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Overview

1. Confined particles (ultracold atoms in optical lattices or tweezers)

Influence of the confining potential.

Confinement-induced resonances (CIR).

2. Hydrogen-antihydrogen interaction.
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Simplified Atom—Atom Interactions

Concept (cf. nuclear or solid-state physics):

In many cases the wavefunction of a system consists of a complicated short-range
and a “simple” long-range part.
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Simplified Atom—Atom Interactions

Concept (cf. nuclear or solid-state physics):

In many cases the wavefunction of a system consists of a complicated short-range
and a “simple” long-range part.

Sometimes, the physics is “only” determined by the long-range part

(for example valence electrons for (metallic) conduction).

The short-range of the potential influences, however, the long-range solution
(phase shift).

Substitute the correct potential by a pseudopotential that yields the same
wavefunction in the outer regime.

Atom-atom interaction: V,,1(R) — Viseudo(R) = iﬂ—gjasc i(R)

Note: Vjseudo IS counterintuitive: long-range behaviour described by o function!!!
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Optical lattices: shaped (tight) confinement

Counterpropagating lasers:

— standing light field.

Trap potential varies as
Ut sin?(k7)

with

h- %

A: laser wavelength.

Uat < I a(N)
with
laser intensity 1 and

atomic polarizability «.

[reproduced from I. Bloch, Nature Physics 1, 23 (2005)]
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External trap potential and interatomic interaction

Atom-atom interaction: V,,,1(R) — Viseudo(R) = i”—lfjasc )(R)

This relation was derived for £ — 0 (limit of zero-collision energy).

In a (tight) trap energy is (noticeably) quantized: zero-point motion.
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External trap potential and interatomic interaction

Atom-atom interaction: V,,,1(R) — Viseudo(R) = i”—gjasc )(R)

This relation was derived for £ — 0 (limit of zero-collision energy).
In a (tight) trap energy is (noticeably) quantized: zero-point motion.
However, energy (and length) scales are usually very different.

“Usual” molecular bound states: orders of magnitude larger (binding) energies
and much more spatially confined than trap states.

As weaker the least bound state is bound, as closer the scales get to each other.
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Pseudopotential approximation (in a trap): wavefunctions
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Spin-polarized °Li atoms (a®%,) in a 10 kHz trap:
“correct” wavefunction (black, asc = —2030 ag) vs. energy independent (red, asc = —2030 a)

and dependent (blue, asc = —2872 ag) pseudopotential results.
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External trap potential and interatomic interaction

Atom-atom interaction: Vi,01(R) — Viseudo(R) = i”—gjasc )(R)

This relation was derived for £ — 0 (limit of zero-collision energy).

In a (tight) trap energy is (noticeably) quantized: zero-point motion.
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This relation was derived for £ — 0 (limit of zero-collision energy).

In a (tight) trap energy is (noticeably) quantized: zero-point motion.

Intercept of ¢ on R axis does not agree with ag..

Example °Li (state aX,) in 10 kHz trap:

Deviation for 1) small, intercept at —2023 for as. = —2030 ay.

This is not true for Ypseudo: intercept at —1447 for as. = —2030 ao.
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External trap potential and interatomic interaction

Atom-atom interaction: Vi,01(R) — Viseudo(R) = i”—gjasc )(R)

This relation was derived for £ — 0 (limit of zero-collision energy).

In a (tight) trap energy is (noticeably) quantized: zero-point motion.

Intercept of ¢ on R axis does not agree with ag..

Example °Li (state aX,) in 10 kHz trap:

Deviation for 1) small, intercept at —2023 for as. = —2030 ay.

This is not true for Ypseudo: intercept at —1447 for as. = —2030 ao.

Introduce an energy-dependent ag.(F) that inserted in Vseudo(R) matches (for
E = 2 hwyyap) the correct ¢ (at B — 00).

Note: In contrast to the physical as. the empirical parameter as.(F) follows only
from the correct 1) obtained with V,01(R)!

— knowledge of Vi01(R) is essential!
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Trap size (in)dependence

Analytical solution for two identical particles with ¢ interaction in harmonic trap

— energies depend only on the ratio scattering length a, to trap length dy,.

Energy [A®yap]
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Trap-length independence is not valid for realistic interaction potential!
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Reduced dimension: fermionization of bosons (1D vs. quasi 1D)

r [a.u.]

