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Example: d+2%Pb — p + 2®Pb

Pb

@ What do we measure in a transfer reaction?
@ For a typical transfer reaction (e.g. d+°Pb — p + 2°Pb), one measures the angular
and energy distribution of outgoing fragments (e.g. protons).

@ Additionally, one may collect information of decay products of 2®Pb (e.g. y-rays, n,
p, etc)

© What information can we infer from a transfer reaction?

@ Excitation energies of the residual nucleus (**’Pb).
© Angular momentum assignment.

@ Single-particle content of populated states (i.e. spectroscopic factors).
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What do we measure in a transfer reaction?

Example: d+2%Pb — p + 2°Pb Phys. Rev. 159 (1967) 1039
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The proton energy spectrum shows some peaks which reflect the energy spectrum of the
residual nucleus *Pb).

Each peak has a characteristic angular distribution, which depends on the structure of the
associated state.

1 The population probability will depend on the reaction dynamics and on the structure
properties of these states.
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What do we measure in a transfer reaction?

Example: d+2%Pb — p + 2°Pb Phys. Rev. 159 (1967) 1039
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1= The proton energy spectrum shows some peaks which reflect the energy spectrum of the
residual nucleus (**Pb).

1 Each peak has a characteristic angular distribution, which depends on the structure of the
associated state.

= The population probability will depend on the reaction dynamics and on the structure
properties of these states.

Transfer reactions: the DWBA method A.M.Moro U¥  Universidad de Sevilla 3/18



Extracting excitation energies from transfer reactions

Consider: a+A - b+ B
@ Energy balance (in CM frame):

E +M,c* + Myc? = EL, + Myc® + Mpc?

e (O value:

Qo = Myc? + Mac® — Myc? — Mpc?

Ely =El, + Qo

e Q> 0: the system gains kinetic energy (exothermic reaction)
e (O < 0: the system loses kinetic energy (endothermic reaction)
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Transfer reactions: Q-value considerations

Example: d+2%Pb — p + 2Pb

d +*Pb

QO

Qo = Myc* + MC®Pb)c? — M,c? — M(*”Pb)c? = +1.7MeV

= Oy > 0: the outgoing proton will gain energy with respect to the incident deuteron.
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Transfer reactions: Q-value considerations

Example: d+2%Pb — p + 2Pb

d +*Pb

QO

Qo = Myc* + MC®Pb)c? — M,c? — M(*”Pb)c? = +1.7MeV

= Oy > 0: the outgoing proton will gain energy with respect to the incident deuteron.

N.b.: For a transfer reaction, the Q value is just the difference in binding energies of the
transferred particle/cluster in the initial and final nuclei:

0o = &p(f) — &p(i) = 3.936 — 2.224 = +1.7MeV
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Transfer reactions: Q-value considerations

If the transfer leads to an excited state, the O-value will change accordingly, and
hence the kinetic energy of the outgoing nuclei.
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Energy balance:

EL.=E_+0Q=E_+0Q-E,

w=[f we know Qg we can infer the excitation energies (E,) measuring the final kinetic
energy of outgoing fragments.
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DWBA modelspace

=
==
d+°Be*
i d+%Be p+'Be

= [n a transfer calculation, the modelspace will contain states belonging to
different mass partitions, and hence to different internal Hamiltonians.
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DWBA method for transfer reactions

@ Transfer process: (b +x)+A — b+ (A +x)
~~—— ~——

e Complications arise with respect to inelastic scattering because now we have two
different mass partitions involved

a+A > b+B
—— ——
a B

Transfer reactions: the DWBA method A.M.Moro U¥  Universidad de Sevilla 8/18



Evaluation of scattering amplitude in Born approximation (post form)

@ Projectile-target interaction in post representation:

Vﬁ(R,,l") =Vip+ Upp = Uﬁ(Rl) + [V + Upa — Uﬁ(R')] = Uﬂ(R’) + AVﬂ
S S—— e’
Aux. pot. Resid. inter.

@ Differential cross section:. In general, (%)(ﬁ o= (;‘:7‘1”2!;2 |7—ﬁ,a|2

@ In DWBA:

Taa®) = [ 25" (Ko RO (&) AV (7 Koo RIOu(Er) - dedR

N— e
final state initial state (all coordinates)
@ Initial and final internal states:
Initial state: @, (&;) = @ (&, T)DAE") Eu = 6,8, 1)
Final state: Og(&5) = p(E)Dp(£, 1) &=1e¢.r)

] X ) are distorted waves for entrance and exit channels, obtained with appropriate optical potentials
Ua(R), Up(R")

[Eem. = Tr = UsR)| x5 (Ko, R) = 0
[Eem, — Tre = UpR) | xy (K, R) = 0
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The important (d, p) case

= Introduce auxiliary potentials in entrance (U,(R)) and exit (Ug(R")) channels.

