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Main Scope of Our Research
•Give the theoretical explanations to the experimental nuclear structure phenomena
observed, as well as predicting the still unknown

How do we perform our studies?
• We describe the nuclear interior, i.e. nuclear structure, with a simple but very
reliable and powerful theory called: The Nuclear Mean-Field Theory
•We combine contemporarymathematical tools of group theory, inverse problem
theory and graph-theory with phenomenological nuclear mean-field theory
• One of the most important strategies: Making sure the theory we use is reliable,
offering realistic, experiment comparable results for many nuclei.
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Deformed Universal Woods-Saxon Hamiltonian – Reminder
• Given a nuclear surface �

'(o, i) = '> 2({U})
[
1 +

∑
_`

U_`._` (o, i)
]

• PhenomenologicalWoods-SaxonHamiltonian with the so-called ‘universal’ parameterisation
⇒ fixed set of parameters for thousands of nuclei!

• Central Potential
VWS

cent =
+2

1 + exp [distΣ (®A; A2)/02]
• Spin-Orbit Potential

VWS
SO =

2 ℏ_B>
(2<2)2

[( ®∇+WS
SO ) ∧ ?̂ ] · B̂, with +WS

SO =
+>

1 + exp[distΣ (®A, AB>)/0B>]

• This potential depends only on two sets of 6 parameters↔Mass Table ∼ 3 000 nuclei

{\c , rc , ac; ,so , rso , aso}0,. ⇔ {\o , +c , r
0,.
c , a0,.c ; ,o , +so , r0,.so , a

0,.
so }



Deformed Universal Woods-Saxon Hamiltonian – Reminder
• Given a nuclear surface �

'(o, i) = '> 2({U})
[
1 +

∑
_`

U_`._` (o, i)
]

• PhenomenologicalWoods-SaxonHamiltonian with the so-called ‘universal’ parameterisation
⇒ fixed set of parameters for thousands of nuclei!

• Central Potential
VWS

cent =
+2

1 + exp [distΣ (®A; A2)/02]
• Spin-Orbit Potential

VWS
SO =

2 ℏ_B>
(2<2)2

[( ®∇+WS
SO ) ∧ ?̂ ] · B̂, with +WS

SO =
+>

1 + exp[distΣ (®A, AB>)/0B>]

• This potential depends only on two sets of 6 parameters↔Mass Table ∼ 3 000 nuclei

{\c , rc , ac; ,so , rso , aso}0,. ⇔ {\o , +c , r
0,.
c , a0,.c ; ,o , +so , r0,.so , a

0,.
so }



Deformed Universal Woods-Saxon Hamiltonian – Reminder
• Given a nuclear surface �

'(o, i) = '> 2({U})
[
1 +

∑
_`

U_`._` (o, i)
]

• PhenomenologicalWoods-SaxonHamiltonian with the so-called ‘universal’ parameterisation
⇒ fixed set of parameters for thousands of nuclei!

• Central Potential
VWS

cent =
+2

1 + exp [distΣ (®A; A2)/02]
• Spin-Orbit Potential

VWS
SO =

2 ℏ_B>
(2<2)2

[( ®∇+WS
SO ) ∧ ?̂ ] · B̂, with +WS

SO =
+>

1 + exp[distΣ (®A, AB>)/0B>]

• This potential depends only on two sets of 6 parameters↔Mass Table ∼ 3 000 nuclei

{\c , rc , ac; ,so , rso , aso}0,. ⇔ {\o , +c , r
0,.
c , a0,.c ; ,o , +so , r0,.so , a

0,.
so }



Deformed Mean-Field Hamiltonian – Reminder

Mean-Field Potential: V̂m−f = V̂
WS
cent + V̂

WS
SO + V̂C

↓

Hamiltonian: Ĥm−f = T̂ + V̂m−f
↓

Schrödinger Equation: Ĥm−f 7. = e. 7.

↓

SPE as functions of ",-: e. = e.(",-)

↓

Total Energy as function of ",-: K = K(",-)



Total Nuclear Energy:

The Macroscopic-Microscopic Method
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The Macroscopic-Microscopic Method

• Within the Macroscopic-Microscopic Method, the nuclear total energy is calculated fol-
lowing Strutinsky Method∗, as a function of the proton number / , neutron number # , and
set of deformations {U_`}

Ktot.(`, T, {",-}) = KMacro.(`, T, {",-}) + KMicro.(`, T, {",-})

= KMacro.(`, T, {",-}) + Kshell(`, T, {",-}) + Kpair(`, T, {",-})

•Macroscopic Energy KMacro.(`, T, {",-}), based on finite range liquid drop model

•Microscopic Energy KMicro.(`, T, {",-}), accounting for the shell+pairing correction

– – –
References:
∗M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, C. Y. Wong, Rev. Mod. Phys. 44, (1972) 320-405
∗ P. Möller, J. Nix, W. Myers, and W. Swia̧tecki, At. Data and Nucl. Data Tables 59 (1995) 185-381
∗W. D. Myers and W. Swia̧tecki, Nucl. Phys. 81 (1966) 1-60
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https://doi.org/10.1016/0029-5582(66)90639-0


Comment About the Choice of KMacro. and KMicro.

