Realistic Phenomenological Nuclear Mean Field Theory: Part [3] Examples of Applications – Nucleonic States in Deformed Nuclei

Jerzy DUDEK

University of Strasbourg/IPHC/CNRS, France and The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

Theo4Exp EUROLABS Hands-on Workshop

Examples of Collaboration Theory-Experiment*)

- Potential Energy Maps
- Isomers in Axial Nuclei
- Hartree Fock Bogolyubov Cranking Back-Bending
 - Shape-Transition Probabilities
 - Spatial Distributions of Nucleonic Wave Functions

*) Based on computer codes already available as well as to be installed

Large Scale Calculations – Examples

Section 1

Large-Scale Calculations of Nuclear Potential Energies with Multi-Processor Systems

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

Example 1 – Tracing Shape Competition

Reminder: $(\beta, \gamma) \leftrightarrow \mathcal{O}_{x,y,z}$ - Axis Orientations

• We work in multidimensional deformation spaces: \sim 3D, 4D, 5D

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

Reminder: $(\beta, \gamma) \leftrightarrow \mathcal{O}_{x,y,z}$ - Axis Orientations

We work in multidimensional deformation spaces: ~3D, 4D, 5D
We <u>must not use</u> the "camembert Δγ = 60° approximation"

Simultaneous Minimisation over α_{40} and α_{33}

Example 2 – Focus on the Way to Fission

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Example 3 – Tracing Exotic Octupole α_{32} – Tetrahedron

• Example of TETRAHEDRAL SYMMETRY minima. Prediction confirmed experimentally by JD and SB and collaborators: Phys. Rev. C 97, 021302(R) (2018) and Phys. Rev. C 111, 034319 (2025)

Example 4: Four Coexisting Octupole Projections

• 2D projections: $(\alpha_{31}, \alpha_{30}), (\alpha_{32}, \alpha_{30}), (\alpha_{33}, \alpha_{30}), (\alpha_{32}, \alpha_{31}), (\alpha_{33}, \alpha_{31}), (\alpha_{33}, \alpha_{32})$

• We should NOT forget that "octupole" is NOT 1 i m i t e d to "pear shape"

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Synthetic Comments For This Part

- Our nuclear potential data base contains ~90 000 various projections (usually called "maps") for several hundreds of even-even nuclei
- We believe, the approach is well adapted to support interpretation of various experiments and new proposal writing

Section 2

K-Isomers, Yrast Trap Isomers, Axial-Symmetry Imposed Hindrance Factors, and Mean-Field Theory Interpretation

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

Nuclear Spins Aligned With the Symmetry Axis

• One uses mean-field approach and the fact that in the case of an axial symmetry, say \mathcal{O}_z -axis we have

$$[\hat{H},\hat{\jmath}_z]=0$$

Consequently

$$\hat{H}\phi_{\nu,m_{\nu}}=e_{\nu,m_{\nu}}\phi_{\nu,m_{\nu}}$$

$$\hat{\jmath}_{z}\phi_{\nu,m_{\nu}}=m_{\nu}\phi_{\nu,m_{\nu}}$$

Projections of Angular Momenta Are Conserved in the Presence of Axial Symmetry

• The presence of axial symmetry (like any other symmetry) imposes certain hindrance mechanism: In the present case $\rightarrow \rightarrow \rightarrow \underline{K}$ -isomers

Tilted Fermi Surface: Lagrange Multiplier Method

• We would like to find the lowest energy excited configurations. C, denotes ensemble of indices of occupied states for protons and neutrons separately:

$$E^* = \sum_{\nu \in \{\mathcal{C}\}} e_{\nu}, \tag{A}$$

• The number of particles \mathcal{N} – is equal to N or Z

$$\sum_{\nu \in \{C\}} \mathbf{1}_{\nu} = \mathcal{N},\tag{B}$$

• The projected angular momentum, M, corresponds either to proton or to the neutron contributions, M_Z or M_N , respectively

$$\sum_{\nu \in \{C\}} m_{\nu} = \mathcal{M} \quad (M_Z \text{ or } M_N). \qquad (C)$$

 \bullet According to the Lagrange theorem, minimisation of (A) under conditions (B) and (C) is equivalent to the minimisation of an auxiliary expression

$$\tilde{E}_{M}^{*} = \sum_{\nu \in \{C\}} (e_{\nu} - \lambda \cdot 1_{\nu} - \omega \cdot m_{\nu}), (D)$$

where the so called Lagrange multipliers λ and ω are so far unknown.

