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About This Presentation I

In this presentation Phenomenological
Mean Field Theory is associated
with Woods-Saxon Hamiltonian

It turns out that Woods-Saxon Hamiltonian
has very special features which remain
principally unknown to many colleauges

It is strongly advised downloading these slides
to learn about our Mean-Field Hamiltonian
before learning to use the computer codes
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Attention:

This presentation is NOT about clicking on
the screen

It is about explaining Physics Problems
solved for you by complex computer codes

which were prepared for you by us

We discuss often unknown aspects of models,
very important when applying them

and give warnings about oversimplified

or incorrect information found in the literature
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About This Presentation II

NUCLEAR   STRUCTURE   COLLABORATION

predictions

A COMMON
PROPOSAL?

We already have results

INTERPRETATION?

EXPERIMENT THEORY

How to optimise efforts,

theory perspectives

combine the newest instrumentation
with the newest, unprecedented

We have new
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About This Presentation III

More precisely →→

It is about nuclear structure projects

which could become

of common experiment & theory interests
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Examples of Possible Research Subjects: Part 1

1. Isomers
K-isomers,

Yrast trap isomers and yrast lines,
Shape isomers,

In particular fission isomers, etc.;

2. Nuclear Masses

New/Improved measurements of nuclear masses

3. Rotational band properties

Bands based on isomers,
Quasiparticle band structures,

Band crossings and interactions,
Shape evolution with spin,

So-called paring phase transitions, etc.;
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Examples of Possible Research Subjects: Part 2

4. Exotic symmetries and shapes

Tetrahedral and octahedral symmetries (freshly discovered)
Super-deformation, Hyper-deformation

Toroidal shapes,
Shapes leading to tripartition, etc.;

5. Fission and exotic fission modes

Competing fission paths,
Local-minimum to local-minimum transitions, etc.;

6. Specific nuclear excitations modes

Modes involving high temperatures,
Modes involving high spins,
Giant Dipole Resonances,

Jacobi and Poincaré shape transitions, etc.;
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This Talk is NOT about Clicking: Here Exceptions

Choice of LINKS to click:

In Cracow

https://meanfield4exp.ifj.edu.pl

In Sevilla

https://institucional.us.es/theo4exp/
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An Option of the Entrance Screen: 4 Choices
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Example: Single Particle Drawings
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Another Option: Total Energy Drawings
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Another Option: Total Energy Map Drawings

• Left: Potential energy contour plot. Right: Table of minima
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Another Example: Total Routhian at Spin=56~

• Energy minimised: Here over β4 only. The final results will
contain higher order minimisations: β4, β6 and β8
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Another Example: 3D Cranking and Nuclear Shapes

• Single particle Routhians as functions of rotational frequency;
Alternatively plotting of a user selected nuclear shape/surface
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Next: New Options Being Considered for You

Provisorily List:
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Section 1

Physical Background of Nuclear Mean-Field:

Beginning with Nucleon-Nucleon
Two-Body Interactions

As the General Nuclear Physics Framework
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Fundamental Structure of Nuclear Interactions [1]

Let x̂
df .
= {~̂r , ~̂p,~̂s,~̂t }. Nuclear interactions contain following terms

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

where: C -central, T -tensor, LS-spin-orbit and LL2-quadratic LS

Central Interaction (r12 ≡ |~r1 − ~r2|)

V̂C (x̂1, x̂2) = V0(r12) + Vs(r12) [~s (1) · ~s (2)]

+ Vt(r12) [~t (1) · ~t (2)]

+Vs−t(r12) [~s (1) · ~s (2)] [~t (1) · ~t (2)]

Invariant under rotations, translations, inversion and time-reversal
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Fundamental Structure of Nuclear Interactions [2]

Let x̂
df .
= {~̂r , ~̂p,~̂s,~̂t }. Nuclear interactions contain following terms

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)
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Tensor Interaction [Non-Central]

~S (12) df .
=

3 (~s1 · ~r12)(~s2 · ~r12)− (~s1 · ~s2) r 2
12

r 2
12

and r12
df .
= |~r1 − ~r2|

V̂T (x̂1, x̂2) = [Vt0(r12) + Vt1(r12)~t1 · ~t2] ~S (12)

Invariant under rotations, translations, inversion and time-reversal
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Fundamental Structure of Nuclear Interactions [3]

Let x̂
df .
= {~̂r , ~̂p,~̂s,~̂t }. Nuclear interactions contain following terms

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

where: C -central, T -tensor, LS-spin-orbit and LL2-quadratic LS

Spin-Orbit Interaction [Non-Local]

~L
df .
=

1

2
(~r1 − ~r2) ∧ (~p1 − ~p2), r12

df .
= |~r1 − ~r2| and ~S

df .
= ~s1 + ~s2

V̂LS(x̂1, x̂2) = VLS(r12) ~L · ~S

Invariant under rotations, translations, inversion and time-reversal
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Fundamental Structure of Nuclear Interactions [4]

Let x̂
df .
= {~̂r , ~̂p,~̂s,~̂t }. Nuclear interactions contain following terms

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

where: C -central, T -tensor, LS-spin-orbit and LL2-quadratic LS

Quadratic Spin-Orbit Interaction [Non-Local]

~L
df .
=

1

2
(~r1 − ~r2) ∧ (~p1 − ~p2) and r12

df .
= |~r1 − ~r2|

V̂LL(x̂1, x̂2) = VLL(r12){(~s1 · ~s2) ~L 2 − 1
2 [(~s1 · ~L)(~s2 · ~L) + (~s2 · ~L)(~s1 · ~L)]}

Invariant under rotations, translations, inversion and time-reversal
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Trying to Solve Implied Problem of the Motion?

• Consider the motion of a system of N = 100 nucleons

• What is expected complexity of involved description?

Ĥ( x̂1, x̂2, . . . x̂N︸ ︷︷ ︸
100×12=1200 operators

)Ψ = E Ψ

Conclusions:

• Effective solution of this problem is out of question here...

•We know no methods of solving the Schrödinger equation of
this complexity thus need to search for approximate solutions

• To look for simplifications we will consult experiment: Shapes
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Ĥ( x̂1, x̂2, . . . x̂N︸ ︷︷ ︸
100×12=1200 operators

)Ψ = E Ψ

Conclusions:

• Effective solution of this problem is out of question here...

•We know no methods of solving the Schrödinger equation of
this complexity thus need to search for approximate solutions

• To look for simplifications we will consult experiment: Shapes

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Trying to Solve Implied Problem of the Motion?

• Consider the motion of a system of N = 100 nucleons

• What is expected complexity of involved description?
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From now on: We wish to start collecting
experimental information to be able to

construct theory approximations
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There Were Nearly 3000 Systems Seen in Laboratory...

• Among nearly 3000 systems known experimentally, we find
only about two hundreds stable – marked as black rectangles
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In Majority of Them Spherical Symmetry is Broken

• However among nearly 3000 systems known experimentally,
over 80% are measured - or predicted - to be non spherical

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



We Need To Face: Spontaneous Symmetry Breaking

How come that the interactions invariant under
rotation and inversion

thus spherically symmetric,

acting among tightly packed nucleons in a nucleus

end up producing “the well known” nuclei

often with strongly deformed shapes?

This phenomenon is called:
Spontaneous Symmetry Breaking
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Symmetry: Exact, Approximate, Spontaneously Broken

From preceding discussion we must assume that the N-N interaction

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2)+V̂T (x̂1, x̂2)+V̂LS(x̂1, x̂2)+V̂LL2(x̂1, x̂2)

is invariant under rotations, translations, inversion and time-reversal
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From preceding discussion we assume that the N-N interaction

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

is invariant under rotations, translations, inversion and time-reversal

Broken Symmetry? The Nuclear Mean Field Theory ...

... is empirically very successful, based on

V̂mf (x̂) =

∫
ψ∗(x ′)V̂ (x̂ , x̂ ′)ψ(x ′) dx ′

Thus: Some or all of the above symmetries
will be broken by mean-field Hamiltonian

• We will need to learn how to find V̂mf (x̂) because integral
definition is not profitable since solutions ψ(x) are not known

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Symmetry: Exact, Approximate, Spontaneously Broken

From preceding discussion we assume that the N-N interaction

V̂ (x̂1, x̂2) ≡ V̂C (x̂1, x̂2) + V̂T (x̂1, x̂2) + V̂LS(x̂1, x̂2) + V̂LL2(x̂1, x̂2)

is invariant under rotations, translations, inversion and time-reversal

Broken Symmetry? The Nuclear Mean Field Theory ...

