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Examples of Collaboration Theory-Experiment∗)

• Potential Energy Maps

• Isomers in Axial Nuclei

• Hartree Fock Bogolyubov Cranking – Back-Bending

• Shape-Transition Probabilities

• Spatial Distributions of Nucleonic Wave Functions

– – – – –
∗) Based on computer codes already available as well as to be installed
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Large Scale Calculations – Examples

Section 1

Large-Scale Calculations of Nuclear
Potential Energies

with Multi-Processor Systems
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Example 1 – Tracing Shape Competition
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• Here: Energy minimised over α40 and α33
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Reminder: (β, γ)↔ Ox ,y ,z - Axis Orientations
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• We work in multidimensional deformation spaces: ∼3D, 4D, 5D

• We must not use the “camembert ∆γ = 60o approximation”
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Simultaneous Minimisation over α40 and α33
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Example 2 – Focus on the Way to Fission
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• Here: Energy minimised over α40 and α60; NO CAMEMBERS
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Example 3 – Tracing Exotic Octupole α32 – Tetrahedron
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• Example of TETRAHEDRAL SYMMETRY minima.
Prediction confirmed experimentally by JD and SB and collaborators:

Phys. Rev. C 97, 021302(R) (2018) and Phys. Rev. C 111, 034319 (2025)
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Example 4: Four Coexisting Octupole Projections

• 2D projections: (α31, α30), (α32, α30), (α33, α30), (α32, α31), (α33, α31), (α33, α32)

• We should NOT forget that “octupole” is NOT l i m i t e d to “pear shape”
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Synthetic Comments For This Part

• Our nuclear potential data base contains ∼90 000 various projections

(usually called “maps”) for several hundreds of even-even nuclei

• We believe, the approach is well adapted to support interpretation of
various experiments and new proposal writing
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Section 2

K-Isomers, Yrast Trap Isomers,
Axial-Symmetry Imposed Hindrance Factors,

and
Mean-Field Theory Interpretation
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Nuclear Spins Aligned With the Symmetry Axis

• One uses mean-field approach
and the fact that in the case of
an axial symmetry, sayOz -axis we
have

[Ĥ, ̂z ] = 0

• Consequently

Ĥφν,mν
= eν,mν

φν,mν

̂zφν,mν
= mνφν,mν

Projections of Angular Momenta

Single−Nucleon
Alignment

in the Presence of Axial Symmetry
Are Conserved

• The presence of axial symmetry (like any other symmetry) imposes
certain hindrance mechanism: In the present case→→→ K-isomers
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Tilted Fermi Surface: Lagrange Multiplier Method

•We would like to find the lowest energy excited configurations. C, denotes
ensemble of indices of occupied states for protons and neutrons separately:

E∗ =
∑
ν∈{C}

eν , (A)

• The number of particles N – is equal to N or Z∑
ν∈{C}

1ν = N , (B)

• The projected angular momentum, M, corresponds either to proton or
to the neutron contributions, MZ or MN , respectively∑

ν∈{C}

mν =M (MZ or MN). (C )

• According to the Lagrange theorem, minimisation of (A) under conditions
(B) and (C) is equivalent to the minimisation of an auxiliary expression

Ẽ∗M =
∑

ν∈{C}

(eν − λ · 1ν − ω ·mν), (D)

where the so called Lagrange multipliers λ and ω are so far unknown.
Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Tilted Fermi Surface: Lagrange Multiplier Method

−3/2 1/2−1/2 3/2 5/2−5/2 7/2−7/2 9/2−9/2 11/2−11/2−13/2 13/2

M=0

e

m
ν

ν

Minimisation of the expression in Eq. (D) under the conditions specified
by Eqs. (A-B) is equivalent to searching the lowest points (eν ,mν)

Ẽ∗M =
∑
ν∈{C}

(eν − λ · 1ν − ω ·mν),

equivalent to finding all points strictly below the straight line

e = λ− ωm
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Tilted Fermi Surface: Energy Minimisation at Fixed Spin

−3/2 1/2−1/2 3/2 5/2−5/2 7/2−7/2 9/2−9/2 11/2−11/2−13/2 13/2

M=0

e

m
ν
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For the particle-hole excited-states we obtain at the same time the
theoretical energy and theoretical spin →→→ A. Bohr hypothesis:

I ≈ M∗

E∗ =
∑
p

ep,mp −
∑
h

eh,mh and I ≈ M∗ =
∑
p

mp −
∑
h

mh
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Tilted Fermi Surface: Energy Minimisation at Fixed Spin
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Tilted Fermi Surface: Energy Minimisation at Fixed Spin
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Some Particle-Hole Excitations Generate Yrast -Traps

