MeanField4Exp Examples of Service Applications: Macroscopic-Microscopic Method (MMM) for Potential Energy Calculations in the User Chosen Formats

Irene Dedes Katarzyna Mazurek

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Theory Service for the Low Energy Nuclear Physics Community: A Hands-On Workshop 7-9 July 2025 ECT*, Villazzano, Italy

EURO-LABS Project – MeanField4Exp

Single Particle Energies

Generating diagrams of single nucleon energies.

Nuclear Energy Diagrams

Generate Macroscopic-Microscopic Method nuclear energy diagrams.

Macroscopic-Microscopic Energy

Generating total energy diagrams according to the Macroscopic-Microscopic approximation.

Shape Evolution with Spin

Generating diagrams of shape evolution with spin according to macroscopic energy models.

https://meanfield4exp.ifj.edu.pl

I. DEDES & K. MAZUREK, IFJ Polish Academy of Sciences

MeanField4Exp: Macroscopic-Microscopic Method

EURO-LABS Project – MeanField4Exp

https://meanfield4exp.ifj.edu.pl

I. DEDES & K. MAZUREK, IFJ Polish Academy of Sciences

MeanField4Exp: Macroscopic-Microscopic Method

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

Deformed Universal Woods-Saxon Hamiltonian – Reminder

 \bullet Given a nuclear surface Σ

$$R(\vartheta,\varphi) = R_o c(\{\alpha\}) \left[1 + \sum_{\lambda\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

• Phenomenological Woods-Saxon Hamiltonian with the so-called 'universal' parameterisation ⇒ fixed set of parameters for thousands of nuclei!

• Central Potential $V_{cent}^{WS} = \frac{V_c}{1 + \exp \left[\text{dist}_{\Sigma}(\vec{r}; r_c) / a_c \right]}$ • Spin-Orbit Potential

$$\mathcal{V}_{\text{SO}}^{\text{WS}} = \frac{2\hbar\lambda_{so}}{(2mc)^2} [(\vec{\nabla}V_{\text{SO}}^{\text{WS}}) \wedge \hat{p}] \cdot \hat{s}, \text{ with } V_{\text{SO}}^{\text{WS}} = \frac{V_o}{1 + \exp[\text{dist}_{\Sigma}(\vec{r}, r_{so})/a_{so}]}$$

• This potential depends *only* on two sets of 6 parameters ↔ Mass Table ~ 3 000 nuclei

 $\{V_c, r_c, a_c; \lambda_{so}, r_{so}, a_{so}\}_{\pi, \gamma} \Leftrightarrow \{V_o, \kappa_c, r_c^{\pi, \gamma}, a_c^{\pi, \gamma}; \lambda_o, \kappa_{so}, r_{so}^{\pi, \gamma}, a_{so}^{\pi, \gamma}\}$

Deformed Universal Woods-Saxon Hamiltonian – Reminder

 \bullet Given a nuclear surface Σ

$$R(\vartheta,\varphi) = R_o c(\{\alpha\}) \left[1 + \sum_{\lambda\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

- Phenomenological Woods-Saxon Hamiltonian with the so-called 'universal' parameterisation ⇒ fixed set of parameters for thousands of nuclei!
- Central Potential $\mathcal{V}_{\text{cent}}^{\text{WS}} = \frac{V_c}{1 + \exp\left[\text{dist}_{\Sigma}(\vec{r}; r_c)/a_c\right]}$
- Spin-Orbit Potential

$$\mathcal{V}_{\rm SO}^{\rm WS} = \frac{2\hbar\lambda_{so}}{(2mc)^2} [(\vec{\nabla}V_{\rm SO}^{\rm WS}) \wedge \hat{p}] \cdot \hat{s}, \text{ with } V_{\rm SO}^{\rm WS} = \frac{V_o}{1 + \exp[{\rm dist}_{\Sigma}(\vec{r}, r_{so})/a_{so}]}$$

• This potential depends *only* on two sets of 6 parameters ↔ Mass Table ~ 3 000 nuclei