Radial density of two atoms in a quasi-1D (cigar-shaped) confinement:

— scattering length ag = 5624 a.u. — transversal trap length d | = 1.46 ag
— anisotropy n = (d./d, )? — full Born-Oppenheimer potential.
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Reduced dimension: fermionization of bosons (1D vs. quasi 1D)

—_ dZ/aO=2.6,n= 3.2
— dZ/aO:S.l,n: 4.5
—_ dZ/aO:4.6,n=10.O
— Fermions, n=10.0

1.0x10° 2.0x10° 3.0x10° 4.0x10* 5.0x10° 6.0x10"
r [a.u.]

Radial density of two atoms in a quasi-1D (cigar-shaped) confinement:

— scattering length ag = 5624 a.u. — transversal trap length d | = 1.46 ag
— anisotropy n = (d./d, )? — full Born-Oppenheimer potential.
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Tunable interaction: magnetic Feshbach resonances

Simple picture:

Only 2 channels:
— open (continuum) channel,

— closed (bound) channel.
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Tunable interaction: magnetic Feshbach resonances
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Simple picture: Multichannel reality:

Only 2 channels: Example °Li-3"Rb : 8 coupled channels,

— open (continuum) channel, — very different length scales involved,

— closed (bound) channel. — high quality molecular potential curves
required.
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Tuning the interparticle interaction

Scattering length a
Energy

Magnetic field

Bound state

Interatomic distance

Magnetic Feshbach resonance: magnetic field modifies scattering length a.

Scattering length determines interparticle interaction.

—— Tuning the interparticle interaction with a magnetic field!
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Theoretical challenges:

Non-trivial, non-analytic atom-atom interaction (unlike Coulomb interaction).

Magnetic Feshbach resonances: multi-scale, multi-channel problem.

Multi-channel R-matrix approach (incl. combined exp. and theor. determination
of “Li®"Rb resonances) [Phys. Rev. A 79, 012717 (2009)].
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Theoretical challenges:

Non-trivial, non-analytic atom-atom interaction (unlike Coulomb interaction).

Magnetic Feshbach resonances: multi-scale, multi-channel problem.

Multi-channel R-matrix approach (incl. combined exp. and theor. determination
of “Li®"Rb resonances) [Phys. Rev. A 79, 012717 (2009)].

Theory for magnetic Feshbach resonances derived for free space.

Influence of lattice (confinement) on magnetic Feshbach resonances?
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

Description as coupled single open and closed channels (|¥) = C|open) + Alclosed))

Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

Description as coupled single open and closed channels (|¥) = C|open) + Alclosed))

Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)

With this one can
1. recover the known energy relation in the trap

(aho = /h/mw)

a '1/4 — E/2hw)

o~ T = T3 B 2he)

2. derive the energy-dependent scattering length

AB
a(E,B):abg 1_B—BO—|—5B—E/IUJ

in contrast to a previously suggested form

AB (1 + (kabg)?)
B — By + 6B + (kawg)?’AB — E/

a(E, B) = ang (1 —
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

Description as coupled single open and closed channels (|¥) = C|open) + Alclosed))

Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)

With this one can
1. recover the known energy relation in the trap
(aho = /h/mw)
a '1/4 — E/2hw) -
= f(E) =
Gho I'(3/4 — E/2hw)
2. derive the energy-dependent scattering length L

AV 51
CL(E, B) = Qpg 1 —
B—By+dB—FE/u
in contrast to a previously suggested form (Shift 5B and slope

AB (14 (kany))
B — By + 6B + (kawg)?’AB — E/

exp. predictable.)

pn = Erps(B)/(B — Bo)
a(E, B) = ang (1 — )
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

Description as coupled single open and closed channels (|¥) = C|open) + Alclosed))

Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)

With this one can
1. recover the known energy relation in the trap
(aho = /h/mw)
a '1/4 — E/2hw) -
= f(E) =

Gho I'(3/4 — E/2hw)

2. derive the energy-dependent scattering length L
4 6

AB
B, B)=aw \1 = g B B/,

(Shift 6 B and slope

pn = Erps(B)/(B — Bo)
exp. predictable.)
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

Description as coupled single open and closed channels (|¥) = C|open) + Alclosed))

Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)

With this one can
1. recover the known energy relation in the trap
(aho = /h/mw)
a '1/4 — E/2hw) -
= f(E) =

Gho I'(3/4 — E/2hw)

2. derive the energy-dependent scattering length L
4 6

AB
B, B)=aw \1 = g B B/,

(Shift 6 B and slope
pn = Erps(B)/(B — Bo)
A f(E) — abg/ano exp. predictable.)

