
Resonances in few-body systems

Alejandro Saenz

AG Moderne Optik

Institut für Physik

Humboldt-Universität zu Berlin

(ECT* Trento, Universality in strongly interacting systems, 13.06.2025)



Overview

1. Confined particles (ultracold atoms in optical lattices or tweezers)

• Influence of the confining potential.

• Confinement-induced resonances (CIR).

2. Hydrogen-antihydrogen interaction.
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Hanns-Christoph Nägerl and his team (U Innsbruck)

A. Saenz: Resonances in few-body systems (3) ECT* Trento, 13.06.2025



Simplified Atom–Atom Interactions

Concept (cf. nuclear or solid-state physics):

• In many cases the wavefunction of a system consists of a complicated short-range
and a “simple” long-range part.
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Simplified Atom–Atom Interactions

Concept (cf. nuclear or solid-state physics):

• In many cases the wavefunction of a system consists of a complicated short-range
and a “simple” long-range part.

• Sometimes, the physics is “only” determined by the long-range part

(for example valence electrons for (metallic) conduction).

• The short-range of the potential influences, however, the long-range solution
(phase shift).

• Substitute the correct potential by a pseudopotential that yields the same
wavefunction in the outer regime.

Atom-atom interaction: Vmol(R) → Vpseudo(R) = 4π ℏ2
µR2 asc δ(R)

Note: Vpseudo is counterintuitive: long-range behaviour described by δ function!!!
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Optical lattices: shaped (tight) confinement

Counterpropagating lasers:

−→ standing light field.

Trap potential varies as

Ulat sin
2(k⃗r⃗ )

with

k = 2π
λ

λ: laser wavelength.

Ulat ∝ I α(λ)

with

laser intensity I and

atomic polarizability α.

[reproduced from I. Bloch, Nature Physics 1, 23 (2005)]
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External trap potential and interatomic interaction

Atom-atom interaction: Vmol(R) → Vpseudo(R) = 4π ℏ2
µR2 asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).

• In a (tight) trap energy is (noticeably) quantized: zero-point motion.
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External trap potential and interatomic interaction

Atom-atom interaction: Vmol(R) → Vpseudo(R) = 4π ℏ2
µR2 asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).

• In a (tight) trap energy is (noticeably) quantized: zero-point motion.

• However, energy (and length) scales are usually very different.

• “Usual” molecular bound states: orders of magnitude larger (binding) energies
and much more spatially confined than trap states.

• As weaker the least bound state is bound, as closer the scales get to each other.
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Pseudopotential approximation (in a trap): wavefunctions
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Spin-polarized 6Li atoms (a 3Σu) in a 10 kHz trap:

“correct” wavefunction (black, asc = −2030 a0) vs. energy independent (red, asc = −2030 a0)

and dependent (blue, asc = −2872 a0) pseudopotential results.
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External trap potential and interatomic interaction

Atom-atom interaction: Vmol(R) → Vpseudo(R) = 4π ℏ2
µR2 asc δ(R)

• This relation was derived for k → 0 (limit of zero-collision energy).

• In a (tight) trap energy is (noticeably) quantized: zero-point motion.

• Intercept of ψ on R axis does not agree with asc.

Example 6Li (state a 3Σu) in 10 kHz trap:

Deviation for ψ small, intercept at −2023 for asc = −2030 a0.

This is not true for ψpseudo: intercept at −1447 for asc = −2030 a0.

• Introduce an energy-dependent asc(E) that inserted in Vpseudo(R) matches (for
E = 3

2 ℏωtrap) the correct ψ (at R → ∞).

Note: In contrast to the physical asc the empirical parameter asc(E) follows only
from the correct ψ obtained with Vmol(R)!

−→ knowledge of Vmol(R) is essential!
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Trap size (in)dependence

Analytical solution for two identical particles with δ interaction in harmonic trap

−→ energies depend only on the ratio scattering length as to trap length dho.

Trap-length independence is not valid for realistic interaction potential!
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Reduced dimension: fermionization of bosons (1D vs. quasi 1D)
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Radial density of two atoms in a quasi-1D (cigar-shaped) confinement:

− scattering length a0 = 5624 a.u.

