i (fm)
Volume, central poten 👻	Woods-Saxon	• •	150	0,3	0,86	3,8	1,66	0,469
+ • spp2	1							

FRESCO Potential

- Radii conversion
- Coulomb potential
- Nuclear potential
 - *V*₀, *W*₀: Real and imaginary widths. (negative signs are automatically applied)
 - r₀, r_i: real and imaginary reduced radius.
 - a_0, a_i : Real and imaginary diffuseness.

FRESCO Potential

- Radii conversion
- Coulomb potential
- Nuclear potential
 - *V*₀, *W*₀: Real and imaginary widths. (negative signs are automatically applied)
 - r_0, r_i : real and imaginary reduced radius.
 - a_0, a_i : Real and imaginary diffuseness.

FRESCO Potential

- Radii conversion
- Coulomb potential
- Nuclear potential
 - V_0 , W_0 : Real and imaginary widths. (negative signs are automatically applied)
 - r_0, r_i : real and imaginary reduced radius.
 - a_0, a_i : Real and imaginary diffuseness.

Nuclear potential								
Туре	Shape		V ₀ (MeV)	r ₀ (fm)	a ₀ (fm)	W ₀ (MeV)	r _i (fm)	a _i (fm)
Volume, central poten 🖌	Woods-Saxon	~	150	0,3	0,86	3,8	1,66	0,469

Reaction information

 $^{4}He + ^{13}C at Elab = 72 MeV$

- Projectile and target data
- Potentials
- Integration parameters

Integration parameters

- Radial step (h) It has to be chosen smaller than the diffuseness of the potentials and than the characteristic wavelength of the projectile. A simple criterion is to set hk ≤ 0.2, where k is the wave numbers associated with the kinetic energy (k = √2 Ecm µ /ħ).
- Matching radius (for R > RMATCH asymptotic behaviour is assumed)

CALCULATE

Reaction information

- Projectile and target data
- Potentials
- Integration parameters

Results

- Plot visualization
- Data in Fresco format
- Save input file (generated by FRESCO in Reaction4Exp) -> Simplifies future data entry (external input)
- Save detailed output -> provides additional information for expert users.

Optical Model Calculation By FRESCO

³He + ¹⁴C Elastic scattering, Elab= 72 MeV

Results

- Plot visualization
- Data in Fresco format
- Save input file (generated by FRESCO in Reaction4Exp) -> Simplifies future data entry (external input)
- Save detailed output -> provides additional information for expert users.

Plot Options

Customize plot appearance (axes, labels, colors)

Compare with experimental data

Download plot as image (.png)

Download underlying data (.txt)

Aditional options (e.g.: farside/nearside components)

Plot Options

Customize plot appearance (axes, labels, colors)

Compare with experimental data

Download plot as image (.png)

Download underlying data (.txt)

Aditional options (e.g.: farside/nearside components)

Customize plot appearance

Download

- 1. Title: show/hide , position, font size, color.
- 2. Legend: show/hide position, size.
- 3. Axis: min/max (XY), grid display, logarithmic scale.
- 4. Style settings: axis title size, ticks size, line thickness, line color.

- 1. Title: show/hide , position, font size, color.
- 2. Legend: show/hide position, size.
- 3. Axis: min/max (XY), grid display, logarithmic scale.
- 4. Style settings: axis title size, ticks size, line thickness, line color.

Image: Construction of the second sec					
	Title	Legend	Axis	Plot	
	Min	М	ax Grid	S	cale
X axis:	0,00	100	0 🗸	\Box Log	garitmic X
Y axis:	0,00	7		\Box Log	garitmic Y

3He + 14C elastic scattering Elab=72 MeV

- 1. Title: show/hide , position, font size, color.
- 2. Legend: show/hide position, size.
- **3.** Axis: min/max (XY), grid display, logarithmic scale.
- 4. Style settings: axis title size, ticks size, line thickness, line color.

3He + 14C elastic scattering Elab=72 MeV

- 1. Title: show/hide , position, font size, color.
- 2. Legend: show/hide position, size.
- 3. Axis: min/max (XY), grid display, logarithmic scale.
- 4. Style settings: axis title size, ticks size, line thickness, line color.