... is empirically very successful, based on

V̂mf (x̂) =

∫
ψ∗(x ′)V̂ (x̂ , x̂ ′)ψ(x ′) dx ′

Thus: Some or all of the above symmetries
will be broken by mean-field Hamiltonian

• We will need to learn how to find V̂mf (x̂) because integral
definition is not profitable since solutions ψ(x) are not known

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



To learn about possible approximate theory
we will systematically examine the stability

of the nuclear systems via experiment
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From Separation Energies To the Many-Body Mean-Field Concept

• Removing the particles we learn about interactions with the others

• A mean-field interaction can be seen as an algorithm probing the
two-body interactions through a generalised weighted average ↔ V̂

V̂ (x̂) = 1
N−1

∑(N−1)
j=1

∫
dxj ψ

∗(xj ) V̂ (x̂, x̂j )ψ(xj )

• Observe that summation above implies an
averaging over all (N-1) remaining particles

• Observe also that the resulting mean-field
potential V̂ = V̂ (x̂) is a one-body operator

• Right: An artist view of the binding energy
experiment as the average interaction tests

• The mean field potential binding non-
interacting nucleons→ is a simple container

An N−Body System

Schematic: Probing 2-body
interactions with an ‘external’

test-particle
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But when measuring
the nucleon separation energies from nuclei,

Maria Göppert Meyer∗) and Hans Jensen
encountered a number of puzzles,

already over 50 years back.

Certain separation energies were significantly
larger than the other.

Not knowing the reasons they called the
corresponding nucleon numbers m a g i c.

∗)Born on June 28, 1906, Katowice, Poland
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Stability of Nuclei from Particle Removing Experiments → Nobel Prize

• Observe characteristic differences between
the nucleonic and electronic separation spectra

• The 1963 Nobel Prize for the study of the
nuclear effect to M. Göppert-Mayer, J. Jensen
and E. Wigner↔ See: “Shell Model of Nuclei”

• In atomic nuclei the highest-j orbital in an
N-shell is ejected to the (N-1st)–shell below it

• The big gaps at Z/N = 20, 28, 50, 82, 126
are confirmed by spin-orbit mean-field coupling
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We just learned about the strongest nucleon binding
properties which the mean field potential should

generate.

But so far we do not know the spatial form / structure
of the potential itself.

We intend to derive the Woods-Saxon potentials
of interest for us using well known relativistic

meson-exchange theory
(see Annex)

However, it will be convenient to begin by presenting
the well known explicit forms of these potentials

right away as an introduction

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists
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Spherical Nuclear Mean-Field: Woods-Saxon Form

Simple geometrical features are often described employing
Woods-Saxon Mean Field Hamiltonian:

Ĥws = t̂︸︷︷︸
kinetic

+ V̂ws
cent︸ ︷︷ ︸

central

+ V̂ws
`·s︸︷︷︸

spin−orbit

• Central potential in the simplest, spherical-symmetry case:

V ws
cent(r ; Vo, ro, ao)

df
=

Vo

1 + exp [(r − Ro)/a]
; Ro = roA1/3

• Corresponding potential parameters:

Vo - central potential depth parameter
ro - central potential radius parameter
ao - central potential diffuseness parameter

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Spherical Nuclear Mean-Field: Woods-Saxon Form

• Switching to spin-orbit, simplest spherical-symmetry case:

V ws
`·s (r ;λ`·s , r`·s , a`·s)

df
=

dVws
`·s

dr
~̀̂ · ~̂s

where by definition

Vws
`·s (r ;λ`·s , r`·s , a`·s)

df
=

V`·s

1 + exp [(r − R`·s)/a`·s ]
; R`·s = r`·sA1/3

• Corresponding parameters:

λ`·s - spin-orbit potential depth parameter
r`·s - spin-orbit potential radius parameter
a`·s - spin-orbit potential diffuseness parameter

... and this is how it acts →→→

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Unique Features of the WS Parameterisation

As one student put it:

1) Single nucleon energies depend on parameters in an
extremely simple, and yet an “intuitive & pedagogical”

manner (see 6 pedagogical illustrations below).

2) He added: One could almost predict such a
dependence before running calculations.

3) But we believe that it will be much more instructive
to show calculation results systematically.
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Nucleon Energies: Central Potential Impact

• The nuclear mean-field Woods-Saxon potentials have a very impor-
tant feature - each of its parameters dominates a certain mechanism.
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Mechanism No. 1: The potential depth parameter is primarily re-
sponsible for the nucleonic binding energies. Observe nearly linear

dependence and an ideal description of the experimental levels: 208Pb.
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Nucleon Energies: Central Potential Impact

• The nucleonic binding energies vary nearly linearly also as functions
of the central radius (even though some levels may cross “gently”).
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Mechanism No. 2: The central-radius parameter is co-responsible
for the nucleonic binding energies but impacts importantly the r.m.s.
radii. Note the correspondence with experiment. Here: For 208Pb.
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Nucleon Energies: Central Potential Impact

• The central diffuseness parameter is the only one that clearly dis-
tinguishes among the eigen-energies with various quantum numbers.
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Mechanism No. 3: Observe the existence of families of nearly parallel
lines, which are characterised by the common ` quantum number.
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Nucleon Energies: Spin-Orbit Potential Impact

• Single nucleon levels as functions of the s-o strength parameter
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Mechanism No. 4: Note that the separation between the spin-orbit
partners is linear in λ and ` → We can plot this diagram knowing `
and the start positions at λ = 0.
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Nucleon Energies: Spin-Orbit Potential Impact

• Observe an increase of the spin-orbit splitting first, then a decrease
and characteristic ’bubble structures’ for all the ` 6= 0 energy levels
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Mechanism No. 5: A spin-orbit effect giving rise to two solutions:
a ‘standard’ one for rso ∼ 1.2 fm and a ‘compact’ one at rso ∼ 0.6 fm
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Nucleon Energies: Spin-Orbit Potential Impact

• Consider fixed central potential and let vary only one spin-orbit
parameter viz. r`s so that r`s < r ′`s , next r ′`s < r ′′`s , etc. We have:

Wave−function

Central Potential

r r rso so so"’
r

r

VSO

CENTV Ψ&

Position of the S.O. Potential Maximum

The maxima of the blue curves result from the derivative in the
s-o potential; The yellow curve simulates typical wave functions as
generated by the central potential: a Gaussian × polynomial
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Nucleon Energies: Spin-Orbit Potential Impact

• Single nucleon levels as functions of s-o diffuseness parameter
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Mechanism No. 6: Observe a regular gentle increase of the spin-orbit
splitting with aso , which is followed by a stretch of independence
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From Simple Plots to Universal Woods-Saxon?

Another student noticed:

1) Wait a moment: Here we are in the process of discovering
a new, seemingly fundamental feature....

She added:

2) If the levels manifest so many similarities and partnerships
in behaviour, then the repetitive shell structures will be

obtained with the same, unique “universal” parameter set...

3) Your Hamiltonian will be functioning within a mode
published already earlier as “Woods-Saxon Universal”

4) She invested a few more weeks and transformed her
suggestions into mathematical arguments∗)

5) We will show that excellent comparisons with experiment
are obtained for all treated nuclei with 7 to 9 universal WS

parameters (universal ↔ common for Mass Table)

∗)The person chooses to remain incognito
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Generalising Nuclear Surface Definition for Arbitrary Shapes

• Nuclear surface Σ is parametrised in terms of spherical harmonics

R(ϑ, ϕ) = c({αλµ}) [ro ∗ A1/3] {1 +
∑∑

αλµ Yλ,µ(ϑ, ϕ)}

Geometrical interpretation of the
distance function and the related
deformed Woods-Saxon potential:

VWS(~r ; ro , a,Vo) =

Vo

1 + exp[ distΣ(ro)(~r)/a ]

y

z

x

Σdist   ( r )
Tangent  plane

r
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Distance function distΣ(~r)
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Nuclear Interactions Have Short Range: Nuclear and Mean Field Shapes Coincide

Given surface Σ

y

x

z

Σ

dist   (x,y,z)
Σ

P(x,y,z)

Constructing distance function

Deformed Woods-Saxon potential
generates surfaces and nucleonic
densities of similar shapes:

V̂WS
defor.(~r )≡ V0

1 + exp{distΣ(~r )/a}

V̂WS
spher.(~r )≡ V c

1 + exp[(r − Rc)/ac ]

Def . = 0↔ distΣ = r − Rc

• Nucleons inside a nucleus can be seen as “nearly touching each
other” - being pulled by nuclear short-range interactions: it follows
that the density falls exponentially to 0 outside of nuclear surface Σ
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Section 2
Mean-Field Theory as an Approximation

of Non-Interacting Nucleons
Residing on Single-Particle Levels
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• We need now experimental data to find parameters of the model

Ĥws = t̂ + V̂ws
cent + V̂ws

`·s

We will need to figure out which
experiments can help us to find
single particle levels schematically
represented in the figure on the
right→ adjustment of parameters

VWS(~r ; ro , a,Vo) =

Vo

1 + exp[(r − Rc)/ac ]
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Theory, Experiment, Experimental Data Bases

Even a theorist can produce an experimental
single-nucleon energy on his/her computer...