− anisotropy η = (dz/d⊥)
2

− transversal trap length d⊥ = 1.46 a0

− full Born-Oppenheimer potential.
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Fermions, η=10.0

Radial density of two atoms in a quasi-1D (cigar-shaped) confinement:

− scattering length a0 = 5624 a.u.

− anisotropy η = (dz/d⊥)
2

− transversal trap length d⊥ = 1.46 a0

− full Born-Oppenheimer potential.
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Tunable interaction: magnetic Feshbach resonances

∆(B)

E

R

Simple picture:

Only 2 channels:

− open (continuum) channel,

− closed (bound) channel.
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Tunable interaction: magnetic Feshbach resonances
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Simple picture:

Only 2 channels:

− open (continuum) channel,

− closed (bound) channel.

Multichannel reality:

Example 6Li-87Rb : 8 coupled channels,

− very different length scales involved,

− high quality molecular potential curves

required.
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Tuning the interparticle interaction

Magnetic Feshbach resonance: magnetic field modifies scattering length a.

Scattering length determines interparticle interaction.

−→ Tuning the interparticle interaction with a magnetic field!
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Theoretical challenges:

• Non-trivial, non-analytic atom-atom interaction (unlike Coulomb interaction).

• Magnetic Feshbach resonances: multi-scale, multi-channel problem.

Multi-channel R-matrix approach (incl. combined exp. and theor. determination
of 7Li87Rb resonances) [Phys. Rev. A 79, 012717 (2009)].
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Theoretical challenges:

• Non-trivial, non-analytic atom-atom interaction (unlike Coulomb interaction).

• Magnetic Feshbach resonances: multi-scale, multi-channel problem.

Multi-channel R-matrix approach (incl. combined exp. and theor. determination
of 7Li87Rb resonances) [Phys. Rev. A 79, 012717 (2009)].

• Theory for magnetic Feshbach resonances derived for free space.

Influence of lattice (confinement) on magnetic Feshbach resonances?
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

• Description as coupled single open and closed channels (|Ψ⟩ = C|open⟩ + A|closed⟩)
• Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)
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Magnetic Feshbach resonances (MFRs) in a harmonic trap

• Description as coupled single open and closed channels (|Ψ⟩ = C|open⟩ + A|closed⟩)
• Use analytically known long-range behavior of the wave functions (parabolic cylinder fcts.)

With this one can

1. recover the known energy relation in the trap

(aho =
√
ℏ/mω)

a

aho
= f(E) ≡

Γ (1/4 − E/2ℏω)
Γ (3/4 − E/2ℏω)
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With this one can

1. recover the known energy relation in the trap

(aho =
√
ℏ/mω)

a

aho
= f(E) ≡

Γ (1/4 − E/2ℏω)
Γ (3/4 − E/2ℏω)

2. derive the energy-dependent scattering length

a(E,B) = abg

(
1 −

∆B

B − B0 + δB − E/µ

)
in contrast to a previously suggested form

a(E,B) = abg

(
1 −

∆B
(
1 + (kabg)

2
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B − B0 + δB + (kabg)2∆B − E/µ
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3. derive the admixture of the closed channel

A

C
∝
f(E) − abg/aho√

f ′(E)
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How good is the model?

Comparison with full coupled-channel calculations for 6Li-87Rb in a 200 kHz trap:
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• Energy deviation < 0.003 ℏω.

• Closed-channel admixture deviation < 0.1%.
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Explaining a puzzling discrepancy

• Resonances of a ∝ f(E) are located at E(n)
res = ℏω(2n+ 1

2) ⇒ thus NOT at bare resonance

position BR = B0 − δB, but at
B = B(n)

res = B0 − δB + E(n)
res /µ .

• This explains the disagreement of experimentally observed MFR positions of 87Rb;

predicted shift of 0.034Gauss in good agreement with experimental results.

weak dipole trap, M. Erhard et al.

Phys. Rev. A 69 032705 (2004)

tight optical trap, A. Widera et al.