Optical Model and Classical

Potential generator / SPP2

REACTION4EXP

VIRTUAL ACCESS INFRAESTRUCTURE - UNIVERSITY OF SEVILLE

Optical potential

 $^{4}He + ^{13}C$ at Elab = 72 MeV

Reaction data

Potentials

	Optical Model		Classical Mode	l		
Reac	tion	Potentials	Integra	ation Paramo	eters	
A _p and A _t for radii co	nversion ${f R}_0=r_0({f A_p}^{1/3}+{f A_p})$	$_{t}^{1/3}$) A _p 3	A t 14			
In most nucleon-nucleus reactions, <i>ap</i> in the radius conversion formula is typically zero. In nucleus- nucleus reactions, <i>ap</i> and <i>at</i> represents the mass numbers (A) of the involved elements.						
Coulomb potential		Switch	1			
Nu da una starati el	r _c (fm) 0,65	off Coulor	ib			
Nuclear potential	Shana	Vo(MeV) ro	(fm) ac(fm)	Wo(MeV)	r:(fm) a:(fr	n)
Volume. centr V	Woods-Saxo V	150	0,3 0,86	3,8	1,66 0,46	;9

Global potential generator

Developed by Danyang Pang, with TWOFNR frontend (Jeffrey A. Tostevin)

- It requires you to provide information about the projectile, the target, and the energy.
- Suggest potential type based on provided data.
- Calculate potentials across wide energy ranges.

Generate potential

```
^{4}He + ^{13}C at Elab = 72 MeV
```

Generate potential	
Name of potential	CGP08
(i) Target range Z=20	0-82, A=40-209, Elab=30-217
	Yanamata

Global potential generator

Particle	Potential Name	Cite	Ap (proj.m for R)	Range Z	Range A	Range E
	Becchetti Greenless	Phys. Rev. 182,1190 (1969)	0	20-92	4-238	10-50
Neutron	Koning Delaroche	Nucl. Phys. A713, 231 (2003)	0	13-83	27-209	0-200
	CH89	Phys. Rep. 201,57 (1991)	0	20-83	40-209	10-26
	Watson	Phys Rev, 1969		3-8	6-16	10-50
	Becchetti Greenless	Phys. Rev. 182,1190 (1969)	0	20-92	40-238	10-50
Droton	Koning Delaroche	Nucl. Phys. A713, 231 (2003)	0	13-83	27-209	0-200
Proton	CH89	Phys. Rep. 201,57 (1991)	0	20-83	40-209	10-26
	Watson	Phys Rev, 1969	0	3-8	6-16	10-50
	Perey Perey	Phys. Rev. 132,755 (1963)	0	20-82	40-208	11-27
Deuteron	An Cai	Phys. Rev. C73, 054605 (2006)	0	6-92	12-238	1-200
	Daehnick	Phys.Rev.C21,2253(1980)	0	13-90	27-238	11,8-90
Tritium	CGP08	PHYS.REV.C79,024615(2009)	0	20-82	40-209	30-217
³ He	CGP08	PHYS.REV.C79,024615(2009)	0	20-82	40-209	30-217
411-	Nolte	PRC 36(1987)1312	0	6-40	12-90	80
*He	Avrigeanu	Phys. Rev. C49,2136 (1994)	0	8-96	16-250	1-73
⁶ Li	Cook	Nucl.Phys.A388 (1982),153	0	12-82	24-208	13-156
⁷ Li	Cook	Nucl.Phys.A388 (1982),153	0	12-82	24-208	13-156
Heavy nuclei	Akyuz Winther	Proc.Enr.Fer.Int.Sch. Phys.,1979,491	ар	?	?	?