3. derive the admixture of the closed channel

c” JF(E)
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How good is the model?

Comparison with full coupled-channel calculations for °Li-3"Rb in a 200 kHz trap:

MC result

1% energy level
2" energy level
39 energy level

4™ energy level

~
S
=
S
(%]
=
c
>
~
L

1066 1067 1068 1069
B (units of Gauss) B (unitsof Gauss)

Energy deviation < 0.003 hw.

Closed-channel admixture deviation < 0.1%.
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Explaining a puzzling discrepancy

Resonances of a o< f(E) are located at E\") = hw(2n + ) = thus NOT at bare resonance
osition Bp = By — 0B, but at
P =0 B=B® =B, —6B+E™/u.

res res

This explains the disagreement of experimentally observed MFR positions of 5'Rb:;
predicted shift of 0.034 Gauss in good agreement with experimental results.
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weak dipole trap, M. Erhard et al. tight optical trap, A. Widera et al.
Phys. Rev. A 69 032705 (2004) Phys. Rev. Lett. 92 160406 (2004).
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Harmonic vs. anharmonic confinement (optical lattice)

Analytical separable solution exists for the atom pair, if

the interatomic interaction is described by a pseudo potential
(Vatom—atom X asc 0(7) with s-wave scattering length agc),

the harmonic approximation is adopted for the lattice potential, and

both atoms “feel” the same lattice potential.
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Harmonic vs. anharmonic confinement (optical lattice)

Analytical separable solution exists for the atom pair, if

the interatomic interaction is described by a pseudo potential
(Vatom—atom X asc 0(7) with s-wave scattering length agc),

the harmonic approximation is adopted for the lattice potential, and

both atoms “feel” the same lattice potential.

However, coupling of center-of-mass (COM) and relative (REL) motion
for the (correct) sin® potential,
even in harmonic traps, if the two atoms experience different trap potentials

* heteronuclear atom pairs (different masses) or

x atoms in different electronic states (different trap potential).

A. Saenz: Resonances in few-body systems (17) ECT* Trento, 13.06.2025



Theoretical approach

Hamiltonian (6D):
H(R,7) = hcom(R) + hren(r) + W(R,7)
with B : center-of-mass (COM) . relative motion (REL) coordinate

Taylor expansion of the sin® lattice potential (to arbitrary order).

Also cos?

, mixed, and fully anisotropic (orthorhombic) lattices possible.
All separable terms included in either BCQM or BREL.
Full interatomic interaction potential (typically a numerical BO curve).

Configuration interaction (Cl) type full solution using the eigenfunctions

(orbitals) of BCOM and BREL-

Full consideration of orthorhombic lattice symmetry (and possible indistinguis-
hability of atoms).
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Elastic confinement-induced resonances (ECIR)

Relative-motion s-wave scattering theory for two ultracold atoms in an harmonic
quasi 1D confinement: mapping of quasi-1D system onto pure 1D system.

Renormalized 1D interaction strength [M. Olshanii, PRL 81, 938 (1998)]:
2ah? 1

pdi 14¢(3) &

a := s-wave scattering length d, = ,/ﬁ: transversal confinement

;= reduced mass C(x)=> p  k°

g1iD =

Resonance: ng%ooforC% = —g‘(%) ~ 1.46...

Analogously: confinement-induced resonance occurs also in (quasi) 2D

[Petrov, Holzmann, Shlyapnikov, PRL 84, 2551 (2000)].
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Olshanii’s model (1)

Resonance occurs if artificially excited bound state crosses the free ground-state
threshold:
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Blue: quasi 1D spectrum
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Red: artificially(!) exci-
ted bound state

Green: quasi continuum
threshold
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Olshanii’s model (I1)

T. Bergeman et al., PRL 91, 163201 (2003)

Result:

Confinement-induced resonances (CIR) are not an artefact of the § potential.