Phys. Rev. Lett. 92 160406 (2004).
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Harmonic vs. anharmonic confinement (optical lattice)

Analytical separable solution exists for the atom pair, if

• the interatomic interaction is described by a pseudo potential
(Vatom−atom ∝ asc δ(r⃗ ) with s-wave scattering length asc),

• the harmonic approximation is adopted for the lattice potential, and

• both atoms “feel” the same lattice potential.
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Harmonic vs. anharmonic confinement (optical lattice)

Analytical separable solution exists for the atom pair, if

• the interatomic interaction is described by a pseudo potential
(Vatom−atom ∝ asc δ(r⃗ ) with s-wave scattering length asc),

• the harmonic approximation is adopted for the lattice potential, and

• both atoms “feel” the same lattice potential.

However, coupling of center-of-mass (COM) and relative (REL) motion

• for the (correct) sin2 potential,

• even in harmonic traps, if the two atoms experience different trap potentials

⋆ heteronuclear atom pairs (different masses) or

⋆ atoms in different electronic states (different trap potential).
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Theoretical approach

Hamiltonian (6D):

Ĥ(R⃗, r⃗ ) = ĥCOM(R⃗ ) + ĥREL(r⃗ ) + Ŵ(R⃗, r⃗ )

with R⃗ : center-of-mass (COM) r⃗ : relative motion (REL) coordinate .

• Taylor expansion of the sin2 lattice potential (to arbitrary order).

• Also cos2, mixed, and fully anisotropic (orthorhombic) lattices possible.

• All separable terms included in either ĥCOM or ĥREL.

• Full interatomic interaction potential (typically a numerical BO curve).

• Configuration interaction (CI) type full solution using the eigenfunctions

(orbitals) of ĥCOM and ĥREL.

• Full consideration of orthorhombic lattice symmetry (and possible indistinguis-
hability of atoms).
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Elastic confinement-induced resonances (ECIR)

Relative-motion s-wave scattering theory for two ultracold atoms in an harmonic
quasi 1D confinement: mapping of quasi-1D system onto pure 1D system.

Renormalized 1D interaction strength [M. Olshanii, PRL 81, 938 (1998)]:

g1D =
2aℏ2

µd2⊥

1

1 + ζ(12)
a
d⊥

a := s-wave scattering length d⊥ =
√

ℏ
µω⊥

: transversal confinement

µ := reduced mass ζ(x) =
∑∞
k=1 k

−x

Resonance: g1D → ∞ for d⊥a = −ζ(12) ≈ 1.46 . . .

Analogously: confinement-induced resonance occurs also in (quasi) 2D

[Petrov, Holzmann, Shlyapnikov, PRL 84, 2551 (2000)].
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Olshanii’s model (I)

Resonance occurs if artificially excited bound state crosses the free ground-state
threshold:
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Blue: quasi 1D spectrum

Red: artificially(!) exci-
ted bound state

Green: quasi continuum
threshold

A. Saenz: Resonances in few-body systems (20) ECT* Trento, 13.06.2025



Olshanii’s model (II)

T. Bergeman et al., PRL 91, 163201 (2003)

Result:

Confinement-induced resonances (CIR) are not an artefact of the δ potential.

Note: No data points on shifted state!
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Innsbruck experiment (Cs atoms)

Blue curve: Atom losses for ωx = ωy ≫ ωz (anisotropy fixed, a varied).

Red and blue curves: Atom losses for ωx ̸= ωy ≫ ωz
E. Haller et al., PRL 104, 153203 (2010)
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Problem: agreement and conflict with theory
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E. Haller et al., PRL, 104, 153203 (2010)

⇒ Good agreement with Olshanii prediction for single anisotropy (ωx = ωy)
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Problem: agreement and conflict with theory
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E. Haller et al., PRL, 104, 153203 (2010)

⇒ Good agreement with Olshanii prediction for single anisotropy (ωx = ωy)

⇒ Olshanii theory: no splitting (ωx ̸= ωy)!!! Peng et al., PRA 82, 063633 (2010)
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.