SPP2 São Paulo potential and Brazilian nuclear potential

https://reaction4exp.us.es/spp2

Computer Physics Communications Volume 267, October 2021, 108061

São Paulo potential version 2 (SPP2) and Brazilian nuclear potential (BNP) \Rightarrow , $\Rightarrow \Rightarrow$

L.C. Chamon ^a $\stackrel{ riangle}{\sim}$ $\stackrel{ riangle}{\sim}$, B.V. Carlson ^b, L.R. Gasques ^a

Show more \checkmark

🕂 Add to Mendeley 🛛 😪 Share 🍠 Cite

https://doi.org/10.1016/j.cpc.2021.108061 7

Get rights and content 🛪

Full text access

Abstract

The REGINA code calculates the São Paulo potential version 2 (SPP2) and the Brazilian nuclear potential (BNP). The code also provides nuclear densities obtained from the Dirac-Hartree-Bogoliubov model, which are used to calculate the nuclear potentials. Elastic <u>scattering cross sections</u> are obtained within the context of the optical model, with different options for the real and imaginary parts of the optical potential. In this manuscript, we provide a summary of the theoretical framework and information about the use of the code.

SPP2 São Paulo potential and Brazilian nuclear potential

Plot visualization

Data as .txt

Regina output

Potential SPP2 ³He + ¹⁴C Ecm = 59.294 MeV Real part Imaginary part 0 -20 -40 V,W (MeV) -60 -80 -100 -120 0 2 6 8 10 12 4 Reaction4Exp.us.es r(fm)

SPP2 potential	
502 0.050 0.	050
-0.1131475E+03	-0.1131475E+03
-0.1130701E+03	-0.1130701E+03
-0.1129412E+03	-0.1129412E+03
-0.1127607E+03	-0.1127607E+03
-0.1125289E+03	-0.1125289E+03
-0.1122459E+03	-0.1122459E+03
-0.1119118E+03	-0.1119118E+03
-0.1115268E+03	-0.1115268E+03
-0.1110912E+03	-0.1110912E+03
-0.1106053E+03	-0.1106053E+03
-0.1100692E+03	-0.1100692E+03
-0.1094835E+03	-0.1094835E+03
-0.1088484E+03	-0.1088484E+03
-0.1081645E+03	-0.1081645E+03
-0.1074321E+03	-0.1074321E+03
-0.1066518E+03	-0.1066518E+03
-0.1058241E+03	-0.1058241E+03
-0.1049497E+03	-0.1049497E+03
0.40400005.00	0.40400005.00

Calculation of the energy the velocit	independent Brazilian nu ty-dependent Sao Paulo po	clear potential (tential version 2	(BNP) and 2 (SPP2).
Theoretical distributions instead of those from the	or charge densities are e original SPP systematic	used cs.	
Projectile: A = 3 Z = Target: A = 14 Z =	2 6		
Ecm = 59.29 MeV			
Projectile densities from	the density.dat file		
Target distributions from	the distribution.dat fil	le	
Deformation lengths Neutron: delta2 = -0.003 Proton: delta2 = -0.006 Nucleon: delta2 = -0.005	delta4 = -0.003 delta4 = -0.004 delta4 = -0.003		
Parameter values for the o Neutron: rho0 = 0.1009 R0 Proton: rho0 = 0.0739 R0 Nucleon: rho0 = 0.1817 R0	deformed Fermi function = 2.369 a = 0.490 beta2 = 2.472 a = 0.418 beta2 = 2.368 a = 0.467 beta2	2 = -0.001 beta4 = 2 = -0.003 beta4 = 2 = -0.001 beta4 =	= -0.000 = 0.000 = -0.001
Parameter values for the s Neutron: rho0 = 0.1019 R0 Proton: rho0 = 0.0755 R0 Nucleon: rho0 = 0.1841 R0	spherical Fermi function = 2.358 a = 0.491 = 2.450 a = 0.420 = 2.354 a = 0.469		
Proton and neutron distrib	outions, and charge and m	natter densities:	
projectile			targe
r rop ron	roc rom	rop	ri

0.00 0.2659E+00 0.8078E-01 0.1391E+00 0.2064E+00 0.8820E-01 0.98

External potential

- OM elastic scattering angular distribution (fort.201)
- Fusion (absorption), reaction and inelastic cross section (fort.56)
- Potentials (fort.34)
- Elastic S-matrix (Fort.7)

3He + 14C elastic scattering Elab=72 MeV

- OM elastic scattering angular distribution (fort.201)
 - Far and near side
- Fusion (absorption), reaction and inelastic cross section (fort.56)
- Potentials (fort.34)
- Elastic S-matrix (Fort.7)