S=9

Energy

TrapsYrast

npSpin = M   + M

Y r a s 
t   

L i n
 e

S=16

E∗ =
∑
p

ep,mp −
∑
h

eh,mh and I ≈ M∗ =
∑
p

mp −
∑
h

mh
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K-Isomers

Example: 147Gd – Realistic Calculations

Realistic Phenomenological Mean Field
Universal Parametrisation: (Z,N)-Plane
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K-Isomers

Example: 147Gd – Realistic Calculations

Realistic Phenomenological Mean Field
Universal Parametrisation: (Z,N)-Plane
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A Powerful Tool: Tilted Fermi Surface Method (I)
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A Powerful Tool: Tilted Fermi Surface Method (I)
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A Powerful Tool: Tilted Fermi Surfaces - (II)
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A Powerful Tool: Tilted Fermi Surfaces - (II)
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A Powerful Tool: Tilted Fermi Surfaces - (III)
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A Powerful Tool: Tilted Fermi Surfaces - (III)
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Experiment : Iπexp. = 49
2

+
(510 ns) ↔ Mean Tield theory Iπmf = 49

2
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These isomers were known
for over 30 years or so...

What About the “Newer” Isomers in 147Gd?
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Negative Parity Isomers in 147Gd - (IV)
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• Theoretically suggested spin I = 3
2 + 0 = 3

2 → Prediction: Iπ = 3
2

−
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Experiment : Iπexp. = 3
2

−
(0.2 ns) ↔ Mean Field theory Iπmf = 3

2

−
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Negative Parity Isomers in 147Gd - (V)
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• Theoretically suggested spin I = 1
2 + 4 = 9

2 → Prediction: Iπ = 9
2

−
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Experiment : Iπexp. = 9
2
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(0.35 ns) ↔ Mean Field theory Iπmf = 9
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Negative Parity Isomers in 147Gd - (VI)
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• Theoretically suggested spin I = 3
2 + 8 = 19

2 → Prediction: Iπ = 19
2

−
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Experiment : Iπexp. = 19
2

−
(0.37 ns) ↔ Mean Field theory Iπmf = 19

2

−
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Positive Parity Isomers in 147Gd - (VII)
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• Theoretically suggested spin I = 1
2 + 3 = 7

2 → Prediction: Iπ = 7
2
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Experiment : Iπexp. = 7
2
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(0.42 ns) ↔ Mean Field theory Iπmf = 7
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Positive Parity Isomers in 147Gd - (VIII)

β2 = −0.02
Deformation:

13
/2

+β4 = +0.01

E
ne

rg
y

[M
eV

]
-4

-5

-6

-7

-8

-10

-11

-12

-13

mj

13
2

9
2

5
2

1
2

-1
2

-5
2

-9
2

-13
2

-9

P
ar

-G
d

Neutron Single Particle Levels

147
64Gd83

Deformation:

0+

β4 = +0.01
β2 = −0.02

E
ne

rg
y

[M
eV

]

-2

-3

-4

-5

-6

-7

-8

mj

13
2

9
2

5
2

1
2

-1
2

-5
2

-9
2

-13
2

P
ar

-G
d

Proton Single Particle Levels

147
64Gd83

• Theoretically suggested spin I = 13
2 + 0 = 13

2 → Prediction: Iπ = 13
2

+
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Positive Parity Isomers in 147Gd - (VIII)
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Experiment : Iπexp. = 13
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(21.4 ns) ↔ Mean− Field theory Iπmf = 13
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Theory ↔ Full Experimental Confirmation

• Summary: All 8 double titled Fermi surface solutions for 147Gd
(lowest energy solutions according to Bohr tilted Fermi hypothesis)

correspond to the experimentally confirmed results

No. Iπ Iπp Iπn Isomer Lifetime

1 3/2− 0+ 3/2− 0.20 ns
2 7/2+ 3− 1/2− 0.42 ns
3 9/2− 4+ 1/2− 0.35 ns
4 13/2+ 0+ 13/2+ 21.4 ns
5 19/2− 8+ 3/2− 0.37 ns
6 21/2+ 7− 7/2− 4.55 ns
7 27/2− 10+ 7/2− 26.8 ns
8 49/2+ 10+ 29/2+ 510 ns

... ... ... ...
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Another Illustration of the Axial Symmetry

and K-Conservation

Calculating Nuclear Yrast Lines
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We Consider Here ∼2 000 000 Particle-Hole Configurations: Surprise?