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

Tilted Fermi Surface: Lagrange Multiplier Method

Minimisation of the expression in Eq. (D) under the conditions specified by Eqs. (A-B) is equivalent to searching the lowest points (e_{ν}, m_{ν})

$$\widetilde{E}_M^* = \sum_{\nu \in \{C\}} (e_{\nu} - \lambda \cdot 1_{\nu} - \omega \cdot m_{\nu}),$$

equivalent to finding all points strictly below the straight line

$$e = \lambda - \omega m$$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

Tilted Fermi Surface: Energy Minimisation at Fixed Spin

For the **p**article-**h**ole excited-states we obtain at the same time the theoretical energy and theoretical spin $\rightarrow \rightarrow \rightarrow A$. Bohr hypothesis:

$$I \approx M^*$$

$$E^* = \sum_p e_{p,m_p} - \sum_h e_{h,m_h}$$
 and $I \approx M^* = \sum_p m_p - \sum_h m_h$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Tilted Fermi Surface: Energy Minimisation at Fixed Spin

For the **p**article-**h**ole excited-states we obtain at the same time the theoretical energy and theoretical spin $\rightarrow \rightarrow \rightarrow A$. Bohr hypothesis:

$$I \approx M^*$$

$$E^* = \sum_p e_{p,m_p} - \sum_h e_{h,m_h}$$
 and $I \approx M^* = \sum_p m_p - \sum_h m_h$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Tilted Fermi Surface: Energy Minimisation at Fixed Spin

For the **p**article-**h**ole excited-states we obtain at the same time the theoretical energy and theoretical spin $\rightarrow \rightarrow \rightarrow A$. Bohr hypothesis:

$$I \approx M^*$$

$$E^* = \sum_p e_{p,m_p} - \sum_h e_{h,m_h}$$
 and $I \approx M^* = \sum_p m_p - \sum_h m_h$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Some Particle-Hole Excitations Generate Yrast-Traps

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

K-Isomers Example: ¹⁴⁷Gd – Realistic Calculations

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

K-Isomers

Example: ¹⁴⁷Gd – Realistic Calculations

Realistic Phenomenological Mean Field Universal Parametrisation: (Z,N)-Plane

A Powerful Tool: Tilted Fermi Surface Method (I)

• Theoretically suggested spin $I = \frac{7}{2} + 7 = \frac{21}{2} \rightarrow \text{Prediction: } I^{\pi} = \frac{21}{2}^+$

A Powerful Tool: Tilted Fermi Surface Method (I)

Experiment : $I_{exp.}^{\pi} = \frac{21}{2}^{+} (4.55 \text{ ns}) \leftrightarrow \text{Mean Field theory } I_{mf}^{\pi} = \frac{21}{2}^{+}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

A Powerful Tool: Tilted Fermi Surfaces - (II)

• Theoretically suggested spin $I = \frac{7}{2} + 10 = \frac{27}{2} \rightarrow$ Prediction: $I^{\pi} = \frac{27}{2}^{-1}$

A Powerful Tool: Tilted Fermi Surfaces - (II)

Experiment : $I_{exp.}^{\pi} = \frac{27}{2}^{-}$ (26.8 ns) \leftrightarrow Mean Field theory $I_{mf}^{\pi} = \frac{27}{2}^{-}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

A Powerful Tool: Tilted Fermi Surfaces - (III)

• Theoretically suggested spin $I = \frac{29}{2} + 10 = \frac{49}{2} \rightarrow \text{Prediction: } I^{\pi} = \frac{49}{2}^+$

A Powerful Tool: Tilted Fermi Surfaces - (III)

Experiment : $I_{exp.}^{\pi} = \frac{49}{2}^+$ (510 ns) \leftrightarrow Mean Tield theory $I_{mf}^{\pi} = \frac{49}{2}^+$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

These isomers were known for over 30 years or so...

What About the "Newer" Isomers in ¹⁴⁷Gd?