Note: No data points on shifted state!
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Innsbruck experiment (Cs atoms)
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Blue curve: Atom losses for w, = w, > w, (anisotropy fixed, a varied).

Red and blue curves: Atom losses for w, # w, > w,
E. Haller et al., PRL 104, 153203 (2010)
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Problem: agreement and conflict with theory

E. Haller et al., PRL, 104, 153203 (2010)

= Good agreement with Olshanii prediction for single anisotropy (w, = wy)

A. Saenz: Resonances in few-body systems (23) ECT* Trento, 13.06.2025



Problem: agreement and conflict with theory

E. Haller et al., PRL, 104, 153203 (2010)

= Good agreement with Olshanii prediction for single anisotropy (w, = wy)

= Olshanii theory: no splitting (w, # wy,)!!! Peng et al., PRA 82, 063633 (2010)

A. Saenz: Resonances in few-body systems (23) ECT* Trento, 13.06.2025



Complete confusion:

Innsbruck loss experiment (Haller et al.):

Position of 1D CIR agrees with Olshanii prediction for w, = wy,.
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Splitting of 1D CIR for w, # w, seems trivial, but conflicts with Olshanii
theory.
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

Position of 1D CIR agrees with Olshanii prediction for w, = wy,.

Splitting of 1D CIR for w, # w, seems trivial, but conflicts with Olshanii
theory.

Quasi-2D: CIR appears for a with “wrong” sign compared to Petrov, Holzmann,
Shlyapnikov prediction.

Quasi-2D: No losses at the “correct” value of a.

Cambridge radio-frequency experiment (Froehlich et al.):

Quasi-2D: CIR appears at “correct” value of a (also seen by Chris Vale).

Note: direct measurement of the binding energies.
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Full treatment of two atoms in quasi-1D trap:

Full Hamiltonian: center-of-mass (COM) and relative motion (REL) motion:
H(r,R) = TreL(r) + Tcom(R) + VreL(r) + Veom(R) + Uing(r) + W(r, R)

Note:
Anharmonic optical-lattice potential = COM and REL coupling (W (r,R) # 0)!
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Energy spectra (cartoon)

Relative-motion spectrum in harmonic trap vs. full (rel + com) spectrum

Relative motion only

Yp: (molecular) bound state
1. lowest-lying trap state
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Energy spectra (cartoon)

Relative-motion spectrum in harmonic trap vs. full (rel + com) spectrum

Relative motion only Full spectrum
Yp: (molecular) bound state ®(0,0,0): ground com state
1. lowest-lying trap state P (2,0,0): excited com state
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Molecule formation due to confinement

Full spectrum Avoided crossing

Coupling of center-of-mass (com) and relative (rel) motion (W # 0):

— avoided crossing

—— molecule formation possible!
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Energy spectra (ab initio results)

Relative-motion spectrum in harmonic trap vs. coupled spectrum in sextic trap

REL + COM + COUPLING

Many crossings are found in the coupled model,

A. Saenz: Resonances in few-body systems (28) ECT* Trento, 13.06.2025



Energy spectra (ab initio results)

Relative-motion spectrum in harmonic trap vs. coupled spectrum in sextic trap

REL + COM + COUPLING

Many crossings are found in the coupled model,

but which of them lead to resonances?
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Approximate selection rules

Coupling matrix element:

W(n,m,k) = ( on(R)Up(r) | W(r,R) | dm(R) Pr(r) ) REL bound state:
|1s(r))

REL trap state: ¥(r)

W(r7 R) — Zj:x,y,z W] (Tj, R])

W(n,?ﬂ,k) = 5nz,mz F<nam7k)(W)
COM states: ¢, (R) =
Fpm iy (W) = [5ny,my< bng (X) | Wa () | éms (X)) (@) | Wa(@) [9£0) ¢y, (X) ¢ (V) &, (Z)

+ong,mg( Pny (Y) | Wy (Y) [ dmqy (Y) ) (p(x) | Wy(y) | ¥ (r) )

Ultracold: only ground trap state populated = m = k£ = 0.

Resonances:

Crossing of transversally COM excited REL bound state with ground (COM and
REL) trap state.
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Avoided Crossings (I)

Only few crossings are avoided (approx. selection rules):

Large part of spectrum Zoom-in in spectrum.