ILLUSTRATIVE EXAMPLES FOLLOW →
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Example from Ref.[1]: Neutron States in 91Zr

• We consider the reaction 90Zr (~d , p) 91Zr , with polarised d-beam

• We observe peaks in the proton spectrum corresponding to each
|jm〉 state populated in 91Zr

• Angular distributions from the measured proton spectrum allow
to deduce the associated proton orbital momenta ` - and through
conservation - possible orbital momenta of the odd neutron in 91Zr

• From polarisation of the deuterons we deduce the orientation of
intrinsic spins ~s with respect to orbital momentum ~̀→ we deduce j

• To summarise: Such experiments provide:
` ↔ parity, j and, with an extra effort,

the spectroscopic factors

– – – –
[1] Nuclear Hamiltonians: the question of their spectral predictive power and the associated inverse problem;
J. Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031
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Example from Ref.[1]: Neutron States in 91Zr

• We consider the reaction 90Zr (~d , p) 91Zr , with polarised d-beam

• We observe peaks in the proton spectrum corresponding to each
|jm〉 state populated in 91Zr

• Angular distributions from the measured proton spectrum allow
to deduce the associated proton orbital momenta ` - and through
conservation - possible orbital momenta of the odd neutron in 91Zr

• From polarisation of the deuterons we deduce the orientation of
intrinsic spins ~s with respect to orbital momentum ~̀→ we deduce j

• To summarise: Such experiments provide:
` ↔ parity, j and, with an extra effort,

the spectroscopic factors

– – – –
[1] Nuclear Hamiltonians: the question of their spectral predictive power and the associated inverse problem;
J. Dudek and collaborators, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031
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Selection of Nuclei and Testing Model-Hamiltonians

• We will be interested in extracting today’s single-nucleon energies
in the so-called well-known doubly-magic spherical-nuclei:

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb

• We wish to find mean-field Hamiltonian Hmf which reproduces
the single-particle energies exactly (Exact “Reference Hamiltonian”)

• The only simple Hamiltonian that we know of, which reproduces
the single-particle spectra exactly, is the Woods-Saxon Hamiltonian

Hws
mf = T + V ws

cent + V ws
so

• The simple Woods-Saxon mean-field has certain advantages:
Clearly defined roles of the size, depth and surface-diffuseness

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Selection of Nuclei and Testing Model-Hamiltonians

• We will be interested in extracting today’s single-nucleon energies
in the so-called well-known doubly-magic spherical-nuclei:

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb

• We wish to find mean-field Hamiltonian Hmf which reproduces
the single-particle energies exactly (Exact “Reference Hamiltonian”)

• The only simple Hamiltonian that we know of, which reproduces
the single-particle spectra exactly, is the Woods-Saxon Hamiltonian

Hws
mf = T + V ws

cent + V ws
so

• The simple Woods-Saxon mean-field has certain advantages:
Clearly defined roles of the size, depth and surface-diffuseness

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Selection of Nuclei and Testing Model-Hamiltonians

• We will be interested in extracting today’s single-nucleon energies
in the so-called well-known doubly-magic spherical-nuclei:

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb

• We wish to find mean-field Hamiltonian Hmf which reproduces
the single-particle energies exactly (Exact “Reference Hamiltonian”)

• The only simple Hamiltonian that we know of, which reproduces
the single-particle spectra exactly, is the Woods-Saxon Hamiltonian

Hws
mf = T + V ws

cent + V ws
so

• The simple Woods-Saxon mean-field has certain advantages:
Clearly defined roles of the size, depth and surface-diffuseness

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Selection of Nuclei and Testing Model-Hamiltonians

• We will be interested in extracting today’s single-nucleon energies
in the so-called well-known doubly-magic spherical-nuclei:

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb

• We wish to find mean-field Hamiltonian Hmf which reproduces
the single-particle energies exactly (Exact “Reference Hamiltonian”)

• The only simple Hamiltonian that we know of, which reproduces
the single-particle spectra exactly, is the Woods-Saxon Hamiltonian

Hws
mf = T + V ws

cent + V ws
so

• The simple Woods-Saxon mean-field has certain advantages:
Clearly defined roles of the size, depth and surface-diffuseness

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



Selection of Nuclei and Testing Model-Hamiltonians

• We will be interested in extracting today’s single-nucleon energies
in the so-called well-known doubly-magic spherical-nuclei:

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb

• We wish to find mean-field Hamiltonian Hmf which reproduces
the single-particle energies exactly (Exact “Reference Hamiltonian”)

• The only simple Hamiltonian that we know of, which reproduces
the single-particle spectra exactly, is the Woods-Saxon Hamiltonian

Hws
mf = T + V ws

cent + V ws
so

• The simple Woods-Saxon mean-field has certain advantages:
Clearly defined roles of the size, depth and surface-diffuseness

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Nuclear Mean-Field Theory for Experimentalists



We return to the interpretation of this kind
of correspondence between

experiment and modelling slightly later
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Realistic Phenomenological
Nuclear Mean Field Theory:

Physics Background for Experimentalists

Jerzy DUDEK

University of Strasbourg/IPHC/CNRS, France
and

The Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences, Kraków, Poland

Trento – Part 2

Theo4Exp EUROLABS Hands-on Workshop
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TRENTO: Part II

Stochastic Methods
for Prediction Capacities

of Our Mean Field Modelling
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Recall:

Experimental results are known within error bars:

E = E0 ± δe

Consequently the adjusted modelling parameters satisfy:

P = P0 ± δp

Therefore modelling results→ have uncertainty margins:

F = F0 ± δf

They carry an extremely important information about
predicting capacity (usually ignored) - Now: Central Point
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Predictive Power of Theories: Stochastic Approach

The present research project is formulated within

Stochastic Theory of Predictive Power∗)

• Given theory T , of a quantum phenomenon P , employing observables

F̂1, F̂2, . . . F̂p

• Observables will be characterised not only by related eigenvalues i.e. {fj}[F̂1 → {f1}, F̂2 → {f2}, . . . F̂p → {fp}
]

but also by distributions of probability of their validity - or applicability

P1 = P1(f1), P2 = P2(f2), . . . Pp = P1(fp)

• These distributions are obtained using stochastic methods on the basis of
all the uncertainties known-, or possible to estimate today

∗)Introduced in “Open Problems in Nuclear Theory”, J Dudek and collaborators,

J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031
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Section I

Probabilities of Uncertainties
of Theory-Modelling

P1 = P1(f1), P2 = P2(f2), . . . Pp = P1(fp)
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Begin With Theory Uncertainties: Concepts

• What we usually wish to find is the so-called scientific ‘full truth’

Ĥtrue ψn = en ψn − where we wish to know: Ĥ = Ĥtrue

• The way physicists do their research can be schematised like this:

Ĥ = Ĥ1︸︷︷︸
of 1949

+ Ĥ2︸︷︷︸
of 1964

+ Ĥ3︸︷︷︸
of 2012

+ · · ·+ Ĥn︸︷︷︸
of 2055

+ · · · → Ĥtrue︸ ︷︷ ︸
say:∞

In other words: The human physical theories are usually incomplete

• Our Hamiltonians can be written as follows: Ĥ = Ĥtrue − δĤign.

• Conclusion: The “exact truth” remains unknown to us because

of δĤign. ↔ ignorance hopefully decreasing in time
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of δĤign. ↔ ignorance hopefully decreasing in time

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Begin With Theory Uncertainties: Concepts

• What we usually wish to find is the so-called scientific ‘full truth’
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• Conclusion: The “exact truth” remains unknown to us because
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How to Diminish the Negative Impact of Not Knowing for Sure?

• There exist well known effective means of limiting the negative
impact of ignorance originating from incompleteness of information

• Solution: In the case of doubt we ‘just parametrise our ignorance’

• In other words: We need to estimate which answer will be more,-
and which less-likely ‘the right solution’. Expressed alternatively:

Find the relative probabilities of what we think the right answers are

In Applied Mathematics:

1. Represent un unsure information by a random variable→ X
2. Mathematically, variable X is represented by a probability
distribution PX = PX (x) – x called ‘realisation’ of variable X

Conclusion: Not knowing ‘the truth’ we may introduce several
competing hypotheses & calculate their relative probabilities!
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Stochastic Nature of Theoretical Predictions

Section II

Combining Theoretical Uncertainties
and

Experimental Errors

[Probability Convolution Theorem]
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Stochastic Nature of Theoretical Predictions

• Theories are incomplete while experiments accompanied by errors:

Theo.→ en = etruen (p) + δeuncn & εn = εtruen + δεerrn ← Exp.

en and εn are random variables→ distributions Pth.
n (en) and P

exp
n (εn)

• Errors propagate to the theory predictions through parameter fits

χ2(p) ∼
∑

wn

[ (
εtruen + δεerrn

)
︸ ︷︷ ︸

Experiment

−
(
etruen + δeuncn

)
︸ ︷︷ ︸

Theory

]2 → ∂χ2

∂p
= 0

thus the optimal parameter values p ≡ {p1, p2, . . . pf } are random
variables and consequently characterised by probability distributions

Convolution : P(p) = {P th(e) ∗ Pexp(ε)} ≡
∫ +∞
−∞ P th(e)Pexp(ε− e) de

• Thus sum of two random variables, e and ϵ, with probability densities
P th and Pexp, is a random variable, p, with the probability density→ P(p)
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Stochastic Nature of Theoretical Predictions

• Theories are incomplete whereas experiments plagued with errors:

Theo.→ en = etruen (p) + δeerrorn & εn = εtruen + δεerrn ← Exp.

en and εn are random variables→ distributions Pth.
n (en) and P
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Convolution : P(p) = {P th(e) ∗ Pexp(ε)} ≡
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−∞ P th(e)Pexp(ε− e) de

• Surprising Conclusion? Parameters of theories are not fixed numbers!