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities

Negative Parity Isomers in ¹⁴⁷Gd - (IV)

• Theoretically suggested spin $I = \frac{3}{2} + 0 = \frac{3}{2} \rightarrow \text{Prediction}$: $I^{\pi} = \frac{3}{2}^{-1}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Negative Parity Isomers in ¹⁴⁷Gd - (IV)

Experiment : $I_{exp.}^{\pi} = \frac{3}{2} (0.2 \text{ ns}) \leftrightarrow \text{Mean Field theory } I_{mf}^{\pi} = \frac{3}{2}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Negative Parity Isomers in ¹⁴⁷Gd - (V)

• Theoretically suggested spin $I = \frac{1}{2} + 4 = \frac{9}{2} \rightarrow \text{Prediction: } I^{\pi} = \frac{9}{2}^{-1}$

Negative Parity Isomers in ¹⁴⁷Gd - (V)

Experiment : $I_{exp.}^{\pi} = \frac{9}{2}^{-}(0.35 \text{ ns}) \leftrightarrow \text{Mean Field theory } I_{mf}^{\pi} = \frac{9}{2}^{-}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Negative Parity Isomers in ¹⁴⁷Gd - (VI)

• Theoretically suggested spin $I = \frac{3}{2} + 8 = \frac{19}{2} \rightarrow \text{Prediction: } I^{\pi} = \frac{19}{2}^{-1}$

Negative Parity Isomers in ¹⁴⁷Gd - (VI)

Experiment : $I_{exp.}^{\pi} = \frac{19}{2}^{-}(0.37 \text{ ns}) \leftrightarrow \text{Mean Field theory } I_{mf}^{\pi} = \frac{19}{2}^{-}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Positive Parity Isomers in ¹⁴⁷Gd - (VII)

• Theoretically suggested spin $I = \frac{1}{2} + 3 = \frac{7}{2} \rightarrow \text{Prediction}$: $I^{\pi} = \frac{7}{2}^{+}$

Positive Parity Isomers in ¹⁴⁷Gd - (VII)

Experiment : $I_{exp.}^{\pi} = \frac{7}{2}^+ (0.42 \text{ ns}) \leftrightarrow \text{Mean Field theory } I_{mf}^{\pi} = \frac{7}{2}^+$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS
Positive Parity Isomers in ¹⁴⁷Gd - (VIII)

• Theoretically suggested spin $I = \frac{13}{2} + 0 = \frac{13}{2} \rightarrow \text{Prediction}$: $I^{\pi} = \frac{13}{2}^{+1}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Positive Parity Isomers in ¹⁴⁷Gd - (VIII)

Experiment : $I_{exp.}^{\pi} = \frac{13}{2}^{+}$ (21.4 ns) \leftrightarrow Mean – Field theory $I_{mf}^{\pi} = \frac{13}{2}^{+}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Theory \leftrightarrow **Full Experimental Confirmation**

• Summary: All 8 double titled Fermi surface solutions for ¹⁴⁷Gd (lowest energy solutions according to Bohr tilted Fermi hypothesis) correspond to the experimentally confirmed results

No.	Ιπ	I_p^{π}	I_n^{π}	Isomer Lifetime
1	$3/2^{-}$	0+ 2-	$3/2^{-}$	0.20 ns
23	9/2-	3 4 ⁺	1/2 1/2 ⁻	0.42 ns 0.35 ns
4	13/2+	0+	13/2+	21.4 ns
5	19/2-	8+	3/2-	0.37 ns
6	21/2+	7-	7/2-	4.55 ns
7	27/2-	10+	7/2-	26.8 ns
8	49/2+	10+	29/2+	510 ns

Another Illustration of the Axial Symmetry and K-Conservation

Calculating Nuclear Yrast Lines

• Here: Yrast ¹⁴⁷Gd sequence calculated using the realistic phenomenological WS-universal mean field approach.

- Here: Yrast ¹⁴⁷Gd sequence calculated using the realistic phenomenological WS-universal mean field approach.
- The energy of each state has been minimised over several axial-symmetry deformation parameters.

- Here: Yrast ¹⁴⁷Gd sequence calculated using the realistic phenomenological WS-universal mean field approach.
- The energy of each state has been minimised over several axial-symmetry deformation parameters.
- We consider the number of meanfield configurations comparable to the sizes of the typical spherical shell-model Hamiltonian.