• Splitting of 1D CIR for ωx ̸= ωy seems trivial, but conflicts with Olshanii
theory.
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• Splitting of 1D CIR for ωx ̸= ωy seems trivial, but conflicts with Olshanii
theory.

• Quasi-2D: CIR appears for a with “wrong” sign compared to Petrov, Holzmann,
Shlyapnikov prediction.

• Quasi-2D: No losses at the “correct” value of a.
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Complete confusion:

Innsbruck loss experiment (Haller et al.):

• Position of 1D CIR agrees with Olshanii prediction for ωx = ωy.

• Splitting of 1D CIR for ωx ̸= ωy seems trivial, but conflicts with Olshanii
theory.

• Quasi-2D: CIR appears for a with “wrong” sign compared to Petrov, Holzmann,
Shlyapnikov prediction.

• Quasi-2D: No losses at the “correct” value of a.

Cambridge radio-frequency experiment (Froehlich et al.):

• Quasi-2D: CIR appears at “correct” value of a (also seen by Chris Vale).

• Note: direct measurement of the binding energies.
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Full treatment of two atoms in quasi-1D trap:

Full Hamiltonian: center-of-mass (COM) and relative motion (REL) motion:

H(r,R) = TREL(r) + TCOM(R) + VREL(r) + VCOM(R) + Uint(r) +W (r,R)

Note:

Anharmonic optical-lattice potential ⇒ COM and REL coupling (W (r,R) ̸= 0)!
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Energy spectra (cartoon)

Relative-motion spectrum in harmonic trap vs. full (rel + com) spectrum

Relative motion only

ψb: (molecular) bound state

ψ1: lowest-lying trap state
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Energy spectra (cartoon)

Relative-motion spectrum in harmonic trap vs. full (rel + com) spectrum

Relative motion only

ψb: (molecular) bound state

ψ1: lowest-lying trap state

Full spectrum

Φ(0,0,0): ground com state

Φ(2,0,0): excited com state
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Molecule formation due to confinement

Full spectrum Avoided crossing

Coupling of center-of-mass (com) and relative (rel) motion (W ̸= 0):

−→ avoided crossing

−→ molecule formation possible!

A. Saenz: Resonances in few-body systems (27) ECT* Trento, 13.06.2025



Energy spectra (ab initio results)

Relative-motion spectrum in harmonic trap vs. coupled spectrum in sextic trap
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Many crossings are found in the coupled model,
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Energy spectra (ab initio results)

Relative-motion spectrum in harmonic trap vs. coupled spectrum in sextic trap
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Many crossings are found in the coupled model,

but which of them lead to resonances?
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Approximate selection rules

Coupling matrix element:

W(n,m,k) = ⟨ ϕn(R)ψb(r) | W (r,R) | ϕm(R)ψk(r) ⟩

W (r,R) =
∑
j=x,y,zWj(rj, Rj)

W(n,m,k) ≈ δnz,mz F(n,m,k)(W )

F(n,m,k)(W ) =

[
δny,my⟨ϕnx(X) |Wx(X) |ϕmx(X) ⟩⟨ψb(r) |Wx(x) |ψk(r) ⟩

+δnx,mx⟨ϕny(Y ) |Wy(Y ) |ϕmy(Y ) ⟩⟨ψb(r) |Wy(y) |ψk(r) ⟩
]

REL bound state:
|ψb(r)⟩

REL trap state: ψk(r)

COM states: ϕn(R) =
ϕnx(X)ϕny(Y )ϕnz(Z)

Ultracold: only ground trap state populated =⇒ m = k = 0.