3He + 14C elastic scattering Elab=72 MeV

- OM elastic scattering angular distribution (fort.201)
 - Absolute value (plot options).
 - Comparation with experimental data.
- Fusion (absorption), reaction and inelastic cross section (fort.56)
- Potentials (fort.34)
- Elastic S-matrix (Fort.7)

Reaction cross sections for ELAB= 72.000, ECM= 59.294

- OM elastic scattering angular distribution (fort.201)
- Fusion (absorption), reaction and inelastic cross section (fort.56)
- Potentials (fort.34)
- Elastic S-matrix (Fort.7)

Optical Potential

- OM elastic scattering angular distribution (fort.201)
- Fusion (absorption), reaction and inelastic cross section (fort.56)
- Potentials (fort.34)
- Elastic S-matrix (Fort.7)

3He + 14C elastic scattering Elab=72 MeV

- OM elastic scattering angular distribution (fort.201)
- Fusion (absorption), reaction and inelastic cross section (fort.56)
- Potentials (fort.34)
- Elastic S-matrix (Fort.7)
Classical

Reaction data

Potentials

	Reaction	Potentials
and A _t for radi	i conversion	
	$R_0 = r_0(A_p^{1/3} + A_t^{1/3}) A_p$	3 A_t 14
In most nucleo nucleus-nuc	n-nucleus reactions, <i>ap</i> in the rate leus reactions, <i>ap</i> and <i>at</i> represe eleus	adius conversion formula is typically zero. In ents the mass numbers (A) of the involved ents.
enerate pote	ntial	
ılomb potentia	I	
	r _c (fm) 0,65	Switch off Coulomb
lear potential		
	Shape V ₀ (MeV)	$r_0(fm) = a_0(fm) = W_0(MeV) = r_i(fm)$
Туре		
Type Volume, c 🍾	Woods-Sε 150	0,3 0,86 3,8 1,66

Classical potential

- Coulomb potential
- Nuclear potential
- Global Potential generator

- Turning points
- Deflection function
- Survival probability
- Trajectories (select range B)

Turning points

- Deflection function
- Survival probability
- Trajectories (select range B)

- Turning points
- Deflection function
 - Sommerfeld parameter
 - Coulomb and nuclear rainbow
- Survival probability
- Trajectories (select range B)

- Turning points
- Deflection function
 - Sommerfeld parameter
 - Coulomb and nuclear rainbow
- Survival probability
- Trajectories (select range B)

- Turning points
- Deflection function
- Survival probability
- Trajectories (select range B)

Title		Axis	Impa	act Parameter
b min (0,5	b max	5]

Trajectories for 3He+14C at 72MeV 5 0 -5 y (fm) -10 -15 -20 -15 -10 -5 5 10 15 0 Reaction4Exp.us.es x (fm)

Classical Results

• Turning points

- Deflection function
- Survival probability
- Trajectories (select range B)

Rotational model for Inelastic scattering

Deformations

CARLA TATIANA MUÑOZ CHIMBO ⊖

VIRTUAL ACCESS INFRAESTRUCTURE - UNIVERSITY OF SEVILLE

Rotational Model For Inelastic Scattering - Coupled Channels And DWBA

 ${}^{64}Zn({}^{16}O, {}^{16}O){}^{64}Zn^*(2^+)$ at Elab = 44 MeV

- Projectile and target data
- Potentials
- Integration parameters

Defined excited states for projectile and target.

Choose calculation method:

- Coupled-Channels (CC)
- DWBA (1st order approximation)

Re	eaction	Pote	entials	Integrati	ion Parame	eters
Pro	jectile				Target	
Nucleus	А			Nucleus		А
0 ~	16			Zn	•	64
Spin	Parity E(M	eV)		Spin	Parity	E(MeV)
0	+1 🗸 0)		0	+1 🗸	0
			-	2	+1 🗸	0,992
			+			
Elab (MeV)	44					
	Select the calcul	ation model:	СС	DWBA		