They are random variables – characterised by their probability distributions
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Learn Prediciting & Testing Predictive Power

• We examine the predictive power capacities of the nuclear mean-
field theory and its fundamental degrees of freedom: nucleon levels

• A simple beginning: We focus on ‘doubly magic’ spherical nuclei:

16
8O8,

40
20Ca20,

48
20Ca28,

56
28Ni28,

90
40Zr50,

132
50Sn82,

146
64Gd82,

208
82Pb126

• Since certain experimental levels in these nuclei are known, we can
test the theory predictions – thus the Hamiltonian and its parameters

• Since we have a sample composed of 8 nuclei we can use sub-
samples (=new samples) to test the predictions for remaining cases
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Sampling and Predicting: 132Sn from 16O and 40Ca

Protons

V cent
0 = −72.22 MeV

rcent
0 = 1.17 fm

acent
0 = 0.64 fm

λso = 29.33

rso
0 = 1.02 fm

aso
0 = 0.75 fm

Errors

r.m.s. = 3.77 MeV

R.M.S. = 2.43 MeV

Mx-abs = 4.97 MeV

rexp = 4.67 fm, rth = 4.23 fm, rth − rexp = −0.44 fm

Theory Experiment

Id
.:

N
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:
V
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−5
8.
33
M
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,
κ
c V
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98

,
λ
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=

33
.5
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,
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Comparison Theory-Experiment

132
50Sn82 Spherical Woods-Saxon Hamiltonian

-22

-20

-18

-16

-14

-12

-10

-8

-6
Si

ng
le

P
ar

ti
cl

e
E
ne

rg
ie

s

2p1/2

1g9/2

1g7/2

2d5/2

2d3/2

2p1/2

1g9/2

1g7/2

2d5/2

2d3/2

• Proton single particle levels predicted via adjusting the parameters in
16O and 40Ca; observe a huge r.m.s. deviation of 3.7 MeV - poor prediction?

And yet - similarities are clear, main problem being ‘only’ a constant shift
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Sampling and Predicting: 132Sn from 16O and 208Pb

Protons

V cent
0 = −64.03 MeV

rcent
0 = 1.19 fm

acent
0 = 0.58 fm

λso = 28.09

rso
0 = 1.10 fm

aso
0 = 0.54 fm

Errors

r.m.s. = 0.72 MeV

R.M.S. = 1.12 MeV
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rexp = 4.67 fm, rth = 4.39 fm, rth − rexp = −0.27 fm
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• Similar but adjusting the parameters in 16O and 208Pb; observe an im-
provement of the r.m.s. deviation by a factor of ≈ 5 [“better prediction”]
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Section III

Towards more precision:

Intraneous vs. Extraneous
Predictions
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Intraneous Predictions – An Example

• Adjust Hamiltonian parameters using the data of a nucleus (Z ,N)

• Energies intermixed with the experimental data are referred to as
intraneous predictions

Experim. Model

Extraneous

predictions

Intraneous

predictions

E
n
e
rg

y
S
p
e
ct

ru
m

}
• This is just an example of intraneous predictions: There are more

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Intraneous and Extraneous Predictions

• More generally - predictions related to nuclei ‘in-between’ the
known ones (‘interpolation’) are referred to as intraneous predic-
tion

• By the same token, predictions related to the nuclei far away from
the known ones (‘extrapolation’) - are called extraneous predictions

Very exotic nuclei

Superheavy

nuclei

Exotic nuclei

Intraneous Predictions

N

Sampling = known nuclei

Extraneous Predictions

Z

Figure: Schematic illustration
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We learn about Working Tools

1) Sampling
2) Intranous Prediction Zones
3) Extranous Prediction Zones
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Section IV

Our Nuclear Mean-Field Realisation
will be optimised employing

Inverse Problem Theory
of Applied Mathematics
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Direct and Inverse Problems in Quantum Theories

• Consider an arbitrary, e.g. many-body, theory with its Hamiltonian:

Ĥ = T̂ + V̂int(...{p}); {p} → Optimal parameters

• If we know the parameters, we are able to solve the Direct Problem:

Ĥ φj (..., {p}) = eth
j (..., {p})φ j (..., {p}) ↔ (φj , ej )

• However, before any comparison theory-experiment, and even more
generally: Before any calculation we must solve the Inverse Problem:

To determine the optimal parameters of the Hamiltonian
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Inverse Problem in Quantum Theories vs. χ2-Test

• Given parameters {p} → The Schrödinger equation produces data:

Ĥ(p)→ {Ei (p), ψi (p)} ↔ ÔH(p) = d th ← Direct Problem

• To find the optimal parameters we must invert the above relation:

popt = Ô−1
H (d exp)← Inverse Problem

• In many-body theories the existence of operator Ô−1
H is doubtful,

in fact no mathematical methods of such a construction are known

• If ÔH has no inverse we say that inverse problem is ill-posed

• In physics this issue remains unsolved: Instead of finding optimal
parameters by solving the Inverse Problem→→“one minimises χ2 ”
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The Central Point of These Lectures

• We consider linear equations: P = A−1 · D



P1

P2

· · ·
Pm


 =




A11 A12 · · · A1d
A21 A22 · · · A2d
· · · · · · · · · · · ·
Am1 Am2 · · · Amd




−1

︸ ︷︷ ︸
A−1: m×d rectangular matrix




D1

D2

· · ·
Dd




• [Aik ] depend on: 1) Hamiltonian, and 2) Selection of data points

• If one of the parameters is a function of another, say, pk = f (pk ′)
then one may show, that two columns of A are linearly dependent

• If this happens → A-matrix becomes singular [Ill-Posed Problem]

Ill-Posed: Correlation between parameters and the data is lost!
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The Central Point of These Lectures

Since the last observations form the central discussion issue
of the whole series of lectures let us repeat them

If one of the parameters is a function of another one, say,
pk = f (pk′)↔ parametric correlation

one may show, that two columns of A are linearly dependent

If this happens → A in P = A−1 · D becomes singular:
The model does NOT constrain parameters

χ2-test has no solutions ↔ Ill-Posed Inverse Problem

Correlation between parameters and the data is lost!

Running χ2-codes gives equivalent of random numbers
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Don’t Try Solving the Ill-Posed Inverse Problem

Here we face replacing solutions by a non-sense
[largely unknown, or deliberately ignored, or both]:

• The inverse problem has no solution since modelling does not
constrain parameters [changing data does not change parameters]

• ... and yet some physicists keep χ2-minimising!!

• Unfortunately, the χ2 usually “works perfectly well”→
• Some curves are generated,

they may even go through experimental data... [“good r.m.s.”]

• ... but these results have neither mathematical
nor not much of the physical significance...
... and even less of prediction capacities!
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The ‘Enemy’ No. 1 of the Mean-Field Users:

Parametric Correlations
within the Inverse Problem:

a. How to determine their presence?

b. How to eliminate their consequences
which are disastrous for predictive power?
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Reminder from Probability Calculus

• Given random variables X and Y . Correlation matrix in this case:

corr(X ,Y )
df.
=

∑
i [(Xi − X̄ )(Yi − Ȳ )]√∑

i (Xi − X̄ )2
√∑

i (Yi − Ȳ )2
; X̄ ≡ 1

n

n∑
i=1

Xi , Ȳ ≡ 1

n

n∑
i=1

Yi

• Generally: {X ,Y } → {Xk} = {V c
0 , r

c
0 , a

c
0,V

so
0 , r so0 } we obtain:

Correlation matrix for the Woods-Saxon Hamiltonian parameters
as obtained from the Monte-Carlo simulation

V c
0 r c0 ac0 V so

0 r so0

V c
0 1.000 0.994 -0.028 0.000 0.265
r c0 0.994 1.000 0.016 0.005 0.270
ac0 0.028 0.016 1.000 0.259 0.288
V so

0 0.000 0.005 0.259 1.000 0.506
r so0 0.265 0.270 0.288 0.506 1.000

The non-diagonal matrix elements close to 1
signify strong matrix correlations
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Alternative: Monte-Carlo Simulations vs. Our Inverse Problem

One can demonstrate that parametric correlations can easily
be studied using Monte Carlo methods as follows:

• Given space of data {d1, d2, . . . dn} with uncertainty σ

• With random-number generator we define Gaussian ‘noise’
distribution around each di

• We fit the parameter sets great number of times, N
• From m-tuplets of so obtained parameters,

