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Main Scope of Our Research

e Give the theoretical explanations to the experimental nuclear structure phenomena
observed, as well as predicting the still unknown
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Main Scope of Our Research

e Give the theoretical explanations to the experimental nuclear structure phenomena
observed, as well as predicting the still unknown

How do we perform our studies?

e We describe the nuclear interior, i.e. nuclear structure, with a simple but very
reliable and powerful theory called: The Nuclear Mean-Field Theory

e We combine contemporary mathematical tools of group theory, inverse problem
theory and graph-theory with phenomenological nuclear mean-field theory

e One of the most important strategies: Making sure the theory we use is reliable,
offering realistic, experiment comparable results for many nuclei.
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Deformed Universal Woods-Saxon Hamiltonian — Reminder

e Given a nuclear surface X

R(ﬂ’ ‘;D) =R, C({a})
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e Phenomenological Woods-Saxon Hamiltonian with the so-called ‘universal’ parameterisation
= fixed set of parameters for thousands of nuclei!
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Deformed Mean-Field Hamiltonian — Reminder

Mean-Field Potential: | V¢ = (Vcent + (VSV(V)S + ‘VC
!
Hamiltonian: ?A{m_f =9+ Vit
!
Schrodinger Equation: 7:(m_f U, =e Y,
L
SPE as functions of @,,: (e, = e, (@)
l
Total Energy as function of ay,: |E = E(a,,)




Total Nuclear Energy:
The Macroscopic-Microscopic Method
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The Macroscopic-Microscopic Method

e Within the Macroscopic-Microscopic Method, the nuclear total energy is calculated fol-
lowing Strutinsky Method*, as a function of the profon number Z, neutron number N, and
set of deformations {a, }

Etot.(Za Na {a'/lﬂ})

EMacro.(Z7 N7 {a'/lu}) + EMicro.(Z, N, {Q'/ly})

Emacro.(Z, N, {a'/ly}) +| Eshen(Z, N, {a'/ly}) + Epair (Z, N, {a’/ly})

® Macroscopic Energy Emacro.(Z, N, {@a,}), based on finite range liquid drop model

e Microscopic Energy Ewmicro.(Z, N, {aa,}), accounting for the shell+pairing correction

References:

* M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, C. Y. Wong, Rev. Mod. Phys. 44, (1972) 320-405
* P. Moller, J. Nix, W. Myers, and W. Swiatecki, At. Data and Nucl. Data Tables 59 (1995) 185-381

* W. D. Myers and W. Swiatecki, Nucl. Phys. 81 (1966) 1-60
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https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1016/0029-5582(66)90639-0

Comment About the Choice of Epnjacro. and E vicro.

e The macroscopic energy depends on deformation through the surface and curvature inte-
grals. In the present context, it appears in two variants
— The Yukawa-Folded FYU, Ref. [1];
— The Lublin-Strasbourg-Drop LSD, Ref. [2], which offers a better description to nuclei
close to fission

e The microscopic energy depends on deformation through the single particle energies e,,,
obtained after solving the Schrodinger Equation. Regarding the pairing correction, it can be
chosen from

— The BCS “‘simple” correction, Ref. [3],

— The Particle-Number-Projection PNP, being a more advanced correction

References:
1. P. Moller, J. Nix, W. Myers, and W. Swiatecki, At. Data and Nucl. Data Tables 59 (1995) 185-381

2. K. Pomorski and J. Dudek, Phys. Rev. C 67 (2003) 044316
3. M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, Phys. Rev. C 5 (1972) 1050
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https://link.aps.org/doi/10.1103/PhysRevC.5.1050

Practical Example I:

Total Nuclear Energy Diagrams
as functions of 1D deformation-space

(Total Nuclear Energy Spaghetti)

I. DEDES & K. MAZUREK, IF]J Polish Academy of Sciences Macroscopic-Microscopic Method



MeanField4Exp: Total Nuclear Energy Diagrams (1D)

Proton Number:

User Specifications:

Neutron Number.

= e Central nucleus (Z,, N,) values
S e Woods-Saxon Parametrisation

B e Nuclei mesh: (AZ, AN) around (Z,, N,)

Choose the Deformation:

W e Choice of deformation:
o selecting main x-axis a,, € [min., max]
o~ o selecting a secondary o , kept at a fixed
pakel G0 L value for each value of a,,,
e Energy scale for isotope and isotone diagrams
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Total Nuclear Energies as functions of «,, — Isotopes

e Total nuclear energies for the [Z, = 22] isotopes for N € [18, 30] as functions of a;¢ deformation.
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Total Nuclear Energies as functions of «,, — Isotones

e Total nuclear energies for the [N,, = 24] isotones for Z € [16, 28] as functions of a;¢ deformation.
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Total Nuclear Energies as functions of @,, — Comments

e The advantage of such graphical representation is allowing the user to see the total
nuclear energy for several isotones or isotopes at one single glance

e The user can draw first conclusions on how a selected region of interest depends
on a wide deformation range

e The disadvantage being that one can not perform (yet) energy minimisation over
deformation