- Here: Yrast ¹⁴⁷Gd sequence calculated using the realistic phenomenological WS-universal mean field approach.
- The energy of each state has been minimised over several axial-symmetry deformation parameters.
- We consider the number of meanfield configurations comparable to the sizes of the typical spherical shell-model Hamiltonian.
- It is natural to ask:

How many parameters have been fitted to obtain the result on the right?

The quality of the description is a sign of "predictive power"

The quality of the description is a sign of "predictive power"

• Is this in stead just the case of *reproduction by fitting*?

The quality of the description is a sign of "predictive power"

- Is this in stead just the case of *reproduction by fitting*?
 - Or rather a manifestation of *predictive power*?

The quality of the description is a sign of "predictive power"

- Is this in stead just the case of *reproduction by fitting*?
 - Or rather a manifestation of *predictive power*?

In other words: How many parameters are fitted to spectra?

The quality of the description is a sign of "predictive power"

- Is this in stead just the case of *reproduction by fitting*?
 - Or rather a manifestation of *predictive power*?

In other words: How many parameters are fitted to spectra?

NONE – no parameter adjusted to the presented data; This is what is meant as Woods-Saxon Universal mean-field

Nuclear Structure Issues Related to K-Isomers

Nuclear Structure Issues Related to K-Isomers

What Do We Learn From Measuring K-Isomers?

Nuclear Structure Issues Related to K-Isomers

What Do We Learn From Measuring K-Isomers?

• K-isomers may live longer or even much longer compared with the related ground states \rightarrow This allows extending the experimental accessibility to the New Areas of Exotic Nuclei!

• K-isomers may live longer or even much longer compared with the related ground states \rightarrow This allows extending the experimental accessibility to the New Areas of Exotic Nuclei!

• The life-times of K-isomers vary dramatically over many orders of magnitude providing the precious information about:

- The configuration changes via decay: (np-nh) \rightarrow (n'p-n'h)
- Signals of spontaneous axial-symmetry breaking [K-mixing]

K-Isomers in Competition with Other Nuclear Structure Effects

• Establish areas of existence of axial symmetry, as opposed to non-axiality, throughout the Periodic Table. But: Why some (Z,N)-combinations induce axial symmetry and others do not?

- Establish areas of existence of axial symmetry, as opposed to non-axiality, throughout the Periodic Table. But: Why some (Z,N)-combinations induce axial symmetry and others do not?
- The axial-symmetry nuclei may choose to rotate collectively

$$(\vec{l} \perp \mathcal{O}_{\text{symmetry}}) - \text{bands}$$

as alternative to

$$(\vec{l} \parallel \mathcal{O}_{\text{symmetry}}) - \text{isomers}$$

or both at the same shape at the same time (in competition). Why? Which mechanisms cause this or that behaviour? Suppose Collective Rotation Wins Competition with K-Isomers

Section 3

Collective Rotation, Band Crossings and Back-bending

The well known Hartree-Fock-Bogolyubov Cranking (HFBC) Method

Suppose Collective Rotation Wins Competition with K-Isomers

Potential energy surfaces provide the full choice of competing minima

• Knowing the equilibrium deformation we may employ the Hartree-Fock-Bogolyubov Cranking (HFBC) user code \rightarrow Find the moments of inertia

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Hartree Fock Bogolyubov Cranking ↔ Back-Bending

• Universal W-S mean field offers excellent comparison with experiment The user will have access to a contemporary plotting code

Collective Rotation – Another Example

Hartree Fock Bogolyubov Cranking ↔ Back-Bending

• Universal W-S mean field offers excellent comparison with experiment The user will have access to a contemporary plotting code

Section 4

Tracing Shape Transitions and Corresponding Probabilities in \mathcal{N} -Dimensional Deformation Spaces

How to treat realistically the nuclear motion in multidimensional spaces?

Proposed Solution: Apply Graph Theory and multi-dimensional Dijkstra Algorithm

- With ${\sim}2\,000\,000$ deformation points \leftrightarrow nuclear potential energies
- We wish to discuss results in order to propose some experiments

- \bullet With ${\sim}2\,000\,000$ deformation points \leftrightarrow nuclear potential energies
- We wish to discuss results in order to propose some experiments
- Example from literature \leftrightarrow we wish to produce something similar

TWO-dimensional contour

Stolen from Silvia – Sorry!