{p1, p2, . . . pm}, we construct the tables and projection plots
like the two which follow
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Parameter-Correlations and Correlation Matrix [W-S]
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Monte-Carlo fitting results for 208Pb with the Woods-Saxon potential
Left:(ac0 vs. V c

0 ) ↔ no correlations; Right: (r c0 vs. V c
0 )↔ strong correlations
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Switching the Context: Hartree-Fock vs. Woods-Saxon

Section V

Instructive Comparisons
with Skyrme Hartree-Fock Hamiltonian

Sampling and Parametric Correlations

To follow the discussion it will be sufficient to know that the
Skyrme Hamiltonian depends on the adjustable constants:

C ρ
0 ,C

ρ
1 ,C

ρα
o ,C τ

0 ,C
τ
1 ,C

∇J
0
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Parameter-Correlations and Correlation Matrix [H-F]
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Illustration analogous to the preceding one; here Skyrme Hartree-Fock showing
clear parameter correlations [B. Szpak, PhD tesis]

Correlation matrix for the Skyrme-Hartree-Fock Hamiltonian parameters

Cρ
0 Cρ

1 Cρα
0 C τ

0 C τ
1 C∇J

0

Cρ
0 1.000 -0.948 -0.506 -0.902 0.952 0.965

Cρ
1 -0.948 1.000 0.682 0.745 -0.838 -0.854

Cρα
0 -0.506 0.682 1.000 0.102 -0.243 -0.290

C τ
0 -0.902 0.745 0.102 1.000 -0.985 -0.977

C τ
1 0.952 -0.838 -0.243 -0.985 1.000 0.993

C∇J
0 0.965 -0.854 -0.290 -0.977 0.993 1.000

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Parameter-Correlations and Correlation Matrix [H-F]

-1000 -800 -600 -400
Parameter Cρ

0

150

200

250

300

350

400

450

500

550

600

Pa
ra

m
et

er
C
ρ 1

-1000 -800 -600 -400
Parameter Cρ

0

-1000

-800

-600

-400

-200

0

Pa
ra

m
et

er
C
∇
J

0

Illustration analogous to the preceding one; here Skyrme Hartree-Fock showing
clear parameter correlations [B. Szpak, PhD tesis]

Correlation matrix for the Skyrme-Hartree-Fock Hamiltonian parameters

Cρ
0 Cρ

1 Cρα
0 C τ

0 C τ
1 C∇J

0

Cρ
0 1.000 -0.948 -0.506 -0.902 0.952 0.965

Cρ
1 -0.948 1.000 0.682 0.745 -0.838 -0.854

Cρα
0 -0.506 0.682 1.000 0.102 -0.243 -0.290

C τ
0 -0.902 0.745 0.102 1.000 -0.985 -0.977

C τ
1 0.952 -0.838 -0.243 -0.985 1.000 0.993

C∇J
0 0.965 -0.854 -0.290 -0.977 0.993 1.000

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Parameter-Correlations and Correlation Matrix [H-F]
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Parameter-Correlations in Skyrme-H-F
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Illustration suggesting that majority of these parameters are strongly correlated
excluding the prediction capacities of the model [B. Szpak, PhD thesis]
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Summary: Strongly Alerting against Hartree-Fock and Similar

Parametric Correlations:

Strongly Present in the Nuclear Skyrme-Hartree-Fock
Mean Fields

Parametric Correlations signify that no predictive power
is possible to obtain with this type of the Hamiltonians

In other words: This Hamiltonian may very well
allow to fit the data - but by no means predict∗)

∗)J. Rikovska-Stone, J. Phys. G31 (2005) R211-R230: Cites over 100 distinct,
non-equivalent parameterisations of the Skyrme Hartree-Fock Hamiltonian

so far published in the literature
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Attention! A JOKE:

The Following Messages

are intended
for Mature Audiences

• Observe: The ‘standard’ Skyrme Hartree-Fock Hamiltonian which was
discussed above contains 12 terms with 12 adjustable coupling constants –
of the so-called leading order (LO) – and shown to be largely very-correlated

Leading Order (n=2) allows for 18 Hamiltonian terms maximum

• The new approach mentioned next is an improvement of the method and
contains terms of the next-to-next-to-next order i.e. 2632 vs. 12 terms...
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Skyrme -HF in the EDF Formulation up to N3LO

• Numbers of terms depending on the time-even and time-odd densities are
given below separately. The last two columns give numbers of terms when
the Galilean or gauge1 invariance symmetries are assumed, respectively.

Order T-even T-odd Total Galilean Gauge
0 1 1 2 2 2
2 8 10 18 12 12
4 53 61 114 45 29
6 250 274 524 129 54

N3LO 2x312 2x346 2x658 2x188 2x97

624 692 1316 376 194

• Let us observe a very fast-growing number of terms. To take into account
both isospin channels, the number of terms is multiplied by a factor of two

1For comments about Skyrme HF gauge invariance cf. e.g.
J. Dobaczewski and J. Dudek, PRC 52 (1995) 1827
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Selection of the Model Mean-Field Hamiltonian
for the Project
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Selection of Model Hamiltonian for the Project

• For the applications in this project we could have used the Skyrme
Hartree-Fock approach and computer programs developed in Strasbourg:

[1] Solutions of the Skyrme-Hartree-Fock Equations: (I) The Method;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 102 (1) (1997) 166-182

[2] Solutions of the Skyrme-Hartree-Fock Equations. (II) The Program HF ODD;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 102 (1) (1997) 183-209

•We decided not to use the Skyrme because of the overwhelmingly present
parametric correlations and the implied issues of missing predictive power

• Alternative: Phenomenological Woods-Saxon Universal mean-field

[A] J. Dudek and T. Werner 1978, J. Phys. G4 1543
[B] J. Dudek and collaborators, 1979 J. Phys. G5 1359
[C] J. Dudek, Z. Szymański and T. Werner 1981, Phys. Rev. C23 920

and summarized in
[D] S. Ćwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, 1987, CPC 46, 379

• ‘Woods-Saxon Universal’ is used today by many-many articles every year
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[D] S. Ćwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, 1987, CPC 46, 379

• ‘Woods-Saxon Universal’ is used today by many-many articles every year

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Selection of Model Hamiltonian for the Project

• For the applications in this project we could have used the Skyrme
Hartree-Fock approach and computer programs developed in Strasbourg:

[1] Solutions of the Skyrme-Hartree-Fock Equations: (I) The Method;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 102 (1) (1997) 166-182

[2] Solutions of the Skyrme-Hartree-Fock Equations. (II) The Program HF ODD;
J. Dobaczewski and J. Dudek, Comp. Phys. Comm. 102 (1) (1997) 183-209

•We decided not to use the Skyrme because of the overwhelmingly present
parametric correlations and the implied issues of missing predictive power

• Alternative: Phenomenological Woods-Saxon Universal mean-field

[A] J. Dudek and T. Werner 1978, J. Phys. G4 1543
[B] J. Dudek and collaborators, 1979 J. Phys. G5 1359
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W-S Universal: Among Popular Realistic Models

• To give an illustration of the use-frequency we quote below the articles
which appeared only in 2013 and only in one journal - The Physical Review:

[1] Phys. Rev. C 88, 044313 (2013); J. Rissanen et al.,
[2] Phys. Rev. C 88, 044307 (2013); W. Brodziński et al.,
[3] Phys. Rev. C 88, 024302 (2013); S. Lalkowski et al.,
[4] Phys. Rev. C 87, 067304 (2013); H. L. Liu et al.,
[5] Phys. Rev. C 87, 041302 (2013); D. S. Delion et al.,
[6] Phys. Rev. C 87, 034328 (2013); D. S. Delion et al.,
[7] Phys. Rev. C 87, 024309 (2013); D. S. Delion et al.,
[8] Phys. Rev. C 87, 014329 (2013); D. Deleanu et al.,
[9] Phys. Rev. C 86, 064323 (2013); S. Takahara et al.,
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[3] Phys. Rev. C 88, 024302 (2013); S. Lalkowski et al.,
[4] Phys. Rev. C 87, 067304 (2013); H. L. Liu et al.,
[5] Phys. Rev. C 87, 041302 (2013); D. S. Delion et al.,
[6] Phys. Rev. C 87, 034328 (2013); D. S. Delion et al.,
[7] Phys. Rev. C 87, 024309 (2013); D. S. Delion et al.,

[8] Phys. Rev. C 87, 014329 (2013); D. Deleanu et al.,
[9] Phys. Rev. C 86, 064323 (2013); S. Takahara et al.,

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



W-S Universal: Among Popular Realistic Models

• To give an illustration of the use-frequency we quote below the articles
which appeared only in 2013 and only in one journal - The Physical Review:

[1] Phys. Rev. C 88, 044313 (2013); J. Rissanen et al.,
[2] Phys. Rev. C 88, 044307 (2013); W. Brodziński et al.,
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[3] Phys. Rev. C 88, 024302 (2013); S. Lalkowski et al.,
[4] Phys. Rev. C 87, 067304 (2013); H. L. Liu et al.,
[5] Phys. Rev. C 87, 041302 (2013); D. S. Delion et al.,
[6] Phys. Rev. C 87, 034328 (2013); D. S. Delion et al.,
[7] Phys. Rev. C 87, 024309 (2013); D. S. Delion et al.,
[8] Phys. Rev. C 87, 014329 (2013); D. Deleanu et al.,
[9] Phys. Rev. C 86, 064323 (2013); S. Takahara et al.,

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



RECALL: Woods-Saxon Hamiltonian ↔ Central Potential

•We present here only the spherical variant of the Woods-Saxon potential

VWS
cent =

Vc

1 + exp [(r − Rc) /ac ]
; Rc = rcA1/3.