Inelastic scattering: coupling potential

Coulomb excitation -> electric reduced matrix elements

$$V_{if}^{C}(\mathbf{R}) = \sum_{\lambda>0} \frac{4\pi}{2\lambda+1} \frac{Z_{t}e}{R^{\lambda+1}} \langle f; I_{f}M_{f} | M(E\lambda,\mu) | i; I_{i}M_{i} \rangle Y_{\lambda\mu}(\hat{R}) \\ \langle I_{f} | |M(E_{\lambda})| | K \rangle = \sqrt{(2I_{i}+1)B(E\lambda; I_{i} \to I_{f})}$$

• Nuclear excitation -> deformation lengths

$$V_{if}^{N}(\boldsymbol{R}) = -\frac{dV_{0}}{dR} \sum_{\lambda} \langle f; I_{f} M_{f} | \hat{\delta}_{\lambda\mu} | i; I_{i} M_{i} \rangle Y_{\lambda\mu}(\hat{R})$$

Rotor model

 $\langle K I_f | | M(E_{\lambda}) | | K I_i \rangle = \sqrt{2I_i + 1} \langle f I_i K \lambda 0 | I_f K \rangle \boldsymbol{M}_n(\boldsymbol{E}_{\lambda})$ $\langle K I_f | | \hat{\delta}_{\lambda\mu} | | K I_i \rangle = \sqrt{2I_i + 1} \langle f I_i K \lambda 0 | I_f K \rangle \boldsymbol{\delta}_{\lambda}$

 ${}^{64}Zn({}^{16}O, {}^{16}O){}^{64}Zn^*(2^+)$ at Elab = 44 MeV

	Reaction	Potentials		Integration Parameter	n S	
$\mathbf{A_p}$ and $\mathbf{A_t}$	for radii conversion					
		$R_0 = r_0(A_p^{1/3} + A_t^{1/3})$	/3)			
	Ap	A _t				
In mos nucl	t nucleon-nucleus reac eus-nucleus reactions,	tions, <i>ap</i> in the radius or <i>ap</i> and <i>at</i> represents the elements.	onversion for mass numb	rmula is typically ers (A) of the inv	zero. In rolved	
Generat	e potential					
Coulomb p	otential					
	r _c	1,2	Deform	nation		
Nucleare	4					
Nuclear po	tential					
Туре	Shape V ₀	(MeV) r ₀ (fm)	a ₀ (fm)	W ₀ (MeV)	r _i (fm)	a _i (fm)
Volume, 🗸 🗸	Woods-S; 🖌	0 1,25	0,65	0	1,25	0,65
Deformation						
+						

- Projectile and target data
- Potentials
- Integration parameters

Within the rotational model excitations are interpreted in terms of the deformation of the charge or mass distribution of the nucleus.

 Coulomb deformation: Intrinsic reduced matrix elements in units of *e*. *f* m^k

$$M_n(E_{\lambda}) = \pm \frac{\sqrt{B(E\lambda; I_i \to I_f)}}{\langle f \ I_i K \lambda 0 | I_f K \rangle}$$

• Nuclear deformation: lengths in units of fm

$$\delta_{\lambda} = \beta_{\lambda} R$$

- Projectile and target data
- Potentials
- Integration parameters

Within the rotational model excitations are interpreted in terms of the deformation of the charge or mass distribution of the nucleus.

 Coulomb deformation: Intrinsic reduced matrix elements in units of *e*. *f* m^k

$$M_n(E_{\lambda}) = \pm \frac{\sqrt{B(E\lambda; I_i \to I_f)}}{\langle f \ I_i K \lambda 0 | I_f K \rangle}$$

• Nuclear deformation: lengths in units of fm

$$\delta_{\lambda} = \beta_{\lambda} R$$

 ${}^{64}Zn({}^{16}O, {}^{16}O){}^{64}Zn^*(2^+)$ at Elab = 44 MeV

- Projectile and target data
- Potentials
- ${}^{64}Zn({}^{16}O, {}^{16}O){}^{64}Zn^*(2^+)$ at Elab = 44 MeV
- Integration parameters