- With ${\sim}2\,000\,000$ deformation points \leftrightarrow nuclear potential energies
- We wish to discuss results in order to propose some experiments
- Example from literature \leftrightarrow we wish to produce something similar

TWO-dimensional contour

Stolen from Silvia – Sorry!

• How to do it?

- With ${\sim}2\,000\,000$ deformation points \leftrightarrow nuclear potential energies
- We wish to discuss results in order to propose some experiments
- \bullet Example from literature \leftrightarrow we wish to produce something similar

TWO-dimensional contour

Stolen from Silvia – Sorry!

• How to do it? We have six 2D projections possible in 4D space: Should we take one? Which one? Does it make sense? Not at all!

Mathematics of the Problem of Shape Transitions

• We wish to calculate 4D transition probabilities between preselected 2 minima • Map composition: $\mathcal{N}_1 \cdot \mathcal{N}_2 \sim 3 \times 10^3$ points; Space of $\mathcal{N}_1 \cdot \mathcal{N}_2 \cdot \mathcal{N}_3 \cdot \mathcal{N}_4 \sim 2.5 \times 10^6$

• How to connect correctly 2 points among 2.5×10^6 knowing only 3×10^3 ??? *) $\mathcal{N}_1=61,~\mathcal{N}_2=49,~\mathcal{N}_3=33,~\mathcal{N}_4=25$

The following illustrations have a heuristic character

("pedagogical purposes")

Graph Theory (Dijkstra Algorithm) within One Page

• In its simplest formulation, Dijkstra algorithm provides a distance between points, say Q_1 and Q_2 , in an *n*-dimensional space of variables $\{q^i\}$:

$$d\equiv\int_{Q_1}^{Q_2}ds,~~{
m where}~~ds\equiv\left\{\sum_{i=1}^nM^{ij}dq_idq_i
ight\}^{1/2}$$

- \bullet We introduce a number, say $\mathcal{N},$ of discrete points referred to as vertices
- The pairs of those points are considered connected by paths called edges
- Each edge has attributed one positive number \rightarrow called *length* or *weight*
- Any sequence of a number of connected nodes is referred to as a graph
- Any graph with only one path between every two nodes is called a tree

Graph Theory (Dijkstra Algorithm) within One Page

• In its simplest formulation, Dijkstra algorithm provides a distance between points, say Q_1 and Q_2 , in an *n*-dimensional space of variables $\{q^i\}$:

$$d\equiv\int_{Q_1}^{Q_2}ds,~~{
m where}~~ds\equiv\left\{\sum_{i=1}^nM^{ij}dq_idq_i
ight\}^{1/2}$$

- \bullet We introduce a number, say $\mathcal{N},$ of discrete points referred to as vertices
- The pairs of those points are considered connected by paths called edges
- Each edge has attributed one positive number \rightarrow called *length* or *weight*
- Any sequence of a number of connected nodes is referred to as a graph
- Any graph with only one path between every two nodes is called a tree

Dijkstra algorithm solves the basic problem of finding the path of minimal total length between two given vertices of interest
Graph Theory (Dijkstra Algorithm) within One Page

• In its simplest formulation, Dijkstra algorithm provides a distance between points, say Q_1 and Q_2 , in an *n*-dimensional space of variables $\{q^i\}$:

$$d \equiv \int_{Q_1}^{Q_2} ds$$
, where $ds \equiv \left\{\sum_{i=1}^n M^{ij} dq_i dq_i\right\}^{1/2}$

- \bullet We introduce a number, say $\mathcal N$, of discrete points referred to as vertices
- The pairs of those points are considered connected by paths called edges
- Each edge has attributed one positive number \rightarrow called *length* or *weight*
- Any sequence of a number of connected nodes is referred to as a graph
- Any graph with only one path between every two nodes is called a tree

Suppose you are the boss of the transport company in charge of furnishing goods to 10 CORA magazines over motorways and normal roads from 50 storage places; You download the Dijkstra code and determine most economical transportation mode