• The macroscopic energy depends on deformation through the surface and curvature inte-
grals. In the present context, it appears in two variants
→ The Yukawa-Folded FYU, Ref. [1];
→ The Lublin-Strasbourg-Drop LSD, Ref. [2], which offers a better description to nuclei

close to fission

• The microscopic energy depends on deformation through the single particle energies 4a ,
obtained after solving the Schrödinger Equation. Regarding the pairing correction, it can be
chosen from
→ The BCS “simple” correction, Ref. [3],
→ The Particle-Number-Projection PNP, being a more advanced correction
– – –
References:
1. P. Möller, J. Nix, W. Myers, and W. Swia̧tecki, At. Data and Nucl. Data Tables 59 (1995) 185-381
2. K. Pomorski and J. Dudek, Phys. Rev. C 67 (2003) 044316
3.M. Bolsterli, E. O. Fiset, J. R. Nix, and J. L. Norton, Phys. Rev. C 5 (1972) 1050
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Practical Example I:

Total Nuclear Energy Diagrams
as functions of 1D deformation-space

(Total Nuclear Energy Spaghetti)
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MeanField4Exp: Total Nuclear Energy Diagrams (1D)

User Specifications:

• Central nucleus (/>, #>) values

•Woods-Saxon Parametrisation

• Nuclei mesh: (Δ/,Δ#) around (/>, #>)

• Choice of deformation:
◦ selecting main G-axis U_` ∈ [min.,max]
◦ selecting a secondary U′

_`
kept at a fixed

value for each value of U_`

• Energy scale for isotope and isotone diagrams
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Total Nuclear Energies as functions of ",- – Isotopes
• Total nuclear energies for the [/> = 22] isotopes for # ∈ [18, 30] as functions of U20 deformation.

Enorm(Z = 22, N = 28) = −4.09 MeV
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Total Nuclear Energies as functions of ",- – Isotones
• Total nuclear energies for the [#> = 24] isotones for / ∈ [16, 28] as functions of U20 deformation.

Enorm(Z = 28, N = 24) = −4.61 MeV
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Total Nuclear Energies as functions of ",- – Comments

• The advantage of such graphical representation is allowing the user to see the total
nuclear energy for several isotones or isotopes at one single glance

• The user can draw first conclusions on how a selected region of interest depends
on a wide deformation range

• The disadvantage being that one can not perform (yet) energy minimisation over
deformation

⇒ for this we need the potential energy surfaces...
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Practical Example II:

Total Nuclear Energy Surfaces
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Deformation Space in Analysis of Ground States
• Our deformation spaces are in 2D, 3D and 4D variants involving various combinations of
the following shapes:

→ quadrupole deformations: U20, U22

→ octupole deformations: U30, U32

→ hexadecapole deformations: U40

Lund Convention: ("20, "22) ↔ (#2, $)
U20 = V2 cos W

U22 =
1
√

2
V2 sin W ↔

{X = V2 cos(W + 30◦)
Y = V2 sin(W + 30◦)

• One 4D total nuclear energy calculation needs 106 deformation points
U20 ∈ [−1.00, 1.20], step 0.025
U22 ∈ [−0.80, 0.80], step 0.025
U3` ∈ [−0.60, 0.60], step 0.025
U40 ∈ [−0.60, 0.60], step 0.025

• Our 3D and 4D total nuclear energies are projected onto 2D deformation plane and
minimised over the remaining deformation parameters
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MeanField4Exp: Nuclear Energy Surfaces

User Specifications:
• (/, #) values

•Woods-Saxon Parametrisation

• Total Nuclear Energy contributions

• Deformation space projection and minimisation
◦ select main deformation space
◦ select projection (G, H)-axis
◦ select minimisation deformations “Min1” and “Min2”

• The user can disable minimisation over deformation and
simply plot pure 2D potential energy surface

• Possibility to download the table listing absolute and sec-
ondary minima and the source data file
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MeanField4Exp: Nuclear Energy Surfaces – 46Ti
• Nuclear energy surface for 46Ti projected onto the quadrupole (X,Y)-plane, minimised over U40
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• Spider web:
◦ Up-slopping dashed line

means W = 0◦
◦ Down-slopping dashed line

means W = −60◦
◦ Dashed circles have radius

A = V2

• Kmin is the energy minimum at
the red-cross

• Ko is the energy of the system at
spherical deformation
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Practical Example III:

Hunting for Exotic Symmetries
Link with Experiment
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MeanField4Exp: Nuclear Energy Surfaces – 152Sm
• Total nuclear energy surface for 152Sm projected on to the (U20, U32)-plane, minimised over U40
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• Ground-state predicted at prolate
"20 ≈ 0.25

• Tetrahedral double minimum at
"32 ≠ 0 and "20 = 0

• Link with experiment was
possible thanks to Group Theory
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Link with Experiment: First Identification of Tetrahedral Symmetry

Investigations on 152Sm
Phys. Rev. C97, 021302(R) (2018)
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Symmetry: T’d

d3,2   = 0.20 α 3, 2 = 0.20

Deformation:
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Experimental Results [Td -vs.-Oh]

Symmetry Hypotheses:

Tetrahedral: Td

Octahedral: Oh

A1 → r.m.s.=80.5 keV

A1g → r.m.s.=1.6 keV
A2u → r.m.s.=7.5 keV
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https://doi.org/10.1103/PhysRevC.97.021302


MeanField4Exp: Acknowledgments

Experimental Advisory Team

Piotr Bednarczyk

Adam Maj

Michał Ciemała

Hardware and Web Assistance Team

Piotr Kȩdzierski
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