• Yrast line: Attention! Highly non-trivial numerical effort involving
N ∼ 106 particle-hole configurations! Minimised over α20, α40, etc.

• Here: Yrast 147Gd sequence calcu-
lated using the realistic phenomenolog-
ical WS-universal mean field approach.

• The energy of each state has been
minimised over several axial-symmetry
deformation parameters.

• We consider the number of mean-
field configurations comparable to the
sizes of the typical spherical shell-model
Hamiltonian.

• It is natural to ask:

How many parameters have been
fitted to obtain the result

on the right?
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One can also say:

The quality of the description is a sign of “predictive power”

• Is this i n s t e a d just the case of reproduction by fitting?

• Or rather a manifestation of predictive power?

In other words: How many parameters are fitted to spectra?

NONE – no parameter adjusted to the presented data;
This is what is meant as Woods-Saxon Universal mean-field
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Nuclear Structure Issues Related to K-Isomers

What Do We Learn
From Measuring K-Isomers?

• K-isomers may live longer or even much longer compared
with the related ground states → This allows extending the
experimental accessibility to the New Areas of Exotic Nuclei!

• The life-times of K-isomers vary dramatically over many
orders of magnitude providing the precious information about:

– The configuration changes via decay: (np-nh) → (n’p-n’h)

– Signals of spontaneous axial-symmetry breaking [K-mixing]
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experimental accessibility to the New Areas of Exotic Nuclei!

• The life-times of K-isomers vary dramatically over many
orders of magnitude providing the precious information about:
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K-Isomers in Competition with Other Nuclear Structure Effects

What Do We Learn
From Measuring K-Isomers?

• Establish areas of existence of axial symmetry, as opposed to
non-axiality, throughout the Periodic Table. But: Why some
(Z,N)-combinations induce axial symmetry and others do not?

• The axial-symmetry nuclei may choose to rotate collectively

(~I ⊥ Osymmetry) − bands

as alternative to

(~I ‖ Osymmetry) − isomers

or both at the same shape at the same time (in competition).

Why? Which mechanisms cause this or that behaviour?
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Suppose Collective Rotation Wins Competition with K-Isomers

Section 3

Collective Rotation, Band Crossings and
Back-bending

The well known Hartree-Fock-Bogolyubov
Cranking (HFBC) Method
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Suppose Collective Rotation Wins Competition with K-Isomers

Potential energy surfaces provide the full
choice of competing minima
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• Knowing the equilibrium deformation we may employ the Hartree-Fock-
Bogolyubov Cranking (HFBC) user code → Find the moments of inertia
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Collective Rotation – Testing Kinematical Moments

Hartree Fock Bogolyubov Cranking ↔
Back-Bending

• Universal W-S mean field offers excellent comparison with experiment
The user will have access to a contemporary plotting code
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Collective Rotation – Another Example

Hartree Fock Bogolyubov Cranking ↔
Back-Bending

• Universal W-S mean field offers excellent comparison with experiment
The user will have access to a contemporary plotting code
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Section 4

Tracing Shape Transitions
and Corresponding Probabilities

in N -Dimensional Deformation
Spaces
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Before Addressing the Shape Isomers ...

How to treat realistically the nuclear motion
in multidimensional spaces?

Proposed Solution: Apply Graph Theory
and multi-dimensional Dijkstra Algorithm
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The Issue: We Completed a 4D Mesh Run... And?

•With ∼2 000 000 deformation points↔ nuclear potential energies

• We wish to discuss results in order to propose some experiments

• Example from literature ↔ we wish to produce something similar

Figure:Stolen from Silvia – Sorry!

• How to do it? We have six 2D projections possible in 4D space:
Should we take one? Which one? Does it make sense? Not at all!

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



The Issue: We Completed a 4D Mesh Run... And?

•With ∼2 000 000 deformation points↔ nuclear potential energies

• We wish to discuss results in order to propose some experiments

• Example from literature ↔ we wish to produce something similar

Figure:Stolen from Silvia – Sorry!

• How to do it? We have six 2D projections possible in 4D space:
Should we take one? Which one? Does it make sense? Not at all!

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



The Issue: We Completed a 4D Mesh Run... And?

•With ∼2 000 000 deformation points↔ nuclear potential energies

• We wish to discuss results in order to propose some experiments

• Example from literature ↔ we wish to produce something similar

Figure:Stolen from Silvia – Sorry!