Resonances:

Crossing of transversally COM excited REL bound state with ground (COM and
REL) trap state.
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Avoided Crossings (I)

Only few crossings are avoided (approx. selection rules):
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Avoided Crossings (II)

Only few crossings are avoided (approx. selection rules):
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ωx = ωy ≫ ωz

1.25 1.3 1.35 1.4 1.45
d

y
 / a

2.171

2.1715

2.172

2.1725

2.173

2.1735

2.174

E
 /

 h_
ω

y

|ψ
(b)

Φ
(2,0,0)

>

|ψ
(b)

Φ
(0,2,0)

>

|ψ
1
Φ

(0,0,0)
>

|ψ
(b)

Φ
(0,2,2)

>

ωx ̸= ωy ≫ ωz

⇒ single anisotropy (ωx = ωy ≫ ωz): degeneracy

⇒ totally anisotropic case ωx ̸= ωy ≫ ωz: splitting
[S. Sala, P.-I. Schneider, A.S., Phys. Rev. Lett. 109, 073201 (2012)]
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Comparison with Innsbruck Experiment
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Agreement not only for positions, but also for width.

Quantitative agreement also for quasi-2D resonance: a = 0.593 dy (exp.)
vs. a = 0.595 dy (th.) [S. Sala, P.-I. Schneider, A.S., Phys. Rev. Lett. 109, 073201 (2012)]
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Elastic vs. inelastic CIRs

Our conclusion:

• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.
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Our conclusion:

• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.

• Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

• Quasi 2D: positions differ even by sign of a.
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Elastic vs. inelastic CIRs

Our conclusion:

• Two types of resonances: elastic (Olshanii, Petrov et al.) and inelastic ones.

• Elastic CIR: no molecule formation, (almost) no losses (invisible in Innsbruck
experiment).

• Inelastic CIR: molecule formation, thus atom loss.

• Quasi 1D: accidentally at similar positions (in fact overlapping), but widths
differs by about one order of magnitude (elastic: broader).

• Quasi 2D: positions differ even by sign of a.

Note: The possibility to create molecules due to anharmonicity had earlier been
suggested: Bolda, Tiesinga, Julienne [PRA 71, 033404 (2005)]; Schneider, Grishkevich, A.S,

[Phys. Rev. A 80, 013404 (2009)]; Kestner, Duan [N. J. Phys. 12, 053016 (2010)].
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Experimental test (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state

cf. [Serwane et al., Science 332, 336 (2011)]
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Experimental test (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state

cf. [Serwane et al., Science 332, 336 (2011)]

1. Confirmation of the elastic CIR by measuring the tunnel rate:

Interaction energy shifts two-atom ground state ⇒ modified atomic tunnel rate.
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Experimental test (with group of S. Jochim)

Exclusion of many-body and multi-channel effects:

Experiment with exactly two Li atoms in high-fidelity ground state

cf. [Serwane et al., Science 332, 336 (2011)]

1. Confirmation of the elastic CIR by measuring the tunnel rate:

Interaction energy shifts two-atom ground state ⇒ modified atomic tunnel rate.

2. Detection of molecules: measurement of tunneling atoms at a B field where
deeply bound molecules do not tunnel (due to doubled mass).

A. Saenz: Resonances in few-body systems (34) ECT* Trento, 13.06.2025



Comparison ab initio result to experiment

COM Position [G] FWHM[G] Ω0[Hz]/ 2π
excitation exp. num. exp. num. exp. num.
(2, 0, 0) 780.5 776.01 0.25(0.03) 0.35 83 64
(0, 2, 0) 783.2 779.02 0.42(0.06)(∗) 0.35 75 (∗) 69

(∗) Magnetic field gradient B′ = 18.92 G/cm applied.

More details:

Sala, Zürn, Lompe, Wenz, Murmann, Serwane, Jochim, A.S.,

Phys. Rev. Lett. 110, 203202 (2013).
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.

They are tunable by varying the dipole-coupling strength!

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.

They are tunable by varying the dipole-coupling strength!

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.

For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.

They are tunable by varying the dipole-coupling strength!

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.

For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.

−→ on-demand single-photon source!

[M. Troppenz, S. Sala, P.-I. Schneider, and A.S., arXiv:1509.01159]
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Universality of confinement-induced resonances:

Dipolar gases (heteronuclear molecules, Rydberg atoms):

Inelastic confinement-induced resonances seen in ab initio calculations.

They are tunable by varying the dipole-coupling strength!

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

Quantum-dot systems (electron pairs or excitons):

Inelastic confinement-induced resonances occur also for Coulomb interaction.