 $\{V_c, r_c, a_c; \lambda_{so}, r_{so}, a_{so}\}_{\pi, \nu} \Leftrightarrow \{V_o, \kappa_c, r_c^{\pi, \nu}, a_c^{\pi, \nu}; \lambda_o, \kappa_{so}, r_{so}^{\pi, \nu}, a_{so}^{\pi, \nu}\}$

Deformed Universal Woods-Saxon Hamiltonian – Reminder

 \bullet Given a nuclear surface Σ

$$R(\vartheta,\varphi) = R_o c(\{\alpha\}) \left[1 + \sum_{\lambda\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

- Phenomenological Woods-Saxon Hamiltonian with the so-called 'universal' parameterisation ⇒ fixed set of parameters for thousands of nuclei!
- Central Potential $\mathcal{V}_{\text{cent}}^{\text{WS}} = \frac{V_c}{1 + \exp\left[\text{dist}_{\Sigma}(\vec{r}; r_c)/q_c\right]}$
- Spin-Orbit Potential

$$\mathcal{V}_{\rm SO}^{\rm WS} = \frac{2\hbar\lambda_{so}}{(2mc)^2} [(\vec{\nabla}V_{\rm SO}^{\rm WS}) \wedge \hat{p}] \cdot \hat{s}, \text{ with } V_{\rm SO}^{\rm WS} = \frac{V_o}{1 + \exp[{\rm dist}_{\Sigma}(\vec{r}, r_{so})/a_{so}]}$$

• This potential depends *only* on two sets of 6 parameters ↔ Mass Table ~ 3 000 nuclei

 $\{V_c, r_c, a_c; \lambda_{so}, r_{so}, \overline{a_{so}}\}_{\pi, \gamma} \Leftrightarrow \{V_o, \kappa_c, r_c^{\pi, \gamma}, a_c^{\pi, \gamma}; \lambda_o, \kappa_{so}, r_{so}^{\pi, \gamma}, a_{so}^{\pi, \gamma}\}$

Deformed Mean-Field Hamiltonian – Reminder

Total Nuclear Energy:

The Macroscopic-Microscopic Method

I. DEDES & K. MAZUREK, IFJ Polish Academy of Sciences MeanField4Exp: Macroscopic-Microscopic Method

The Macroscopic-Microscopic Method

• Within the Macroscopic-Microscopic Method, the nuclear total energy is calculated following **Strutinsky Method**^{*}, as a function of the *proton number Z*, *neutron number N*, and set of deformations $\{\alpha_{\lambda\mu}\}$

 $E_{\text{tot.}}(Z, N, \{\alpha_{\lambda\mu}\}) = E_{\text{Macro.}}(Z, N, \{\alpha_{\lambda\mu}\}) + E_{\text{Micro.}}(Z, N, \{\alpha_{\lambda\mu}\})$

 $= E_{\text{Macro.}}(Z, N, \{\alpha_{\lambda\mu}\}) + E_{\text{shell}}(Z, N, \{\alpha_{\lambda\mu}\}) + E_{\text{pair}}(Z, N, \{\alpha_{\lambda\mu}\})$

- Macroscopic Energy $E_{\text{Macro.}}(Z, N, \{\alpha_{\lambda\mu}\})$, based on finite range liquid drop model
- Microscopic Energy $E_{\text{Micro.}}(Z, N, \{\alpha_{\lambda\mu}\})$, accounting for the shell+pairing correction

- * M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, C. Y. Wong, Rev. Mod. Phys. 44, (1972) 320-405
- * P. Möller, J. Nix, W. Myers, and W. Swiątecki, At. Data and Nucl. Data Tables 59 (1995) 185-381
- * W. D. Myers and W. Swiątecki, Nucl. Phys. 81 (1966) 1-60

References:

Comment About the Choice of $E_{Macro.}$ and $E_{Micro.}$

• The macroscopic energy depends on deformation through the surface and curvature integrals. In the present context, it appears in two variants

- \rightarrow The *Yukawa-Folded FYU*, Ref. [1];
- → The *Lublin-Strasbourg-Drop LSD*, Ref. [2], which offers a better description to nuclei close to fission