It has unique features among most of the mean field models, namely, each
parameter is related to an independent class of experiments:

Vc - depth parameter; specific transfer reactions

rc - radius parameter; electron scattering

ac - diffuseness parameter; hadron scattering

• In principle each of these parameters can be determined separately thus
helping to counteract certain parametric correlations

• The importance – This potential is broadly used for deformed nuclei:

VWS
cent =

Vc

1 + exp [distΣ(r⃗ ;R0)/ac ]

with a fixed parameter set for thousands of nuclei⇒ Thus ‘universal’
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Woods-Saxon Hamiltonian: Spin-Orbit Potential

The spherical Woods-Saxon spin-orbit potential has the form

V ws
so =

λso

r
d
dr

[
1

1 + exp [(r − Rso) /aso]

]
ℓ̂ · ŝ; Rso = rsoA1/3

λso - strength parameter

rso - radius parameter

aso - diffuseness parameter

In total two sets of six parameters {Vc , rc , ac ;λso, rso, aso}π,ν
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Back to the Parametric Correlation Problem

• One can show that the parametric correlations can be detected through
projecting the χ2(p) onto a (pj , pk)-plane: mini ̸=j ,k χ

2(p1, p2, . . . pm)

208
82Pb126

1.5

a
c 0
,p

(f
m

)

rc
0,p (fm)

MeV

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60

>2.70

15W

P
R
O
N
|

P
:V

c p
,λ

s
o

p
,r

s
o

p
,a

s
o

p
,

F
it

te
d
:

2
0
8
P
b

rmsmin = 0.08 MeV

Test of Parametric Correlations

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

.

• As the approximate circular symmetry of this diagram shows, the central
potential radius and central potential diffuseness are not correlated - thus
no danger to the predictive power
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Undesired Parametric
Correlations:

Illustrative Examples

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Begin with a Well Known: Vo vs. ro Are Correlated
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A map of χ2 from the fit based on six levels close to the Fermi level.
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Parametric Correlations and Their Consequences
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We start with six very lowest levels. Very important observation: no way
to fix reliably the spin-orbit strength in the interval from 15 to 40 units.
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We will gradually increase the energy of the six-level
window to approach the nucleon binding region and
thus simulate the present-day experimental situation
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Limited Experimental Input: How Little is Sufficient?
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Increasing energy of six levels helps localising the spin-orbit strength slowly!
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Limited Experimental Input: How Little is Sufficient?
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Increasing energy of six levels helps localising the spin-orbit strength slowly...
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Limited Experimental Input: How Little is Sufficient?
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Increasing energy of six levels helps localising the spin-orbit strength slowly...
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Limited Experimental Input: How Little is Sufficient?
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Increasing energy of six levels helps localising the spin-orbit strength slowly...
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Increasing energy of six levels helps localising the spin-orbit strength slowly...
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Limited Experimental Input: How Little is Sufficient?
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Increasing energy of six levels helps localising the spin-orbit strength slowly...
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Increasing energy of six levels helps localising the spin-orbit strength slowly...
Attention: Second solution is coming !
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Limited Experimental Input: How Little is Sufficient?
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Experimental Neutron Energy Levels: 3s1/2 1i13/2 2f5/2 3p1/2 2g9/2 4s1/2 Window Size: Emin=-15.875 MeV Emax=-1.402 MeV

constant parameter: A0SORB=0.52
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ATTENTION: Here we discover the existence of two solutions with very
different radii – Traditionally we call them compact and non-compact.
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What Can We Conclude From This Set of Tests?

• First of all, the fitted spin-orbit strength may vary widely
from one doubly-magic nucleus to another - there exists a
considerable softness in χ2 dependence on λso

• Secondly - there are correlations between the parameters:
two relatively distant sets of parameters may be, what we call
spectroscopically equivalent (‘iso-spectroscopic’)

• Clearly: The ‘spectroscopic predictive power’ is in danger !!!
In particular results depend on the sampling and thus possibly
on experimentalist’s choice - with all the implied subjectivity

• We discover a possibility of double-valued solutions giving
rise to compact and non-compact spin-orbit parametrisation

• We confirm the presence of the mechanism of iso-spectral
lines - also in the space of the spin-orbit potential parameters

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



What Can We Conclude From This Set of Tests?

• First of all, the fitted spin-orbit strength may vary widely
from one doubly-magic nucleus to another - there exists a
considerable softness in χ2 dependence on λso

• Secondly - there are correlations between the parameters:
two relatively distant sets of parameters may be, what we call
spectroscopically equivalent (‘iso-spectroscopic’)

• Clearly: The ‘spectroscopic predictive power’ is in danger !!!
In particular results depend on the sampling and thus possibly
on experimentalist’s choice - with all the implied subjectivity

• We discover a possibility of double-valued solutions giving
rise to compact and non-compact spin-orbit parametrisation

• We confirm the presence of the mechanism of iso-spectral
lines - also in the space of the spin-orbit potential parameters

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



What Can We Conclude From This Set of Tests?

• First of all, the fitted spin-orbit strength may vary widely
from one doubly-magic nucleus to another - there exists a
considerable softness in χ2 dependence on λso

• Secondly - there are correlations between the parameters:
two relatively distant sets of parameters may be, what we call
spectroscopically equivalent (‘iso-spectroscopic’)

• Clearly: The ‘spectroscopic predictive power’ is in danger !!!
In particular results depend on the sampling and thus possibly
on experimentalist’s choice - with all the implied subjectivity

• We discover a possibility of double-valued solutions giving
rise to compact and non-compact spin-orbit parametrisation

• We confirm the presence of the mechanism of iso-spectral
lines - also in the space of the spin-orbit potential parameters

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



What Can We Conclude From This Set of Tests?

• First of all, the fitted spin-orbit strength may vary widely
from one doubly-magic nucleus to another - there exists a
considerable softness in χ2 dependence on λso

• Secondly - there are correlations between the parameters:
two relatively distant sets of parameters may be, what we call
spectroscopically equivalent (‘iso-spectroscopic’)

• Clearly: The ‘spectroscopic predictive power’ is in danger !!!
In particular results depend on the sampling and thus possibly
on experimentalist’s choice - with all the implied subjectivity

• We discover a possibility of double-valued solutions giving
rise to compact and non-compact spin-orbit parametrisation

• We confirm the presence of the mechanism of iso-spectral
lines - also in the space of the spin-orbit potential parameters

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



What Can We Conclude From This Set of Tests?

• First of all, the fitted spin-orbit strength may vary widely
from one doubly-magic nucleus to another - there exists a
considerable softness in χ2 dependence on λso

• Secondly - there are correlations between the parameters:
two relatively distant sets of parameters may be, what we call
spectroscopically equivalent (‘iso-spectroscopic’)

• Clearly: The ‘spectroscopic predictive power’ is in danger !!!
In particular results depend on the sampling and thus possibly
on experimentalist’s choice - with all the implied subjectivity

• We discover a possibility of double-valued solutions giving
rise to compact and non-compact spin-orbit parametrisation

• We confirm the presence of the mechanism of iso-spectral
lines - also in the space of the spin-orbit potential parameters

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Elementary Conclusions about Correlation Removal:

• Suppose that Monte Carlo simulation provides a χ2-valley
on r0-vs.-V0 plane.

• It will be sufficient to parametrise it by defining function f
in the relation r0 = f (V0)

• A possible alternative: Using regularisation methods for in-
stance: Truncated Singular Value Decomposition Theorem

• However, here we will explore yet another, physics approach
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Section 6

Density-Dependent spin-orbit
interaction potential
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Physics-Guided Improvements of WS Universal

• It is well known that the microscopic structure of the mean field, V̂mf ,
is based on the 2-body interactions, v̂2:

v̂2 ↔ v̂two−body(r⃗i − r⃗j ) → Vmean−field(r⃗i ) ↔ V̂mf(r⃗i )

V̂mf (r⃗i ) ∝
∑
j ̸=i

∫
ψ∗

j (r⃗j ) v̂2(r⃗i − r⃗j )ψj (r⃗j ) d 3 r⃗j ,
∑

j

ψ∗
j (r⃗j )ψj (r⃗j ) ≡ ρ(r⃗ )

• Here we follow the ‘microscopic generalisation of the W-S-universal’ in:

Realistic Nuclear Mean Field Approach with the Density-Dependent Spin-Orbit Term;
B. Belgoumène, J. Dudek and T. Werner, Phys. Lett. B267 (4) (1991) 431-437 ⇒

V̂π
so ↔ λππ

1

r
dρπ
dr

+ λπν
1

r
dρν
dr

Eq.(A)

V̂ ν
so ↔ λνπ

1

r
dρπ
dr

+ λνν
1

r
dρν
dr

Eq.(B)

Advantages: The new expression includes the microscopic HF approach rather than pure
phenomenology and contains 4 parameters rather than 6. What are their correlations?
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Density-Dependent Spin-Orbit: Elementary Correlations?