• How to do it?

We have six 2D projections possible in 4D space:
Should we take one? Which one? Does it make sense? Not at all!

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



The Issue: We Completed a 4D Mesh Run... And?

•With ∼2 000 000 deformation points↔ nuclear potential energies

• We wish to discuss results in order to propose some experiments

• Example from literature ↔ we wish to produce something similar

Figure:Stolen from Silvia – Sorry!

• How to do it? We have six 2D projections possible in 4D space:
Should we take one? Which one? Does it make sense? Not at all!

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Mathematics of the Problem of Shape Transitions

• We wish to calculate 4D transition probabilities between preselected 2 minima
•Map composition: N1 ·N2 ∼ 3×103 points; Space ofN1 ·N2 ·N3 ·N4 ∼ 2.5×106
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• How to connect correctly 2 points among 2.5× 106 knowing only 3× 103 ???

∗) N1 = 61, N2 = 49, N3 = 33, N4 = 25
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The following illustrations
have a heuristic character

(“pedagogical purposes”)
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Graph Theory (Dijkstra Algorithm) within One Page

• In its simplest formulation, Dijkstra algorithm provides a distance be-
tween points, say Q1 and Q2, in an n-dimensional space of variables {qi}:

d ≡
∫ Q2

Q1

ds, where ds ≡


n∑

i=1

M ij dqi dqi


1/2

• We introduce a number, say N , of discrete points referred to as vertices

• The pairs of those points are considered connected by paths called edges

• Each edge has attributed one positive number→ called length or weight

• Any sequence of a number of connected nodes is referred to as a graph

• Any graph with only one path between every two nodes is called a tree

Dijkstra algorithm solves the basic problem
of finding the path of minimal total length

between two given vertices of interest
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Graph Theory (Dijkstra Algorithm) within One Page

• In its simplest formulation, Dijkstra algorithm provides a distance be-
tween points, say Q1 and Q2, in an n-dimensional space of variables {qi}:

d ≡
∫ Q2

Q1

ds, where ds ≡


n∑

i=1

M ij dqi dqi


1/2

• We introduce a number, say N , of discrete points referred to as vertices

• The pairs of those points are considered connected by paths called edges

• Each edge has attributed one positive number→ called length or weight

• Any sequence of a number of connected nodes is referred to as a graph

• Any graph with only one path between every two nodes is called a tree

Suppose you are the boss of the transport company in charge
of furnishing goods to 10 CORA magazines over motorways and
normal roads from 50 storage places; You download the Dijkstra

code and determine most economical transportation mode
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Dijkstra Algorithm ↔ Nuclear Octupole Mesh

• The set of N nodes consists of 4 deformation coordinates: α30, α31, α32, α33

•We have a 4D hyper-cube α3,µ ∈ [−0.30,+0.30], interdistances ∆α3,µ = 0.025

• There are 25 points along each axis → total number of vertices Nv = 390625

• It follows that graph has Ne = 152587500000 ∼ 1.5× 1011 connecting edges

• For the sake of the present applications, we use the WKB probability formula

P(E) = exp

{
−2

∫ Q2

Q1

√
2µ

~2

[
V [q(s)]− E

]
ds

}
,

discretised in such a way that every pair of vertices is replaced by Q1 and Q2:

∆P1→2 =

∫ Q2

Q1

√
V̄ − E ds where V̄

df .
=

1

2
[V (Q1) + V (Q2)]

• The edges of the graph, say G, have attributed their weights, which are the
‘distances’ between the nodes in the sense of the semi-classical WKB probability
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Dijkstra Algorithm: Example of Application

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Path Length

-0.2

-0.1

0.0

0.1

0.2

D

e

f

o

r

m

a

t

i

o

n

→ α30

→ α31

→ α32

→ α33

Nu
lear Deformations Along Dijkstra Path

218
82Pb136

• Example of solution connecting 2 points in 4D space; The program provides
the potential height along the motion path and transition probability (life time)
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Synthetic Conclusions

• We can solve the problem of connecting any two points in an
N-dimensional deformation space in a mathematically correct manner

using graph theory of Applied Mathematics

• A small price to pay: We use the WKB approximation,
otherwise common in nuclear structure physics

• Among applications on the list: Fission life-times along competing paths
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Section 5

New Suggestions for Spectroscopy

Example: 4-Fold Octupole Magic Number N = 136
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About 4-Fold Octupole Magic Number N = 136: Begin with (α30 and α31)