= Projectile-target interaction: Vg = V), + Ups = U,p(R") +V,,, + Upp — Upp = Up(R") + AV
| S——

AVg

» Internal states:
O (&) = @a(D)Pa(€) £ =1 1)
Dp(ép) = Dp(&, 1) &= {¢.r'}

= Post-form DWBA transition amplitude:

Tip = f f O (K, R)OE 1) (Vi + Ups = Up ks (K, R)ga(r)pa (&) dégdR’

= For medium-mass/heavy targets: Ups = Upp = Vi + Ups — Upp = V(1)
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(d, p) case: parentage decomposition of target nucleus

=> We need to evaluate the overlap integral

fdf' Pp(& . )Pa(E") = (BBlPa)

=> Use the parentage decomposition of B — A +n

O, 1) = AL A () + Y oa ey ()

A'#A

_ ZJI 914 r
= <¢B|¢A> - BA‘P,,A( )

g ﬂg: = spectroscopic amplitude

g I.?lfﬂl2 ;f/,]« = spectroscopic factor

g <pf£(r’) = single-particle wavefunction describing motion of n with respect to A.
5 The spectroscopic factor quantifies how much a given nuclear state (B) resembles
a particular configuration of a core nucleus (A) plus a nucleon (or cluster of
nucleons) in a given single-particle configuration.
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Examples of parentage decompositions

@ Double-magic nucleus plus a single nucleon:

Bi(gs))o2- ~ [FPPbO) @ lxlhop)], -

15 glmost single-particle configuration (Sf;j ~ 1).
© Deformed core plus an extra nucleon:
"Be(gs)ijze = a[|'Be@)) @ 2512}, .. +B[I"Be@") @ W1dsp)], . + ...

with e + |87 +... = 1

© Due to indistinguishability of neutrons (or protons) the SF can be even larger
than 1!
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Scattering amplitude and cross sections

=> In post form:

TOWBA - AT f f (K, RN (1) V() x5 (K, R)ga(r)dr’ dR’

2

f f (K, RDQ2 (1) Vo (1) 1 (K g, R)g(r)dr’ dR’

d_o' _ HoHp Ul
dQ) T (2nh2)? S

ulp _ gl
| A * = S}/, = spectroscopic factor

5 [n DWBA, the transfer cross section is proportional to the product of the

projectile and target spectroscopic factors. Comparing the data with DWBA

il
calculations, one can extract the values of Sy,
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Orbital angular momentum sensitivity
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wwAngular distributions of transfer cross sections are very sensitive to the single-particle
configuration of the transferred nucleon/s. = ¢,;(r)

1= From classical arguments, and assuming an infinite mass target, the angle of the first
maximum appears at:

\/—€(£’+1)h) , (\/—€(€+1))
— | = arcsm| —m—

Omax ~ arcsin
P;R Ko R

with P; the incident momentum of the projectile and R the distance at grazing.
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Summary: What do we learn form a transfer experiment

@ Excitation energies of residual nucleus

=> The Q-value is related to the masses and excitation energies
@ Spectroscopic factors (related to occupation numbers)

2> InDWBA, o' o SJ1

© Angular momentum of populated states.

=> For heavy targets, the first maximum occurs at:

NAGESD) 1)h)

Omax ~ arcsin
PR
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'H(''Be,'"Be)?H example

I""Be) = o |'° Be(0) ® v2s1,2) + 5 ' Be(2") @ vlds;) + ...

= In DWBA:
a0 oy o(2%) o« B
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'H(''Be,'"Be)?H example

I""Be) = o |'° Be(0) ® v2s1,2) + 5 ' Be(2") @ vlds;) + ...

= In DWBA:
a0 o« laf;  o(2%) o
Fortier et al, PLB461, 22 (1999)
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Transfer example: 5(’Fe(d,p)57Fe:

Dependence with binding energy for a fixed incident energy (12 MeV):

do/dQ (mb/sr)
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Dependence on beam energy
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Dependence on beam energy

e E > V,: diffractive structure, forward peaked.
@ E <« V,: smooth dependence with 6, backward peaked.
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At sub-Coulomb energies, the angular distribution is weakly sensitive to € transfer
(but sensitive to other parameters, such as the tail of the bound-state wavefunction)
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