	Reaction		Poten	Potentials		Integration Parameters		
Radial g	rid (fm):	step (h)	0,04	matching radius	50			
Total ang moment	gular um:	min	0	max	300			
Angular (degrees)	range):	min	0	max	180	step	0,1	

Integration parameters

- Radial step (h) It has to be chosen smaller than the diffuseness of the potentials and than the characteristic wavelength of the projectile. A simple criterion is to set hk ≤ 0.2, where k is the wave numbers associated with the kinetic energy (k = √2 Ecm µ /ħ).
- Matching radius (for R > RMATCH asymptotic behaviour is assumed)

- OM elastic scattering angular distribution (fort.201)
- Inelastic scattering angular distribution (fort.16)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)

Elastic scattering angular distribution Exp data 0.1 20 **40** 60 80 100 120 140 160 0 180

θc.m. (deg)

ପ/ପ_r

16O + 64Zn Coupled Channel Elab=44 MeV

Rotational model for Inelastic scattering Results

- OM elastic scattering angular distribution (fort.201)
- Inelastic scattering angular distribution (fort.16)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)

Reaction4Exp.us.es

16O + 64Zn Coupled Channel Elab=44 MeV

- OM elastic scattering angular distribution (fort.201)
- Inelastic scattering angular distribution (fort.16)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)

- OM elastic scattering angular distribution (fort.201)
- Inelastic scattering angular distribution (fort.16)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)

Integrated cross section 16O + 64Zn Coupled Channels, Elab= 44 MeV

Reaction cross section (mb)	262.16
Absorbtion cross section (mb)	105.60659

Projectile			Target			Integrated cross	
J	Parity	E (MeV)	J	Parity	E (MeV)	section (mb)	
0	1	0	2	1	0.992	156.56	

- OM elastic scattering angular distribution (fort.201)
- Inelastic scattering angular distribution (fort.16)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)

Q-value, post and prior interaction

REACTION4EXP

VIRTUAL ACCESS INFRAESTRUCTURE - UNIVERSITY OF SEVILLE

CARLA TATIANA MUÑOZ CHIMBO ⊕

Initial and final partition

⁵⁶Fe (d, p) ⁵⁷Fe at Elab = 12MeV

- Entrance Channel
- Exit channel
- Core-core
- Bound state: Entrance channel
- Bound State: Exit channel

$$\underbrace{a}_{b+x} + A \rightarrow b + \underbrace{x+A}_{B}$$

$$\left\langle \chi_{f} \Phi_{xA} \mid V_{bx} + U_{bA} - U_{bB} \mid \Phi_{bx} \chi_{i} \right\rangle$$

- Entrance Channel
- Exit channel
- Core-core
- Bound state: Entrance channel
- Bound State: Exit channel

$$\begin{array}{l} \underset{b+x}{a} + A \rightarrow b + \underset{B}{x + A} \\ (\chi_{f} \Phi_{xA} \mid V_{bx} + U_{bA} - U_{bB} \mid \Phi_{bx} \chi_{i}) \end{array}$$
Entrance Channel
Exit Channel
Core-Core
Bound State:
Entrance Channel
Bound State:
Entrance Channel
Exit Channel
Exit Channel

Radii conversion and Coulomb potentil

A_t 57

In most nucleon-nucleus reactions, *ap* in the radius conversion formula is typically zero. In nucleus-nucleus reactions, *ap* and *at* represents the mass numbers (A) of the involved elements.

Nuclear potential

An

- Entrance Channel
- Exit channel
- Core-core
- Bound state: Entrance channel
- Bound State: Exit channel

$$\underbrace{a}_{b+x} + A \rightarrow b + \underbrace{x + A}_{B}$$

$$\langle \chi_f \Phi_{xA} \mid V_{bx} + \underbrace{U_{bA}} - U_{bB} \mid \Phi_{bx} \chi_i \rangle$$