• Mean-field Q̂λ=3 repulsion between 2g9/2 and 1j15/2 neutron orbitals
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• Notice octupole N = 136 shell gap above spherical N = 126 shell gap
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About 4-Fold Octupole Magic Number N = 136: Follow with (α32 and α33)

• Mean-field Q̂λ=3 repulsion between 2g9/2 and 1j15/2 neutron orbitals
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Nucleon Levels in Woods-Saxon Mean Field

• Notice octupole N = 136 shell gap above spherical N = 126 shell gap
To emphasise: Tetrahedral symmetry gap α32 almost as large as N = 126
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The 4-fold Octupole Magic Number N=136

• Thanks to the octupole 4-fold magic number N = 136
multipoles λ = 3 (octupole) rather than λ = 2

introduce non-sphericity → exotic deformations & symmetries

• What are the corresponding implications
for the ground-state minima?
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Pb Looses Sphericity for increasing N – Because of α3µ and NOT α2µ

208Pb
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• Pb nuclei loose sphericity at α20 = 0: NO “PROLATE-OBLATE” slang
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Super-Octupole Magic Number N=136 in 218Pb: (α30 and α31)

218Pb
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• Note the predicted octupole (not quadrupole) non-sphericity: 218Pb136
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Super-Octupole Magic Number N=136 in 218Pb: (α32 and α33)

• Large barriers, over 3 MeV, separating double tetrahedral minima

218Pb
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• Note the predicted octupole (not quadrupole) non-sphericity: 218Pb136
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Good for Exotic Symmetries!!

• We define Exotic Symmetries as anything but ellipsoidal
(α20, α22) or pear-shape (α20, α30)

• Thanks to the octupole 4-fold N = 136 magic number
multipoles λ = 3 (octupole) rather than αλ=2 (quadrupole)

win introducing non-sphericity & exotic symmetries

What are these exotic molecular symmetries?
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Molecular (Point-Group) Symmetries - Part 1

• Symmetry induced by both α31 6= 0 and (α20 6= 0, α31 6= 0)

α 3, 1 = 0.25
Deformation:

Figure:α31 = 0.25

α 2, 0 = 0.15
α 3, 1 = 0.25

Deformations:

Figure:α20 = 0.15, α31 = 0.25

Nuclear C2v Point Group Symmetry
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Molecular (Point-Group) Symmetries - Part 2

• Symmetry induced by both α33 6= 0 and (α20 6= 0, α33 6= 0)

α 3, 3 = 0.25
Deformation:

Figure:α33 = 0.25

α 2, 0 = 0.15
α 3, 3 = 0.25

Deformations:

Figure:α20 = 0.15, α33 = 0.25

Nuclear D3h Point Group Symmetry
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Molecular (Point-Group) Symmetries - Part 3

• Symmetry induced by α32 6= 0 and (α20 6= 0, α32 6= 0)

α 3, 2 = 0.25
Deformation:

Figure:Tetrahedral Td: α32 = 0.25

α 2, 0 = 0.15
α 3, 2 = 0.25

Deformations:

Figure:D2d: α20 = 0.15, α32 = 0.25

Nuclear Td and D2d Point Group Symmetries
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And now:

Let us address what we call

New Spectroscopy: Issues & Challenges

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Theory Predicted Properties: Td vs. Oh Bands

• The tetrahedral symmetry group has 5 irreducible representations

• The ground-state Iπ = 0+ belongs to A1 representation given by:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2 × 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

• There are no states with spins I = 1, 2 and 5. We have parity
doublets: I = 6, 9, 10 . . ., at energies: E6− = E6+ , E9− = E9+ , etc.

• One shows that the analogue structure in the octahedral symmetry

A1g : 0+, 4+, 6+, 8+, 9+, 10+, . . . , Iπ = I+︸ ︷︷ ︸
Forming a common parabola

A2u : 3−, 6−, 7−, 9−, 10−, 11−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

Consequently we should expect two independent parabolic structures
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Theory Confirmed by Experiment up to Details

Sm152
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Experimental Results [Td -vs.-Oh]

Symmetry Hypotheses:

Tetrahedral: Td

Octahedral: Oh

A1 → r.m.s.=80.5 keV

A1g → r.m.s.=1.6 keV
A2u → r.m.s.=7.5 keV
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Graphical representation of the experimental data from the summary Table.
Curves represent the fit and are not meant ‘to guide the eye’. Markedly, point
[Iπ = 0+], is a prediction by extrapolation - not an experimental datum.
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Recall: Experimental Evidence for Td in 152Sm ↔ Comments

The first tetrahedral symmetry evidence based on the experimental data

Tetrahedral Band : IπTd = 0+, 3−, 4+, 6±, 7−, 8+, 9±, 10±, 11−, . . .