For electron pairs (no bound state) (smaller) change of density.

For excitons (electron-hole pairs) larger change of density.

−→ on-demand single-photon source!

[M. Troppenz, S. Sala, P.-I. Schneider, and A.S., arXiv:1509.01159]

Ion-atom pairs / shifted traps: [S. Onyango, F. Revuelta, A.S., in preparation]
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Inelastic confinement-induced dipolar resonances (ICIDR)
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Note: In this case, tuning is achieved via the dipolar interaction (external electric
or magnetic fields).

[B. Schulz, S. Sala, and A.S., New J. Phys. 17, 065002 (2015)]

[More resonances in dipolar gases and double-well potentials:

B. Schulz, A.S., ChemPhysChem 17, 3747 (2016)]
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Inelastic CIRs / Lattice-induced resonances
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ICIR in square-well potential?

Analytical solution for two particles with δ interaction in square-well potential exists:

Bethe ansatz in absolute(!) coordinates.

Center-of-mass and relative motions seem to be coupled, but:

no coupling due to symmetry!
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Overview

1. Confined particles (ultracold atoms in optical lattices or tweezers).

• Influence of the confining potential.

• Confinement-induced resonances (CIR).

2. Hydrogen-antihydrogen interaction.

Acknowledgment:

Lyding Brumm (HU Berlin), Piotr Froelich (U Uppsala), Svante Jonsell
(U Stockholm), Alex Dalgarno [Harvard], Bernard Zygelman (U Las Vegas)
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Historical motivation for HH̄

• Hydrogen-antihydrogen (HH̄) is the most fundamental neutral system of com-
pund matter and antimatter particles.
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Historical motivation for HH̄

• Hydrogen-antihydrogen (HH̄) is the most fundamental neutral system of com-
pund matter and antimatter particles.

• Check of the proposal to cool antihydrogen with ultracold hydrogen.

⋆ So far, only hot antihydrogen atoms are produced (ATHENA and ATRAP at
CERN),
but precision spectroscopy requires cold ones.

⋆ Can hydrogen BEC be used for cooling?
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Historical motivation for HH̄

• Hydrogen-antihydrogen (HH̄) is the most fundamental neutral system of com-
pund matter and antimatter particles.

• Check of the proposal to cool antihydrogen with ultracold hydrogen.

⋆ So far, only hot antihydrogen atoms are produced (ATHENA and ATRAP at
CERN),
but precision spectroscopy requires cold ones.

⋆ Can hydrogen BEC be used for cooling?

• Deexcitation of excited H̄ atoms using ground state H atoms.

⋆ So far, highly excited antihydrogen atoms are produced,
but precision spectroscopy requires ground-state atoms.

⋆ Can ground-state hydrogen atoms be used for deexcitation?
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Comparison of HH̄ and H2
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Comparison of HH̄ and H2
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Comparison of HH̄ and H2
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Comparison of HH̄ and H2
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Symmetries of HH̄ (I)

Leptonic non-relativistic Born-Oppenheimer Hamiltonian of HH̄
(in atomic units):

Ĥlep = − ∇2
e
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− 1

reē
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−→ no symmetry of Ĥlep
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Symmetries of HH̄ (I)

Leptonic non-relativistic Born-Oppenheimer Hamiltonian of HH̄
(in atomic units):

Ĥlep = − ∇2
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ē
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Q symmetry (leptonic permutation and inversion)

Q̂l r⃗pe = îl Ôl r⃗pe = −r⃗p̄ē, Q̂l r⃗pē = îl Ôl r⃗pē = −r⃗p̄e:
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− 1

rpe
+

1

rpē
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Symmetries of HH̄ (II)

• The Q symmetry (Q̂l = îl Ôl) acts exclusively on the spatial coordinates of the
leptons.

• The leptonic inversion (̂il) is closely related to the leptonic parity P̂l, but the
latter includes the internal parities (the ones of a fermion and an antifermion
being opposite).