rance Channel	Exit Channel	Core-Core	Bound State: Entrance Channel	Bound State: Exit Channel
		p + ⁵⁶ Fe		
Use san	ne entrance channel p	potential.		
Use san	ne exit channel poten	tial.		
I	Radii conversion an	d Coulomb potentil	$R_0 = r_0 (A_p^{1/3} + A_t^{1/3})$)
$\mathbf{A_p}$		A _t 56	r _c 1,15	
Ir	n most nucleon-nucle	ous reactions, <i>ap</i> in the ra	adius conversion formula i	is
ty	pically zero. In nucle	eus-nucleus reactions, <i>ap</i> bers (A) of the involved	o and at represents the mas elements	5S
	IIIIII	iters (A) of the involved	cicinents.	
Nuclear po	tential			
Туре	Shape V ₍	₀ (MeV) r ₀ (fm) a	$_0(\mathrm{fm})$ W $_0(\mathrm{MeV})$ r _i	(fm) a _i (fm)
Volum •	- Woods -	47,9 1,25	0,65	

11,5

1,25

0,47

Surfac 🖌

Woods 🗸

- Entrance Channel
- Exit channel
- Core-core
- Bound state: Entrance channel
- Bound State: Exit channel

 $\underset{b+x}{a} + A \rightarrow b + \underbrace{x+A}_{B}$ $\langle \chi_f \Phi_{xA} | V_{bx} + U_{bA} - U_{bB} | \Phi_{bx} \chi_i \rangle$ **Bound State: Exit Bound State: Entrance Channel** Exit Channel Core-Core **Entrance Channel** Channel $\mathbf{p} + \mathbf{n}$ $R_0 = r_0(A_p^{1/3} + A_t^{1/3})$ Radii conversion and Coulomb potentil r_c [1 Ap A_t In most nucleon-nucleus reactions, *ap* in the radius conversion formula is typically zero. In nucleus-nucleus reactions, ap and at represents the mass numbers (A) of the involved elements. Nuclear potential V₀(MeV) r₀(fm) a₀(fm) Туре Shape 72,15 Volume, cei 🖌 Gaussian 1,484 ÷ Transferred particle bound state 2.225 1 be (MeV) n 0 1 Spectroscopic amplitude 0,5 sn 0,5

- Entrance Channel
- Exit channel
- Core-core
- Bound state: Entrance channel
- Bound State: Exit channel

 $\underset{b+x}{a} + A \rightarrow b + \underbrace{x+A}_{B}$ $\langle \chi_f \Phi_{xA} | V_{bx} + U_{bA} - U_{bB} | \Phi_{bx} \chi_i \rangle$ **Bound State: Exit Bound State: Entrance Channel** Exit Channel Core-Core **Entrance Channel** Channel $n + {}^{56}Fe$ $R_0 = r_0(A_p^{1/3} + A_t^{1/3})$ Radii conversion and Coulomb potentil $\mathbf{A_t}$ 56 $\mathbf{r_c} \begin{bmatrix} 1 \end{bmatrix}$ An In most nucleon-nucleus reactions, ap in the radius conversion formula is typically zero. In nucleus-nucleus reactions, ap and at represents the mass numbers (A) of the involved elements. Nuclear potential a₀(fm) V₀(MeV) r₀(fm) Туре Shape Volume, cei 🖌 Woods-Sax ~ 65 1,25 0,65 + Transferred particle bound state 2 be (MeV) 7,646 n Spectroscopic 1 0,9 amplitude 0,5 sn 0,5

Integration parameters

- Non local kernels: Describe the spatial overlap between channels. Kernel width, center and mesh settings
- Post and Prior interaction

$$V_{\text{post}} = V_{\text{p-n}} + \underbrace{U_{p-56Fe} - U_{p-57Fe}}_{remnant}$$
$$V_{\text{prior}} = V_{\text{n-56Fe}} + \underbrace{U_{p-56Fe} - U_{d-56Fe}}_{remnant}$$

⁵⁶Fe (d, p) ⁵⁷Fe at $E_{lab} = 12MeV$

Transfer DWBA Results

- OM elastic angular distribution (fort.201)
- Transfer angular distribution (fort.202)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)
- Potentials (fort.34)

FRESCO verifies that the non-local kernel is wide and centered to obtain numerically reliable results.