• The microscopic energy depends on deformation through the single particle energies e_{ν} , obtained after solving the Schrödinger Equation. Regarding the pairing correction, it can be chosen from

- \rightarrow The *BCS* "simple" correction, Ref. [3],
- → The *Particle-Number-Projection PNP*, being a more advanced correction

References:

1. P. Möller, J. Nix, W. Myers, and W. Swiątecki, At. Data and Nucl. Data Tables 59 (1995) 185-381

2. K. Pomorski and J. Dudek, Phys. Rev. C 67 (2003) 044316

3. M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, Phys. Rev. C 5 (1972) 1050

Practical Example I:

Total Nuclear Energy Diagrams as functions of 1D deformation-space

(Total Nuclear Energy Spaghetti)

MeanField4Exp: Total Nuclear Energy Diagrams (1D)

User Specifications:

- Central nucleus (Z_o, N_o) values
- Woods-Saxon Parametrisation
- Nuclei mesh: $(\Delta Z, \Delta N)$ around (Z_o, N_o)
- Choice of deformation:
 - selecting main *x*-axis α_{λμ} ∈ [min., max]
 selecting a secondary α'_{λμ} kept at a fixed value for each value of α_{λμ}
- Energy scale for isotope and isotone diagrams

Total Nuclear Energies as functions of $\alpha_{\lambda\mu}$ – Isotopes

• Total nuclear energies for the $[Z_o = 22]$ isotopes for $N \in [18, 30]$ as functions of α_{20} deformation.

I. DEDES & K. MAZUREK, IFJ Polish Academy of Sciences MeanField4Exp: Macroscopic-Microscopic Method

Total Nuclear Energies as functions of $\alpha_{\lambda\mu}$ – Isotones

• Total nuclear energies for the $[N_o = 24]$ isotones for $Z \in [16, 28]$ as functions of α_{20} deformation.

I. DEDES & K. MAZUREK, IFJ Polish Academy of Sciences MeanField4Exp: Macroscopic-Microscopic Method

Total Nuclear Energies as functions of $\alpha_{\lambda\mu}$ – Comments

• The advantage of such graphical representation is allowing the user to see the total nuclear energy for several isotones or isotopes at one single glance

• The user can draw first conclusions on how a selected region of interest depends on a wide deformation range

• The disadvantage being that one can not perform (yet) energy minimisation over deformation

 \Rightarrow for this we need the **potential energy surfaces...**

Practical Example II: Total Nuclear Energy Surfaces

• Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of the following shapes:

• Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of the following shapes:

- \rightarrow quadrupole deformations: α_{20}, α_{22}
- \rightarrow octupole deformations: α_{30}, α_{32}
- \rightarrow hexadecapole deformations: α_{40}

Lund Convention: $(\alpha_{20}, \alpha_{22}) \leftrightarrow (\beta_2, \gamma)$ $\begin{cases} \alpha_{20} = \beta_2 \cos \gamma \\ \alpha_{22} = \frac{1}{\sqrt{2}} \beta_2 \sin \gamma \end{cases} \leftrightarrow \begin{cases} X = \beta_2 \cos(\gamma + 30^\circ) \\ \mathcal{Y} = \beta_2 \sin(\gamma + 30^\circ) \end{cases}$

• Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of the following shapes:

- \rightarrow quadrupole deformations: α_{20}, α_{22}
- \rightarrow octupole deformations: α_{30}, α_{32}
- \rightarrow hexadecapole deformations: α_{40}

Lund Convention: $(\alpha_{20}, \alpha_{22}) \leftrightarrow (\beta_2, \gamma)$ $\begin{cases} \alpha_{20} = \beta_2 \cos \gamma \\ \alpha_{22} = \frac{1}{\sqrt{2}} \beta_2 \sin \gamma \end{cases} \leftrightarrow \begin{cases} X = \beta_2 \cos(\gamma + 30^\circ) \\ \mathcal{Y} = \beta_2 \sin(\gamma + 30^\circ) \end{cases}$