Dijkstra Algorithm ↔ Nuclear Octupole Mesh

- The set of $\mathcal N$ nodes consists of 4 deformation coordinates: α_{30} , α_{31} , α_{32} , α_{33}
- We have a 4D hyper-cube $lpha_{3,\mu}\in[-0.30,+0.30]$, interdistances $\Deltalpha_{3,\mu}=0.025$
- \bullet There are 25 points along each axis \rightarrow total number of vertices $\mathcal{N}_{\rm v}=390625$
- \bullet It follows that graph has $\mathcal{N}_{\rm e} = 152587500000 \sim 1.5 \times 10^{11}$ connecting edges
- For the sake of the present applications, we use the WKB probability formula

$$P(E) = \exp\left\{-2\int_{Q_1}^{Q_2} \sqrt{\frac{2\mu}{\hbar^2} \left[V[q(s)] - E\right]} \, ds\right\},\,$$

discretised in such a way that every pair of vertices is replaced by Q_1 and Q_2 :

$$\Delta P_{1\to 2} = \int_{Q_1}^{Q_2} \sqrt{\bar{V} - E} \, ds \text{ where } \bar{V} \stackrel{df.}{=} \frac{1}{2} \left[V(Q_1) + V(Q_2) \right]$$

 \bullet The edges of the graph, say ${\cal G},$ have attributed their weights, which are the 'distances' between the nodes in the sense of the semi-classical WKB probability

Dijkstra Algorithm: Example of Application

• Example of solution connecting 2 points in 4D space; The program provides the potential height along the motion path and transition probability (life time)

Synthetic Conclusions

• We can solve the problem of connecting any two points in an N-dimensional deformation space in a mathematically correct manner using graph theory of Applied Mathematics

• A small price to pay: We use the WKB <u>approximation</u>, otherwise common in nuclear structure physics

• Among applications on the list: Fission life-times along competing paths

New Suggestions for Spectroscopy Example: 4-Fold Octupole Magic Number N = 136

• Mean-field $\hat{Q}_{\lambda=3}$ repulsion between $2g_{9/2}$ and $1j_{15/2}$ neutron orbitals

• Notice octupole N = 136 shell gap above spherical N = 126 shell gap

• Mean-field $\hat{Q}_{\lambda=3}$ repulsion between $2g_{9/2}$ and $1j_{15/2}$ neutron orbitals

• Notice octupole N = 136 shell gap above spherical N = 126 shell gap To emphasise: Tetrahedral symmetry gap α_{32} almost as large as N = 126

• Thanks to the octupole 4-fold magic number N = 136multipoles $\lambda = 3$ (octupole) rather than $\lambda = 2$ introduce non-sphericity \rightarrow exotic deformations & symmetries • Thanks to the octupole 4-fold magic number N = 136multipoles $\lambda = 3$ (octupole) rather than $\lambda = 2$ introduce non-sphericity \rightarrow exotic deformations & symmetries

• What are the corresponding implications for the ground-state minima?

• Pb nuclei loose sphericity at $\alpha_{20} = 0$: NO "PROLATE-OBLATE" slang

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

• Note the predicted octupole (not quadrupole) non-sphericity: ²¹⁸Pb₁₃₆

Super-Octupole Magic Number N=136 in ²¹⁸Pb: (α_{32} and α_{33})

• Large barriers, over 3 MeV, separating double tetrahedral minima

• Note the predicted octupole (not quadrupole) non-sphericity: ²¹⁸Pb₁₃₆

Good for Exotic Symmetries!!

• We define Exotic Symmetries as anything but ellipsoidal $(\alpha_{20}, \alpha_{22})$ or pear-shape $(\alpha_{20}, \alpha_{30})$

• We define Exotic Symmetries as anything but ellipsoidal $(\alpha_{20}, \alpha_{22})$ or pear-shape $(\alpha_{20}, \alpha_{30})$

• Thanks to the octupole 4-fold N = 136 magic number multipoles $\lambda = 3$ (octupole) rather than $\alpha_{\lambda=2}$ (quadrupole) win introducing non-sphericity & exotic symmetries • We define Exotic Symmetries as anything but ellipsoidal $(\alpha_{20}, \alpha_{22})$ or pear-shape $(\alpha_{20}, \alpha_{30})$

• Thanks to the octupole 4-fold N = 136 magic number multipoles $\lambda = 3$ (octupole) rather than $\alpha_{\lambda=2}$ (quadrupole) win introducing non-sphericity & exotic symmetries

What are these exotic molecular symmetries?