Entrance channel 2H + 56Fe Elab=12 MeV

Transfer DWBA Results

• OM elastic angular distribution (fort.201)

- Transfer angular distribution (fort.202)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)
- Potentials (fort.34)

Exit channel 1H + 57Fe Elab=12 MeV

- OM elastic angular distribution (fort.201)
- Transfer angular distribution (fort.202)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)
- Potentials (fort.34)

Reaction cross sections for ELAB= 12.000, ECM= 11.583

- OM elastic angular distribution (fort.201)
- Transfer angular distribution (fort.202)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)
- Potentials (fort.34)

Integrated cross section ⁵⁶Fe(²H,¹H)⁵⁷Fe Elab=12 MeV

Reaction cross section (mb)	1460.8
Absorbtion cross section (mb)	1450.22275

	Projectile			Targe	t	Integrated ever
J	Parity	E (MeV)	J	Parity	E (MeV)	section (mb)
0.5	1	0	0.5	-1	0	10.621

- OM elastic angular distribution (fort.201)
- Transfer angular distribution (fort.202)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)
- Potentials (fort.34)

Optical potential d + ⁵⁶Fe Elab = 12 MeV

- OM elastic angular distribution (fort.201)
- Transfer angular distribution (fort.202)
- Absorption, reaction and inelastic cross section (fort.56)
- Total cross section for all states (fort.13)
- Potentials (fort.34)

Coulomb Breakup Semiclassical equivalent photon method (EPM)

Discrete and continuous distribution
VIRTUAL ACCESS INFRAESTRUCTURE - UNIVERSITY OF SEVILLE

COULOMB BREAKUP

Equivalent Photon Model (EPM)

This program calculate differential Coulomb break up cross sections from external transition probabilities, both in angle and energy. Multipolarities included are dipole and quadrupole for electric transitions and only dipole for magnetic transitions. The results are presented in .dat format and graphically displayed. As output, it provides: the angular distribution of cross section, the energy distribution of cross section and the probability distribution.

Projectile and target

Projectile	Select	~	A	Energy (MeV)	Separation Energy
Target	Select		A		
https://reaction4	4exp	.U	s.es/e	epm	

Coulomb breakup EPM: Discrete distribution

Transition: E1, E2 and M1

Ex: Excitation energy of the final state (MeV)

B(**E**x;
$$i \rightarrow f$$
): Transition probability

Coulomb breakup EPM: Continuous distribution

• Transition: E1, E2 and M1

 Electric transition probability: File with two columns – energy grid from ermin to ermax (relative to neutron separation threshold) and dB/dE.

Projectne and	largel					
Disttype	Continuous 🗸					
Projectile	Li 🗸	11	Separation Energy (MeV)	0,38		
Target	Zn 🗸	64				
Lab Energy (MeV)	22,5		Transition	E1 ~		
Grid						
thmin 0,1 thmax 180 nth 180C thgr 180						
Electric transition probability						
Elegir archivo Experimental.dat						
ermin 0,1 ermax 7 ner 1000						

- Angular distribution of cross section
- Energy distribution of cross section and total cross section
- Probability distribution

Angular distribution of differential cross section

- Angular distribution of cross section
- Probability distribution
- Energy distribution of cross section and total cross section

Probability distribution

- Angular distribution of cross section
- Probability distribution
- Energy distribution of cross section and total cross section

Discrete -> Total cross section

Continuous -> Energy distribution of cross section

Transition	E(MeV)	σ (mb)
E1	0.32	2344.678

- Angular distribution of cross section
- Probability distribution
- Energy distribution of cross section and total cross section

Continuous -> Energy distribution of cross section:

Example: ${}^{11}Li + {}^{64}Zn at Elab = 22, 5 MeV$

- Angular distribution of cross section
- Probability distribution
- Energy distribution of cross
 section and total cross section

Additional information

More information about the programs:

At the bottom of each program's web page, you will find a description, user manuals and additional resources. You can also visit the main page:

https://institucional.us.es/theo4exp/reaction4exp.html

How do you cite reaction4exp results?

You can find the citation on the results page of each program.

The results obtained should be cited as follows:

This work has made use of the Virtual Access facility Theo4Exp funded by the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511. Surprise: CDCC in development

 \bigcirc

lacksquare

Thanks! May Reaction4Exp be your trusted sidekick in all your nuclear (reaction calculations.