A. Saenz: Resonances in few-body systems (30) ECT* Trento, 13.06.2025



Avoided Crossings (I1)

Only few crossings are avoided (approx. selection rules):

(b)

hy P

0,0,14)

= single anisotropy (w, = wy, > w,): degeneracy

= totally anisotropic case w, # w, > w,: splitting
[S. Sala, P.-l. Schneider, A.S., Phys. Rev. Lett. 109, 073201 (2012)]
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Comparison with Innsbruck Experiment

x Experiment

- RMH model
— CRC modd

11

w /W
Xy

Agreement not only for positions, but also for width.

Quantitative agreement also for quasi-2D resonance: a = 0.593 d,, (exp.)
vs. a = 0.595 dy (th.) [S. Sala, P.-I. Schneider, A.S., Phys. Rev. Lett. 109, 073201 (2012)]
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Elastic vs. inelastic CIRs

Our conclusion:

Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

Inelastic CIR: molecule formation, thus atom loss.
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Elastic vs. inelastic CIRs

Our conclusion:

Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

Inelastic CIR: molecule formation, thus atom loss.

Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

Quasi 2D: positions differ even by sign of a.
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Elastic vs. inelastic CIRs

Our conclusion:

Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

Inelastic CIR: molecule formation, thus atom loss.

Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

Quasi 2D: positions differ even by sign of a.

Note: The possibility to create molecules due to anharmonicity had earlier been
suggested: Bolda, Tiesinga, Julienne [PRA 71, 033404 (2005)]; Schneider, Grishkevich, A.S,
[Phys. Rev. A 80, 013404 (2009)]; Kestner, Duan [N. J. Phys. 12, 053016 (2010)].
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Experimental test (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:
Experiment with exactly two Li atoms in high-fidelity ground state
cf. [Serwane et al., Science 332, 336 (2011)]
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Experimental test (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:
Experiment with exactly two Li atoms in high-fidelity ground state
cf. [Serwane et al., Science 332, 336 (2011)]

1. Confirmation of the elastic CIR by measuring the tunnel rate:

Interaction energy shifts two-atom ground state = modified atomic tunnel rate.
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Experimental test (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state
cf. [Serwane et al., Science 332, 336 (2011)]

1. Confirmation of the elastic CIR by measuring the tunnel rate:

Interaction energy shifts two-atom ground state = modified atomic tunnel rate.

2. Detection of molecules: measurement of tunneling atoms at a B field where
deeply bound molecules do not tunnel (due to doubled mass).

A. Saenz: Resonances in few-body systems (34) ECT* Trento, 13.06.2025



Comparison ab initio result to experiment

COM Position [G] FWHMIG] Qp[Hz]/ 27
excitation | exp. num. exp. num. | exp. | num.
(2,0,0) | 780.5 | 776.01 | 0.25(0.03) 0.35 33 64
(0,2,0) | 783.2 | 779.02 | 0.42(0.06)*) | 0.35 | 75 ) | 69

(*) Magnetic field gradient B’ = 18.92 G/cm applied.

More details:

Sala, Ziirn, Lompe, Wenz, Murmann, Serwane, Jochim, A.S.,
Phys. Rev. Lett. 110, 203202 (2013).
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.
They are tunable by varying the dipole-coupling strength!
[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.
They are tunable by varying the dipole-coupling strength!
[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.
For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.
They are tunable by varying the dipole-coupling strength!
[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.
For electron pairs (no bound state) (smaller) change of density.
For excitons (electron-hole pairs) larger change of density.

—— on-demand single-photon source!

[M. Troppenz, S. Sala, P.-l. Schneider, and A.S., arXiv:1509.01159]
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.
They are tunable by varying the dipole-coupling strength!
[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.
For electron pairs (no bound state) (smaller) change of density.
For excitons (electron-hole pairs) larger change of density.

—— on-demand single-photon source!

[M. Troppenz, S. Sala, P.-l. Schneider, and A.S., arXiv:1509.01159]

lon-atom pairs / shifted traps: [S. Onyango, F. Revuelta, A.S., in preparation]
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Inelastic confinement-induced dipolar resonances (ICIDR)

(pboundl-pv

004  0.03085 0.0309 0.03095
UG

Note: In this case, tuning is achieved via the dipolar interaction (external electric
or magnetic fields).
[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

[More resonances in dipolar gases and double-well potentials:
B. Schulz, A.S., ChemPhysChem 17, 3747 (2016)]
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Inelastic CIRs / Lattice-induced resonances

Observation of
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ICIR in square-well potential?