Molecular (Point-Group) Symmetries - Part 1

• Symmetry induced by both $\alpha_{31} \neq 0$ and $(\alpha_{20} \neq 0, \alpha_{31} \neq 0)$

 $\alpha_{31} = 0.25$

 $\alpha_{20} = 0.15, \alpha_{31} = 0.25$

Nuclear C_{2v} Point Group Symmetry

Molecular (Point-Group) Symmetries - Part 2

• Symmetry induced by both $\alpha_{33} \neq 0$ and $(\alpha_{20} \neq 0, \alpha_{33} \neq 0)$

 $\alpha_{33} = 0.25 \qquad \qquad \alpha_{20} = 0.15, \alpha_{33} = 0.25$

Nuclear D_{3h} Point Group Symmetry

Molecular (Point-Group) Symmetries - Part 3

• Symmetry induced by $\alpha_{32} \neq 0$ and $(\alpha_{20} \neq 0, \alpha_{32} \neq 0)$

Tetrahedral T_d: $\alpha_{32} = 0.25$ D_{2d} : $\alpha_{20} = 0.15, \alpha_{32} = 0.25$

Nuclear T_d and D_{2d} Point Group Symmetries

And now:

Let us address what we call New Spectroscopy: Issues & Challenges

Theory Predicted Properties: T_d vs. O_h Bands

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

Forming a common parabola

• There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}$, $E_{9^-} = E_{9^+}$, etc.

Theory Predicted Properties: T_d vs. O_h Bands

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

Forming a common parabola

- There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}$, $E_{9^-} = E_{9^+}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$\underbrace{A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+}_{\text{Forming a common parabola}}$$
$$\underbrace{A_{2u}: 3^-, 6^-, 7^-, 9^-, 10^-, 11^-, \dots, I^{\pi} = I^-}_{\text{Forming another (common) parabola}}$$

Theory Predicted Properties: T_d vs. O_h Bands

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

Forming a common parabola

- There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}$, $E_{9^-} = E_{9^+}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$\underbrace{A_{1g}: \ 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \ \ldots, \ I^{\pi} = I^+}_{\text{Forming a common parabola}}$$

$$A_{2u}: 3^-, 6^-, 7^-, 9^-, 10^-, 11^-, \dots, I^{\pi} = I^-$$

Forming another (common) parabola

Consequently we should expect two independent parabolic structures

Theory Confirmed by Experiment up to Details

Graphical representation of the experimental data from the summary Table. Curves represent the fit and are *not* meant 'to guide the eye'. Markedly, point $[I^{\pi} = 0^+]$, is a prediction by extrapolation - not an experimental datum.

Recall: Experimental Evidence for T_d in ¹⁵²Sm \leftrightarrow Comments

The first tetrahedral symmetry evidence based on the experimental data

 \rightarrow Published in: J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)

Recall: Experimental Evidence for T_d in ¹⁵²Sm \leftrightarrow Comments

The first tetrahedral symmetry evidence based on the experimental data

 \rightarrow Published in: J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)

• Analysing NNDC experimental evidence for ¹⁵²Sm took 3 months of manual work

We can apply the same group-theory methods which we used to determine the $T_{\rm d}$ & $O_{\rm h}$ band structures