• The pilot-project tests show that λπν ≈ λνπ and λππ ≈ λνν - then:

208
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• Realistic calculations indicate that the density-dependent spin-orbit po-
tential parameters are correlated – but the correlations are perfectly linear
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Density-Dependent Spin-Orbit: Elementary Correlations?

• Another variant: Correlations λpp−vs.−λνν at fixed, optimal λpn = λnp
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• Again: Calculations show that the density-dependent spin-orbit potential
parameters are correlated – but the correlations are perfectly linear
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Conclusion:

We may significantly decrease the number of spin-orbit
potential parameters

But: Do we loose something? At which aspect? What?
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How Many Degrees of Freedom the Vso Has?

• We fit all the traditional WS potential parameters to several nuclei
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• We illustrate the results for 208Pb-neutrons – Solution r.m.s.=0.49MeV
• The answer: 6 - {λso , r so

0 , aso
0 } for protons and {λso , r so

0 , aso
0 } for neutrons
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How Many Degrees of Freedom the Vso Has?

• We fit the density-dependent spin-orbit: λnn = λnp = λpn = λpp ≡ λ
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• The results for 208Pb-neutrons – Solution r.m.s.=0.49MeV is unchanged
• The answer: 1 parameter - common for the protons and for the neutrons
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We repeat the test for the protons
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How Many Degrees of Freedom the Vso Has?

• We fit all the traditional WS potential parameters to several nuclei
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• We illustrate the results for 208Pb-protons – Solution r.m.s.=0.73MeV
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How Many Degrees of Freedom the Vso Has?

• We repeat the test under the constraint: λnn = λnp = λpn = λpp ≡ λ
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• 208Pb-protons – The r.m.s. decreased from r.m.s.=0.73MeV to 0.71MeV
• We decreased the number of spin-orbit potential parameters – and this
from 6 to 1 and the r.m.s. slightly improved. Conclusions for the project?

⇒
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How Many Degrees of Freedom the Vso Has?

Conclusions:

The density-dependent, thus more microscopic
spin-orbit potential, depends effectively on one

parameter rather than six

• We obtain better or equal quality of comparison with experiment

• We arrive at the eliminating of all parametric correlation problems
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The Notion of Over-Parameterised Hamiltonians

Basic conclusion for this domain of research

We may use the physicist’s intuition to invent more and more complex interactions
containing more and more parameters
[e.g. 2632 parameters, see above]

but if the number of effective degrees of freedom is close to 1 – no wonder
that the parametric correlations will be of the type “everyone-with-everyone”

We arrive in this way at the notion of
“Over-Parameterised Hamiltonians”

In such cases the very definition of the Hamiltonian
currently excludes applications to the modelling with prediction capacities
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We Can Interpret this Diagram from a New Perspective
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Majority of these parameters are strongly correlated because the model is
over-parameterised thus excluding the prediction capacities

[B. Szpak, PhD thesis]
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Strategy and Strategical Goals

With this strategy in mind:

What are the actualised research directions
for the project?

Recall. We have two strategical goals:

• Eliminate parametric correlations and model over-parametrisation
in order not to “kill” the predictive power at the start [as presented]

• Determine quantitative limitations from the today’s constraints
such as experimental and theory errors which we cannot bypass today
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Strategy and Strategical Goals

In other words:

We can neither increase the number of data points
(volume of sampling) nor the quality of the sampling.

Under these objective constraints we wish to know
how (un)certain is what we calculate

with our very complex/advanced computer programs?

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Strategy and Strategical Goals

In other words:

We can neither increase the number of data points
(volume of sampling) nor the quality of the sampling.

Under these objective constraints we wish to know
how (un)certain is what we calculate

with our very complex/advanced computer programs?

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Strategy and Strategical Goals

In other words:

We can neither increase the number of data points
(volume of sampling) nor the quality of the sampling.

Under these objective constraints we wish to know
how (un)certain is what we calculate

with our very complex/advanced computer programs?

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Uncertainties of Calculated Nucleon Energies

• The concept of pseudo-experimental levels: Optimise Hamiltonian under some
plausible conditions → Replace experimental levels by the model energies →
Construct in this way an exact model→ Now we can modify the ‘sampling’
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Uncertainties of Calculated Nucleon Energies

• The pseudo-experimental levels: Now we can modify/increase the ‘sampling’
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Strategy and Strategical Goals

Central Radius Uncertainties
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Uncertainties of the Optimal Parameters: r c
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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Uncertainties of the Optimal Parameters: r c
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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Strategy and Strategical Goals

Spin-Orbit Radius Uncertainties

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Uncertainties of the Optimal Parameters: r so
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 11 levels around the Fermi level
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• Here: Sampling composed of 15 levels around the Fermi level

Jerzy DUDEK, University of Strasbourg and IPHC/CNRS Mean-Field vs. Experiment: Predictive Capacities



Uncertainties of the Optimal Parameters: r so
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 20 levels around the Fermi level
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Uncertainties of the Optimal Parameters: r so
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 25 levels around the Fermi level
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Strategy and Strategical Goals

Diffusivity Parameter
Uncertainties
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 11 levels around the Fermi level
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’
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• Here: Sampling composed of 15 levels around the Fermi level
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
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• Here: Sampling composed of 20 levels around the Fermi level
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
208Pb
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• Here: Sampling composed of 25 levels around the Fermi level
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Uncertainties of the Optimal Parameters: ac
n

• Pseudo-experimental levels: Parameter uncertainties← increasing ‘sampling’

126 82
208Pb
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• Here: Sampling composed of 29 levels around the Fermi level
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Strategy and Strategical Goals

Final Comments

• Fitting is usually easy: We obtain some “optimal” parameters and
the “curve passes through the data”

• The very first test sine qua non: Are the parameters correlated?

• If they are we have decisions to take:

– Are we interested “just in fitting”?
or
– Are we interested also in predictions of new physics phenomena
and
– Are we interested in understanding the physics?
• If just in fitting: Everything may look fine... for those who chose!
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Strategy and Strategical Goals

Final Comments

• Fitting is usually easy: We obtain some “optimal” parameters and
the “curve passes through the data”

• The very first test sine qua non: Are the parameters correlated?

• If they are we have decisions to take:
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ANNEX I
Experimental Uncertainties

and
Error-Probability Distributions
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Single-Particle Levels as Probability Distributions

Experimental levels represent, from both quantum-mechanical and
experimental points of view an ensemble of probability distributions

.
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Single-Particle Levels as Probability Distributions

Uncertainties propagate to sought parameters {p1, p2, . . .} ≡ {p} in
Ĥ(r̂ , p̂; {p})ψn = en(p)ψn: Parameters→ Probability Distributions

[combine theory + experimental errors]
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Single-Particle Levels as Probability Distributions

As it turns out, even small uncertainties on some experimental levels
may cause very large uncertainties on the adjusted parameters ...

[combine theory + experimental errors]
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Single-Particle Levels as Probability Distributions

... while at the same time big uncertainties on other levels have a
small impact: and this requires specialised case-by-case studies
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Single-Particle Levels as Probability Distributions

Conclusion: The parameter adjustment depends very strongly on the
quality of the data implying the existence of theoretical error bars!!
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ANNEX II
Examples of Stochastic Impact

on Predicted Nucleon Energies
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An Example of Stochastic Theory Predictions
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Results of the extrapolation from the 208Pb to the 132Sn nucleus for the neutrons.

Monte-Carlo simulation with N=20 000 Gaussian-distributed parameter sets, based on

208Pb results; noise width σ=0.1MeV. With each of the so obtained N=20 000 sets of

parameters the results for the neutrons in 132Sn nucleus have been obtained. Observe

‘pathologies’: Double-hump structures of 1g7/2 and 2d3/2.
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An Example of Stochastic Theory Predictions

• Neutron levels for 208Pb. Here: A realistic mean-field WS potential
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Positions of the neutron energies

together with the modelled uncertainty distributions

• In what follows we will study various uncertainty sources e.g. the
ones created by intrinsic features of the Modelling and Sampling
(such as parametric correlations – see below) but also weak points
of the data analysis, or our incomplete knowledge of the interactions
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together with the modelled uncertainty distributions

• In what follows we will study various uncertainty sources e.g. the
ones created by intrinsic features of the Modelling and Sampling
(such as parametric correlations – see below) but also weak points
of the data analysis, or our incomplete knowledge of the interactions
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ANNEX III

About difficulties encountered
when learning about
Predictive Power
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What Does it Mean: ‘To Have Predictive Power’?