Analytical solution for two particles with J interaction in square-well potential exists:
Bethe ansatz in absolute(!) coordinates.

Center-of-mass and relative motions seem to be coupled, but:

3
S
w
>
o
—
9]
C
9]

box length L = 10 a.u.
—— symmetic in c.m. direction
—— antisymmetic in c.m. direction

inverse scattering strength c lla.u.]

no coupling due to symmetry!
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Overview

1. Confined particles (ultracold atoms in optical lattices or tweezers).

Influence of the confining potential.

Confinement-induced resonances (CIR).

2. Hydrogen-antihydrogen interaction.

Acknowledgment:

Lyding Brumm (HU Berlin), Piotr Froelich (U Uppsala), Svante Jonsell
(U Stockholm), Alex Dalgarno [Harvard], Bernard Zygelman (U Las Vegas)
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Historical motivation for HH

Hydrogen-antihydrogen (HH) is the most fundamental neutral system of com-
pund matter and antimatter particles.
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Historical motivation for HH

Hydrogen-antihydrogen (HH) is the most fundamental neutral system of com-
pund matter and antimatter particles.

Check of the proposal to cool antihydrogen with ultracold hydrogen.

* So far, only hot antihydrogen atoms are produced (ATHENA and ATRAP at
CERN),
but precision spectroscopy requires cold ones.

* Can hydrogen BEC be used for cooling?
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Historical motivation for HH

Hydrogen-antihydrogen (HH) is the most fundamental neutral system of com-
pund matter and antimatter particles.

Check of the proposal to cool antihydrogen with ultracold hydrogen.

* So far, only hot antihydrogen atoms are produced (ATHENA and ATRAP at

CERN),
but precision spectroscopy requires cold ones.

* Can hydrogen BEC be used for cooling?

Deexcitation of excited H atoms using ground state H atoms.

* So far, highly excited antihydrogen atoms are produced,
but precision spectroscopy requires ground-state atoms.

* Can ground-state hydrogen atoms be used for deexcitation?

A. Saenz: Resonances in few-body systems (41) ECT* Trento, 13.06.2025



Comparison of HH and H,
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Comparison of HH and H,
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Comparison of HH and H,

Protonium Pn

A. Saenz: Resonances in few-body systems (42) ECT* Trento, 13.06.2025




Comparison of HH and H,

Positronium Ps
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Symmetries of HH (1)

Leptonic non-relativistic Born-Oppenheimer Hamiltonian of HH
(in atomic units):
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Symmetries of HH (1)

Leptonic non-relativistic Born-Oppenheimer Hamiltonian of HH
(in atomic units):

0, = ——e_Ye_ - _ - 4 - 4 - _ =
N 2 2 Tpe  Tpe i T'pe N Tpe  Tee
Leptonic permutation 0,7, = s, O, 7 = 7

A A v: V? 1 1 1 1 1
O Hep = — 52— 2 - — - — + — 4 — - —
2 2 T'pe I'pe I'pe T'pe T'ee

Vi o VvEi o1 1 1 1 1

= —— — + + — — — —

2 2 Tpe Tpe Tpe Tpe Tee

— no symmetry of ﬂlep
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Symmetries of HH (1)

Leptonic non-relativistic Born-Oppenheimer Hamiltonian of HH
(in atomic units):

A vV: V2 1 1 1 1 1
B = ——°—Ye_ — _ - 4 - 4 - _ -
2 2 T'pe T'pe T'pe T'pe Tee
Leptonic inversion i Foe = —Fges i Poz = —Vpe
: h VZ V2 1 1 1 1 1
WHe = — e Ye - - 4 - 4o C
2 2 T'pe T'pe T'pe I'pe Tee
v: o ov: o1 1 1 1 1
= = — = - I = — — —
: 2 Tpe Tpe Tpe Tpe Tee

— no symmetry of ﬂlep
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Symmetries of HH (1)

Leptonic non-relativistic Born-Oppenheimer Hamiltonian of HH
(in atomic units):

Q symmetry (leptonic permutation and inversion)

A

Ql T'pe — i; O 7:’pe — _Fﬁéa Ql Fpé =1; O Fpé — _Fﬁe:

yH, = ——°&--°¢&_ - _ - 4+ - 4+ - _ -
Ql lep 2 2 Tﬁé 'r'pe U Tpé + 7"13@ Tee
vZ V2 1 1 1 1 1
e

2 2 Tpe Tﬁé rpe Tpe T'ee

— symmetry of ﬁlep
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Symmetries of HH (1)

The Q symmetry (Ql =i (3;) acts exclusively on the spatial coordinates of the
leptons.