Illustrations follow \rightarrow

How to Identify Exotic Symmetries? \rightarrow C_{2v} Case

Rotational band structure of a nucleus in a C_{2v}-symmetric configuration

 $C_{2\nu} \rightarrow A_1$: 0⁺. Schematic Illustration 1^{-} , 2.2---- 12⁻ $2 \times 2^+$, 2^- , 2.01.8 $3^+, 2 \times 3^-,$ 1.610+----(MeV) 1.4 1.2 1.0 1.0 0.8 $3 \times 4^+, 2 \times 4^-,$ $2 \times 5^+$, $3 \times 5^-$. $4 \times 6^+$, $3 \times 6^-$. $3 \times 7^+$, $4 \times 7^-$. 0.6 0.4 $5 \times 8^+$, $4 \times 8^-$. 0.2 $2^{+3^{+}_{-2^{-}}_{-2^{-}_{-2^{-}_{-2^{-}_{$ $4 \times 9^+$, $5 \times 9^-$. 0.0 $6 \times 10^+, 5 \times 10^-,$ Symmetry C_{2} $5 \times 11^+, 6 \times 11^-,$ $7 \times 12^+, 6 \times 12^-, ...$ Degeneracy pattern (α_{20}, α_{31}) These methods are powerful: See the world first experimental evidence of the nuclear C_{2v} symmetry in ²³⁶U Experimental Identification: Recent Results by our Group: ²³⁶U

 \bullet Rotational band structure of a nucleus in a $C_{\rm 2v}\mbox{-symmetric configuration}$

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Conclusions of Application-Illustration Part

- Download the slides and analyse the content focussing on: Computer codes already installed or "under installation" ?
- In most of the cases you are offered alternative NEW (no-standard or simply unknown solutions)
- Typical example (prolate/oblate shape coexistences) known over 2 centuries, NOW replaced by numerous frontier research alternatives

Imagining Nucleons in a Nucleus

Imagining Nucleons in a Nucleus

Spatial Structure of Orbitals

Imagining Nucleons in a Nucleus

Spatial Structure of Orbitals

In other words: Let's see where nucleons are?

Spatial Structure of Orbitals (Sperical ¹³²Sn) $(|\psi(\vec{r})|^2)$

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Spatial Structure of Orbitals (Sperical ¹³²Sn) $(|\psi(\vec{r})|^2)$

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Spatial Structure of Orbitals (Sperical ¹³²Sn) $(|\psi(\vec{r})|^2)$

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Density distribution $|\psi_{\pi}(\vec{r})|^2 \geq \text{Limit}$, for $\pi = [2, 0, 2]1/2$ orbital

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2

¹³²Sn: Distributions $|\psi_{\nu}(\vec{r})|^2$ for single proton orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [\nu=30, 32, ..., 38]$ for spherical shell

¹³²Sn: Distributions $|\psi_{\nu}(\vec{r})|^2$ for single proton orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [\nu=40, 42, ..., 48]$ for spherical shell

¹³²Sn: distributions $|\psi_{\nu}(\vec{r})|^2$ for consecutive pairs of orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [n=30:32, \dots 38:40]$, spherical shell

¹³²Sn: distributions $|\psi_{\nu}(\vec{r})|^2$ for consecutive pairs of orbitals. Top \mathcal{O}_{xz} , bottom \mathcal{O}_{yz} . Proton $e_{\nu} \leftrightarrow [n=40:42, \dots 48:50]$, spherical shell

Left: accumulating image of all orbitals; Right: Single Orbital (No.1)

Left: accumulating image of all orbitals; Right: Single Orbital (No.2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.3)

Left: accumulating image of all orbitals; Right: Single Orbital (No.4)

Left: accumulating image of all orbitals; Right: Single Orbital (No.5)

Left: accumulating image of all orbitals; Right: Single Orbital (No.6)

Left: accumulating image of all orbitals; Right: Single Orbital (No.7)

Left: accumulating image of all orbitals; Right: Single Orbital (No.8)

Left: accumulating image of all orbitals; Right: Single Orbital (No.9)

Three space perspectives of the full octahedral shell (n=20 nucleons)

Back to Euro-Labs Internet Site

Back to Euro-Labs Internet Site Reviewing the Options

Back to Euro-Labs Internet Site Reviewing the Options A compact View

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=64 Onwards

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=64 Onwards

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=64 Onwards

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=67 Onwards

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=67 Onwards

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=67 Onwards

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=70 Onwards

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=70 Onwards

Wave-Function Spatial Analysis in ²⁰⁸Pb, N=70 Onwards

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS

Mean-Field vs. Experiment: Predictive Capacities

Concluding Observations and Suggestions

Concluding Observations and Suggestions

• Programs realising certain options are being installed

Concluding Observations and Suggestions

- Programs realising certain options are being installed
- Please download the presentation to get accustomed
Concluding Observations and Suggestions

- Programs realising certain options are being installed
- Please download the presentation to get accustomed
- If you have questions you may contact us by email