= for this we need the potential energy surfaces...
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Practical Example I11:

Total Nuclear Energy Surfaces
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Deformation Space in Analysis of Ground States

e Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of
the following shapes:
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Deformation Space in Analysis of Ground States

e Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of
the following shapes:

Lund Convention: (@29, @2) © (B82,7)

— quadrupole deformations:  apg, @22

a0 = ,82 COoSy o
— octupole deformations: 30, @32 1 {X = B2 cos(y +30°)
— hexadecapole deformations: a4 @22 = 6ﬁ2 sy Y = B sin(y +30°)

e One 4D total nuclear energy calculation needs 10° deformation points
apo € [-1.00, 1.20], step 0.025
a2 € [-0.80,0.80], step 0.025
@3, € [-0.60,0.60], step 0.025
a0 € [-0.60,0.60], step 0.025

e Our 3D and 4D total nuclear energies are projected onto 2D deformation plane and
minimised over the remaining deformation parameters

I. DEDES & K. MAZUREK, IF]J Polish Academy of Sciences Macroscopic-Microscopic Method



MeanField4Exp: Nuclear Energy Surfaces

User Specifications:

Proton Number:

2 e (Z,N) values

Neutron Number:

2 e Woods-Saxon Parametrisation

ek ol st e Total Nuclear Energy contributions

Total energy = E(FYU) + Shellfe] + Correlation[BCS] v
e Smosng ¢ e Deformation space projection and minimisation
i o select main deformation space
List of 3D/4D Deformation Spaces: . . .
bet, gam, a40 D o select projection (x, y)-axis
Xaxis  Yaxs M Min2 o select minimisation deformations “Min1” and “Min2”
bet v gam v ad0 v v
Choose & rarpelofdfrnation e The user can disable minimisation over deformation and
7 Table of the Energy Minima simply plot pure 2D potential energy surface

[ Data File.

o Possibility to download the table listing absolute and sec-
ondary minima and the source data file

Generate
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MeanField4Exp: Nuclear Energy Surfaces — “°Ti

e Nuclear energy surface for “°Ti projected onto the quadrupole (X, Y/)-plane, minimised over a4

Total Nuclear Energy MeV
0.8 T | 23.0
L 18 220 e Spider web:
0.6 | 20.0 . )
i ] 19.0 o Up-slopping dashed line
o 04 —HH o means y = 0°
2 o2l 18 10 o Down-slopping dashed line
+ T} 1K 50 means y = —60°
=~ 0.0 15 i o Dashed circles have radius
£ 0.2 18 1§i§ r=p
&} _oal- N B T.0 e FEnin is the energy minimum at
L 4] s0 the red-cross
—0.6|- HH 50k
L] 3.0z .
- . 20 2 e E, is the energy of the system at
08 n l 00 |5 spherical deformation
0.0 0.2 0.4 0.6 0.8 1.0 1.2
§§Ti24 B2 cos(y + 30°) Euin = —2.70 MeV
Minimised over : ayo E, = —0.11 MeV
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Practical Example III:

Hunting for Exotic Symmetries

Link with Experiment
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ISZSm

MeanField4dExp: Nuclear Energy Surfaces —

e Total nuclear energy surface for '>2Sm projected on to the (a2, @3;)-plane, minimised over a4

Total Nuclear Energy

MeV
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— 0.5

0.3 l 0
-0.3 -0.2 -0.1 0.0 0.1 0.2 03 04 0.5

12%811190 Deformation o Euin = —3.93 MeV

E, = 0.25 MeV

Minim. : o, Fix : azs

©MeanFiclddExp,

e Ground-state predicted at prolate
a0 ~ 0.25

e Tetrahedral double minimum at
a3 £ 0and az) =0

e Link with experiment was
possible thanks to Group Theory
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Link with Experiment: First Identification of Tetrahedral Symmetry

Investigations on 132Sm
Phys. Rev. C97, 021302(R) (2018)

Deformation ajz,

152
62

—0.3

Total Nuclear Energy
T T

1
—0.3 —0.

Smy,
Minim. : cuo Fix :

1 1
.2 —0.1 0.0 0.1 0.2 0.3 0.4 0.5

Deformation asg Emin = —3.93 MeV
E, = 0.25 MeV

Experimental Results [Tq-vs.-Oy]

Symmetry Hypotheses:

Tetrahedral: Ty
A; = r.m.s.=80.5 keV

Octahedral: Oy
Ay = rms.=1.6 keV
Agy = 1.m.s.=7.5 keV
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https://doi.org/10.1103/PhysRevC.97.021302
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