The leptonic inversion (i;) is closely related to the leptonic parity P;, but the
latter includes the internal parities (the ones of a fermion and an antifermion
being opposite).

It is possible to show that the combined Q and leptonic spin-exchange S,
operations correspond to the leptonic charge-conjugation C; and parity P;
operations:

C; P, Viep) = Q: S Wiep)

The Ql operator is only a coordinate transformation, this is useful for coding
(generation of symmetry-adapted basis functions).
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Processes in HH collisions

Possible low-energy scattering events:

@ elastic scattering (responsi-
ble for cooling)

) €+/€_ annihilation in ﬂlght - - - Elastic (real phase shift only)

— Elastic (incl. inelastic correction)

© p/p annihilation in flight

© rearrangement reactions,
especially
H+H — pp + ete™, and

3
S,
©
c
.8
2=
1}
o
T
o
0
o
p —
o

© radiative association,
H+ H— HH + hv.

Collision energy ¢, [a.u.]
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The HH “molecule” (I)

HH:

“Chemically” bound molecule.

Potential curve corresponds to
slightly distorted protonium po-

tential (pp).

-2

The distortion transforms an infi-
nite pp level series into a finite
number of rovibrational states.

L
L
£
L

>
o
| .
o
c
L

However, H H is metastable: Protonium (1s) + Positronium (1s)
Hydrogen—antihydrogen
* Annihilation and

* decay in protonium and po- 2 4

sitronium. Internuclear distance R in dg
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HH “molecule” (1)

1

-1.5

Protonium (Ns) + Positronium (1s)
N =15, 18, 21, 24, and 27

£
(Y
R
L
>
o
|-
()
c
Ll

-2

Hydrogen—antihydrogen molecule
v=14,17, 20, 23, and 26

1 2

Internuclear distance R in dg

At the critical distance R., 1 opens the decay channel HH — pp + e&.
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Leptonic energy

—— Q=+1 (even)
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Interhadronic Distance R (in atomic units)

At the critical distance R., the leptonic ground-state energy of HH
equals the one of a freely moving Ps
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The critical distance

Basis functions of the used type,

2re e\t . n m e B
ou(rr) = (M) emptie st

allow a very efficient and accurate inclusion of electron-electron correlation for Hs,
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The critical distance

Basis functions of the used type,

27,,6 5 22} I B _

- = _ ) g, Vi Wi, Vi —ae—a€e+ +06ne

¢’[;(T€7 /’aé) — gelnel ézfr}é'le 56 56 /8776 /6776 ;
R

allow a very efficient and accurate inclusion of electron-electron correlation for Hs,

but the highest power of 71 2 (ftmax) still limits the Taylor expansion describing
free positronium:

Hmax 0 1 2 3
ELS —0.1376  —0.1913 —0.2193 —0.2348
rel. error [%] 45.0 23.5 12.3 6.1
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Improved calculation

—— HH (this work)
— — HH (Strasburger)

075 0.8 085 0.9 095 1 105 11
Interhadronic separation R / a.u.
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o
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| —— HH (thiswork)
— — HH (Strasburger [J.Phys.B 35, L435 (2002)])
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1 2 3 4 5 6 4
Interhadronic separation R / a.u.
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Excited states

Reminder: all 4 leptonic spin states are degenerate in the non-relativistic limit.

There are 2 ¥ states converging asymptotically to the H(n=2)+H(1s),
and 2 ¥ states converging asymptotically to the H(1s)4+H(n=2) limit:

H(1s) + H(2s) H(1s) + H(2p,)
H(2s) 4+ H(1s) H(2p,) + H(1s)

2 of the states have Q even symmetry, 2 have Q odd symmetry.
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Excited states

Reminder: all 4 leptonic spin states are degenerate in the non-relativistic limit.