• One 4D total nuclear energy calculation needs 10^6 deformation points

 $\alpha_{20} \in [-1.00, 1.20]$, step 0.025

 $\alpha_{22} \in [-0.80, 0.80]$, step 0.025

 $\alpha_{3\mu} \in [-0.60, 0.60]$, step 0.025

 $\alpha_{40} \in [-0.60, 0.60]$, step 0.025

• Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of the following shapes:

- \rightarrow quadrupole deformations: α_{20}, α_{22}
- \rightarrow octupole deformations: α_{30}, α_{32}
- \rightarrow hexadecapole deformations: α_{40}

Lund Convention: $(\alpha_{20}, \alpha_{22}) \leftrightarrow (\beta_2, \gamma)$ $\begin{cases} \alpha_{20} = \beta_2 \cos \gamma \\ \alpha_{22} = \frac{1}{\sqrt{2}} \beta_2 \sin \gamma \end{cases} \leftrightarrow \begin{cases} \mathcal{X} = \beta_2 \cos(\gamma + 30^\circ) \\ \mathcal{Y} = \beta_2 \sin(\gamma + 30^\circ) \end{cases}$

• One 4D total nuclear energy calculation needs 10⁶ deformation points

 $\alpha_{20} \in [-1.00, 1.20]$, step 0.025

 $\alpha_{22} \in [-0.80, 0.80]$, step 0.025

 $\alpha_{3\mu} \in [-0.60, 0.60]$, step 0.025

 $\alpha_{40} \in [-0.60, 0.60]$, step 0.025

• Our 3D and 4D total nuclear energies are projected onto 2D deformation plane and minimised over the remaining deformation parameters

MeanField4Exp: Nuclear Energy Surfaces

	22		
Neutron Number	:		
	24		
Change the Tupe	ofEnormy		
shoose the Type	or Energy:		(5.0.0)
Total energy	r = E(FYU) + She	ll[e] + Correlatio	n[BCS]
Step: 1	Sm	oothing:	0
Deformation:			
List of 3D/4D D	eformation Spa	aces:	
	bet, gam,	a40	~
Marila	Maria		
X axis	Y axis	Min1 a40 ¥	Min2
	guint		
	Choose a rang	e of deformation	on
Table of the	e Energy Minir	na	
Data File			
Data The.			

User Specifications:

- (Z, N) values
- Woods-Saxon Parametrisation
- Total Nuclear Energy contributions
- Deformation space projection and minimisation
 select main deformation space
 select projection (x, y)-axis
 - \circ select minimisation deformations "Min1" and "Min2"
- The user can disable minimisation over deformation and simply plot pure 2D potential energy surface
- Possibility to download the table listing absolute and secondary minima and the source data file

MeanField4Exp: Nuclear Energy Surfaces – ⁴⁶Ti

• Nuclear energy surface for ⁴⁶Ti projected onto the quadrupole (X, \mathcal{Y})-plane, minimised over α_{40}

• Spider web:

- Up-slopping dashed line means $\gamma = 0^{\circ}$
- Down-slopping dashed line means $\gamma = -60^{\circ}$
- Dashed circles have radius $r = \beta_2$
- *E*_{min} is the energy minimum at the red-cross
- *E*_o is the energy of the system at spherical deformation

Practical Example III: Hunting for Exotic Symmetries Link with Experiment

MeanField4Exp: Nuclear Energy Surfaces – ¹⁵²Sm

• Total nuclear energy surface for ¹⁵²Sm projected on to the (α_{20}, α_{32})-plane, minimised over α_{40}

- Ground-state predicted at prolate α₂₀ ≈ 0.25
- Tetrahedral double minimum at $\alpha_{32} \neq 0$ and $\alpha_{20} = 0$
- Link with experiment was possible thanks to Group Theory

Link with Experiment: First Identification of Tetrahedral Symmetry

I. DEDES & K. MAZUREK, IFJ Polish Academy of Sciences MeanField4Exp: Macroscopic-Microscopic Method

MeanField4Exp: Acknowledgments

Experimental Advisory Team

Piotr Bednarczyk

Adam Maj

Michał Ciemała

Hardware and Web Assistance Team

Piotr Kędzierski

Zbigniew Natkaniec