• Any result of any modelling of any phenomenon before the right
experiments are performed can be called “a theoretical prediction”

• ... thus performing any model calculation can be called predicting!

• But if any calculation is a prediction, any theory can predict always
and therefore it has always a certain prediction capacity (=”power”)

• As a consequence, the very term “predictive power” applies always
i.e. means no special property. In our context it will be fair to say:

This term is void of sense - more precisely: does not tell us anything

• And yet the term ‘predictive power’ is used continually - by many

• One may introduce instead a slightly modified wording: What
carries certain interest is, possibly, theory’s good predictive power!
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What Does it Mean: ‘To Have Predictive Power’?
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What Does It Mean ‘Obtain a Good Prediction’?

• Being good for someone may not be satisfactory for someone else

• ... and it becomes clear that discussions of this type unavoidably
involve the elements of arbitrariness and of a subjective judgement

• Therefore directly related with the notion of “good predictions”
are, sine qua non, criteria of distinction between “good” and “poor”

• It is not possible to talk about Predictive Power [whatever it
means∗)] without specifying the criteria of choice at the same time:

The notion of Predictive Power is relative and/or subjective#)

∗)The notion of Predictive Power is still to be made more precise slightly later ...
#)So is the very notion of probability (several ‘official’ definitions and interpretations)
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After all these precautions
we are still going to use the term

“Predictive Power”
as everybody else does

but keeping in mind its shortcomings
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Here we arrive at the ‘dramatic consequences’
[largely unknown, or deliberately ignored, or both]:

• The inverse problem has no solution if the modelling does not
constrain parameters [changing data does not change parameters]

• ... and yet some of us choose χ2-minimising!!

• Unfortunately, the χ2 usually “works perfectly well”→
• Some curves are generated,

they may even go through experimental data... [“good r.m.s.”]

• ... but these results have neither mathematical
nor not much of the physical significance...

... and even less of prediction capacities! And yet: All that is
perfectly known in the textbooks as the next page shows !
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Theory and Its Possible Statistical In-Significance

About the So-Called Chi-by-the-Eye “Method”

• After laborious theoretical constructions, we get terribly exhausted
and forget that: Parameter determination is a noble, mathematically
sophisticated procedure based on the statistical theories often more
involved than the physical problems under study!
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Theory and Its Possible Statistical In-Significance

About the So-Called Chi-by-the-Eye “Method”

• After laborious theoretical constructions, we get terribly exhausted
and forget that: Parameter determination is a noble, mathematically
sophisticated procedure based on the statistical theories often more
involved than the physical problems under study!

• In their introduction to the book chapter ‘Modelling of Data’, the
authors of ‘Numerical Recipes” (p. 651), observe with sarcasm:

”Unfortunately, many practitioners of parameter estimation never proceed

beyond determining the numerical values of the parameter fit. They deem

a fit acceptable if a graph of data and model ‘ l o o k s g o o d ’. This

approach is known as chi-by-the-eye. Luckily, its practitioners get what

they deserve” [i.e. - what is meant is: “they” obtain a ‘meanigless result’]
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ANNEX IV

A powerful tool in parametric correlation removal:
Singular Value Decomposition
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A Powerful Tool: Singular-Value Decomposition

• The problems with instabilities (i.e. ill-conditioning) can be easily
illustrated using the so-called Singular-Value Decomposition of A:

A = U · D · V T with U ∈ Rm×m, V ∈ Rn×n, D ∈ Rm×n

where diagonal matrix has a form D = diag{d1, d2, . . . dmin(m,n)︸ ︷︷ ︸
decreasing order

}

• Formally (but also in practice), the solution ‘x’ is expressed as

x = ATb; AT = V · DT · UT

where
DT = diag

{
1
d1
, 1

d2
, . . . 1

dp
; 0, 0, . . . 0

}
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Ill-Conditioned Problems: Qualitative Illustration

• An academic 2 × 2 problem: Suppose ‘A’ has eigenvalues which
differ by a factor of 10 what represents correlations. One can show
that solving the inverse problem will lead to result illustrated below

1

2 2

1

errorless
data d

*

data points
with errors

d − space p − space

*

1

2

d

d
1

2

p

p

p

p = A d
−1

Left: Red circle represents points equally distant from ‘noiseless’ data d∗.

Right: Purple oval represents the image of the circle through p=A−1d .

One shows that the bigger the disproportion between the eigen-values –

the more ‘ill-conditioned’ the problem: Test with Monte-Carlo Methods→
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Examples of Sampling

• We examine the predictive power capacities of the nuclear mean-
field theory and its fundamental degrees of freedom: nucleon levels

• To simplify the task without loosing any conceptual liberty we limit
our considerations to the ‘doubly magic’ spherical atomic nuclei:

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd and 208Pb

• If possible we wish to have a mean-field Hamiltonian Hmf capable
of reproducing the single-particle level energies exactly, for purposes
explained later

• The only simple Hamiltonian that we know of, which reproduces
the single-particle spectra exactly, is the Woods-Saxon Hamiltonian

Hws
mf = T + V ws

cent + V ws
so

• The Woods-Saxon mean-field has a certain elementary geometrical
advantage - that is - clearly parametrised the roles of the size, depth
and surface-diffuseness, according to ‘broadly accepted intuition’
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Uncertainties and their Propagation

• When predicting we have to be aware about Error Propagations
and their increasingly important consequences for the predictions.

• Constraining theory errors may help stabilising theory predictions:
The necessary but not sufficient condition of model’s stability

Big Prediction−Uncertainties
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[e.g. Super−Heavy Nuclei]
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Experimental
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Big Prediction−Uncertainties

Small Theory Errors
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Skyrme -HF in the EDF Formulation up to N3LO

• In a comprehensive study Carlsson, Dobaczewski and Kortelainen
introduce Skyrme nuclear density functionals up to the sixth order
(the standard Skyrme is of second order)

• Their total energy density contains all these rather than∼15 terms

H(r⃗ ) =
∑

m′I ′,n′L′v′J′
mI ,nLvJ,Q

Cm′I ′,n′L′v ′J′

mI ,nLvJ,Q × Tm′I ′,n′L′v ′J′

mI ,nLvJ,Q (r⃗ ),

where Cm’I’,n’L’v’J’
mI,nLvJ,Q are corresponding necessary coupling constants

• It is instructive to think about the extentions of the EDF based
approaches in terms of the increasing number of coupling constants

• ... in view of all the couplings present already at the leading order
formulations which suggest a totally ill-posed inverse problem →→
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χ2-Minimisation Options

• First of all, we want to find the optimal parameters that will
describe the experimental single particle energies that we have con-
sidered.

• For that purpose we introduced to the program a minimisation
algorithm (based on Levenberg-Marquardt algorithm) which min-
imises over the parameters of the Hamiltonian the distance between
the experimental and the theoretical energies.

• In what follows we will highlight three important points of the
construction of our code.
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χ2-Minimisation Options: Choice of Parameters

• We can choose over which and how many parameters we want to
carry out the minimisation.

• For example, we may be interested on how the central parameters
adapt themselves during the minimisation if we keep the spin-orbit
parameters fixed, or vice-versa.

• This may be considered as a way of studying the parametric corre-
lations. Namely, suppose we fix all the parameters and we minimise
only over Vc . If then we increase the value of rc by some factor
F , and we minimise again and we see that Vc has changed also by
more or less a factor F , we may start thinking that there may exist
a liner correlation between them...
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χ2-Minimisation Options: Choice of Quantities

• We can take into account other quantities a part from the single
particle energies in our χ2.

• For instance, we can also add: nuclear radii, nuclear densities,
Fermi energy and gap energy.

• This is a very important option because when adding a new quan-
tity we are constraining more our problem and so we can use (if we
want) all the information that we know coming from the experiment.
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χ2-Minimisation Options: Choice of Nuclei

• We can also choose from how many and which nuclei we use the
information for the parametric optimisation.

• For instance, we can do the calculation considering only the infor-
mation about one nucleus, or using a pair of them, or three, or all
the eight at the same time... We have 255 combinations!

• Again, this serves us to constrain more the problem and to see how
the parameters vary in the different cases, and so the predictions.
How well or bad the light nuclei can predict the heavy ones?

• Moreover, if we consider all the 8 nuclei at the same time, we
may hope to find a new “Universal Parametrisation” valid for all
the nuclei and we can compare the results obtained with the already
existing Universal Parametrisation
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Programming Parametric Correlations

• Once we had the first contact with the results and the predictive
power, we were interested in studying the parametric correlations.

• For that, we introduced another option to the program. That was
the possibility of tabulating two parameters (p1,p2) of the Hamilto-
nian and run the minimisation over the other parameters (or keep
them fixed, remember that we can choose at each moment over
what we want to minimise).

• For each combination of (p1,p2) we store the r .m.s. value obtained,
i.e. we obtain a matrix. At the end what we produce is a 2D plot
where we can see the r .m.s. as a function of p1 and p2.

• An example may help...
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Programming Parametric Correlations - Examples
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