→ Published in: J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)

• Analysing NNDC experimental evidence for 152Sm took 3 months of manual work
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We can apply the same group-theory methods
which we used to determine the Td & Oh

band structures

Illustrations follow →
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How to Identify Exotic Symmetries? → C2v Case

• Rotational band structure of a nucleus in a C2v-symmetric configuration

C2v → A1 : 0+,

1−,

2× 2+, 2−,

3+, 2× 3−,

3× 4+, 2× 4−,

2× 5+, 3× 5−,

4× 6+, 3× 6−,

3× 7+, 4× 7−,

5× 8+, 4× 8−,

4× 9+, 5× 9−,

6× 10+, 5× 10−,

5× 11+, 6× 11−,

7× 12+, 6× 12−, ...
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Figure:Degeneracy pattern (α20, α31)
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These methods are powerful:

See the world first experimental evidence

of the nuclear C2v symmetry in 236U
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Experimental Identification: Recent Results by our Group: 236U

• Rotational band structure of a nucleus in a C2v-symmetric configuration
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RMS =4.91 keV

Experimental Results

Symmetry C2v

Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:

1) Single rotational band followed by 18 states with rms deviation 4.9 keV

2) Degeneracies characteristic for C2v-symmetry, even if partial, are there

3) Proposals for the new experiments to expand the evidence – called for
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How To Profit from Shown Illustrations – as Users

Conclusions of Application-Illustration Part

• Download the slides and analyse the content focussing on:
Computer codes already installed or “under installation” ?

• In most of the cases you are offered alternative NEW
(no-standard or simply unknown solutions)

• Typical example (prolate/oblate shape coexistences)
known over 2 centuries, NOW replaced by numerous frontier
research alternatives
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Section 6

Imagining Nucleons
in a Nucleus

Spatial Structure of Orbitals

In other words: Let’s see where
nucleons are?
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Section 6

Imagining Nucleons
in a Nucleus

Spatial Structure of Orbitals

In other words: Let’s see where
nucleons are?
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit ??% Limit ??% Limit ??% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit ??% Limit ??% Limit ??%
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit ??% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit ??%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Density distribution |ψπ(~r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit ??% Limit ??% Limit ??% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit 15% Limit ??% Limit ??% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit 15% Limit 12% Limit ??% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit 15% Limit 12% Limit 10% Limit ??%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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Spatial Structure of Orbitals (Sperical 132Sn) (|ψ(~r )| 2)

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%

Limit 20% Limit 15% Limit 12% Limit 10% Limit 9%

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2
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Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: Distributions |ψν(~r )| 2 for single proton orbitals. Top Oxz ,
bottom Oyz . Proton eν ↔ [ν=30, 32, ... 38] for spherical shell
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Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: Distributions |ψν(~r )| 2 for single proton orbitals. Top Oxz ,
bottom Oyz . Proton eν ↔ [ν=40, 42, ... 48] for spherical shell
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Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: distributions |ψν(~r )| 2 for consecutive pairs of orbitals. Top
Oxz , bottom Oyz . Proton eν ↔ [n=30:32, ... 38:40], spherical shell
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Spatial Structure of N=3 Spherical Shell (|ψν(~r )| 2)

132Sn: distributions |ψν(~r )| 2 for consecutive pairs of orbitals. Top
Oxz , bottom Oyz . Proton eν ↔ [n=40:42, ... 48:50], spherical shell
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.1)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.2)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.3)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.4)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.5)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.6)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.7)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.8)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Left: accumulating image of all orbitals; Right: Single Orbital (No.9)
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The First Octahedral Shell (20 Nucleons)) (|ψ(~r )| 2)

Three space perspectives of the full octahedral shell (n=20 nucleons)
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Back to Euro-Labs Internet Site

Reviewing the Options

A compact View
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Wave-Function Spatial Analysis in 208Pb, N=64 Onwards
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Wave-Function Spatial Analysis in 208Pb, N=67 Onwards
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Wave-Function Spatial Analysis in 208Pb, N=70 Onwards
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Wave-Function Spatial Analysis in 208Pb, N=70 Onwards
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Concluding Observations and
Suggestions

• Programs realising certain options are being installed

• Please download the presentation to get accustomed

• If you have questions – you may contact us by email
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