There are 2 ¥ states converging asymptotically to the H(n=2)+H(1s),
and 2 ¥ states converging asymptotically to the H(1s)4+H(n=2) limit:
H(1s) + H(2s)  H(1s) + H(2p,)

(2p,
H(2s) 4+ H(1s) H(2p,) + H(1s)
2 of the states have Q even symmetry, 2 have Q odd symmetry.

There are 3 3 states converging asymptotically to the H(n=3)+H(1s),
and 3 ¥ states converging asymptotically to the H(1s)4+H(n=3) limit:

H(1s) + H(3s) H(1s) + H(3p,) H(1s) + H(3d,2)
H(3s) + H(1s)  H(3p,) +H(1s)  H(3d,2) + H(ls)
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Excited states

Reminder: all 4 leptonic spin states are degenerate in the non-relativistic limit.

There are 2 ¥ states converging asymptotically to the H(n=2)+H(1s),
and 2 ¥ states converging asymptotically to the H(1s)4+H(n=2) limit:
H(1s) + H(2s)  H(1s) + H(2p,)

(2p,
H(2s) 4+ H(1s) H(2p,) + H(1s)
2 of the states have Q even symmetry, 2 have Q odd symmetry.

There are 3 3 states converging asymptotically to the H(n=3)+H(1s),
and 3 ¥ states converging asymptotically to the H(1s)4+H(n=3) limit:

p.)  H(ls) + H(3d,2)
1s) H(3d,2) + H(1s)

H(1s) + H(3s) H(1s) + H(3
H(3s) + H(1s) H(3p,) + H(

In the non-relativistic limit there are 2n X states for every main quantum number
n (n states are Q even and n are odd).
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Excited states (new results)

Q-positive
K. Strasburger
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Excited states (zoom)

New code allows for more systematic basis-set enlargement.

In contrast to previous calculations with this basis-set type, now the (free)
positronium states appear in the spectrum.

— Avoided crossings (resonances) between molecular and positronium states.
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Ground state (zoom)

Critical distance: avoided crossing???
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Deexcitation of excited H

Resonant deexcitation transfer: H(1s) + H(nl) = H(nl) + H(ls)

Using calculated excited-state potential curves, elastic and excitation transfer

cross-sections were obtained.

For example, the following scattering cross-sections are obtained:

oo, = 706a.u.

H(1s) + H(2s) — H(1s) + H(2s)
Oot = 8468 a. u.

H(1s) + H(2s) — H(2s) + H(1s)

The excitation-transfer cross-section is quite large, thus it may be a way for

deexcitation of H.

ECT* Trento, 13.06.2025
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Deexcitation of excited H

Resonant deexcitation transfer: H(1s) + H(nl) = H(nl) + H(ls)

Using calculated excited-state potential curves, elastic and excitation transfer

cross-sections were obtained.

For example, the following scattering cross-sections are obtained:

oo, = 706a.u.

H(1s) + H(2s) — H(1s) + H(2s)
Oot = 8468 a. u.

H(1s) + H(2s) — H(2s) + H(1s)

The excitation-transfer cross-section is quite large, thus it may be a way for

deexcitation of H.

However, the excited states indicate new complications!

ECT* Trento, 13.06.2025
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Vibrational states / Feshbach resonances

o
o0

S
o

~
5]
i)
o v—
g
a
Q
o v—
=
@)
-
av]
c
N’
89
>
o1}
S
Q
a
89

L =
)
i [9)]

— Q=+1 (even)
— Q=-1 (0odd)

SR MR L R B M L

o\ llllllllllllllllllllllll lllIIlllIIllllllllllllllllllllllllllu
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Vibrational states / Feshbach resonances
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Vibrational states / Feshbach resonances
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Vibrational states / Feshbach resonances
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Vibrational states / Feshbach resonances
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Density of states at threshold

Many states at threshold (only Q positive ones are shown).
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Summary

1. Confined particles (ultracold atoms in optical lattices or tweezers)

Influence of the confining potential.

Confinement-induced resonances (CIR).

2. Hydrogen-antihydrogen interaction.

Resonances in few-body systems are ubiquitous.

The influence of confining potentials can usually not be ignored.
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