• It is possible to show that the combined Q and leptonic spin-exchange Ŝl
operations correspond to the leptonic charge-conjugation Ĉl and parity P̂l
operations:

Ĉl P̂l |Ψlep⟩ = Q̂l Ŝl |Ψlep⟩

• The Q̂l operator is only a coordinate transformation, this is useful for coding
(generation of symmetry-adapted basis functions).
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Processes in HH̄ collisions

Possible low-energy scattering events:

⊕ elastic scattering (responsi-
ble for cooling)

⊖ e+/e− annihilation in flight

⊖ p/p̄ annihilation in flight

⊖ rearrangement reactions,
especially

H+ H̄ → pp̄ + e+e−, and

⊖ radiative association,

H + H̄ → HH̄ + hν.
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The HH̄ “molecule” (I)

HH̄:

• “Chemically” bound molecule.

• Potential curve corresponds to
slightly distorted protonium po-
tential (pp̄).

• The distortion transforms an infi-
nite pp̄ level series into a finite
number of rovibrational states.

• However, HH̄ is metastable:

⋆ Annihilation and

⋆ decay in protonium and po-
sitronium.

Protonium (1s)
Protonium (1s) + Positronium (1s)
Hydrogen−antihydrogen
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HH̄ “molecule” (II)

N = 15, 18, 21, 24, and 27
Protonium (Ns) + Positronium (1s)

v = 14, 17, 20, 23, and 26
Hydrogen−antihydrogen molecule

At the critical distance Rcr ↑ opens the decay channel HH̄ → pp̄ + eē.
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Leptonic energy
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At the critical distance Rcr the leptonic ground-state energy of HH̄

equals the one of a freely moving Ps (EPs(1s) = −0.25 a. u.).
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The critical distance

Basis functions of the used type,

ϕi(r⃗e, r⃗ē) =

(
2re,ē
R

)µi
ξuie η

vi
e ξ

ūi
ē η

v̄i
ē e

−αξe−ᾱξē+βηe+β̄ηē ,

allow a very efficient and accurate inclusion of electron-electron correlation for H2,
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The critical distance

Basis functions of the used type,

ϕi(r⃗e, r⃗ē) =

(
2re,ē
R

)µi
ξuie η

vi
e ξ

ūi
ē η

v̄i
ē e

−αξe−ᾱξē+βηe+β̄ηē ,

allow a very efficient and accurate inclusion of electron-electron correlation for H2,

but the highest power of r1,2 (µmax) still limits the Taylor expansion describing
free positronium:

µmax 0 1 2 3

EPs
1s −0.1376 −0.1913 −0.2193 −0.2348

rel. error [%] 45.0 23.5 12.3 6.1
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Improved calculation
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Excited states

• Reminder: all 4 leptonic spin states are degenerate in the non-relativistic limit.

• There are 2 Σ states converging asymptotically to the H(n=2)+H̄(1s),

and 2 Σ states converging asymptotically to the H(1s)+H̄(n=2) limit:

H(1s) + H̄(2s) H(1s) + H̄(2pz)

H(2s) + H̄(1s) H(2pz) + H̄(1s)

• 2 of the states have Q even symmetry, 2 have Q odd symmetry.
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• Reminder: all 4 leptonic spin states are degenerate in the non-relativistic limit.

• There are 2 Σ states converging asymptotically to the H(n=2)+H̄(1s),

and 2 Σ states converging asymptotically to the H(1s)+H̄(n=2) limit:

H(1s) + H̄(2s) H(1s) + H̄(2pz)

H(2s) + H̄(1s) H(2pz) + H̄(1s)

• 2 of the states have Q even symmetry, 2 have Q odd symmetry.

• There are 3 Σ states converging asymptotically to the H(n=3)+H̄(1s),

and 3 Σ states converging asymptotically to the H(1s)+H̄(n=3) limit:

H(1s) + H̄(3s) H(1s) + H̄(3pz) H(1s) + H̄(3dz2)

H(3s) + H̄(1s) H(3pz) + H̄(1s) H(3dz2) + H̄(1s)
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Excited states

• Reminder: all 4 leptonic spin states are degenerate in the non-relativistic limit.

• There are 2 Σ states converging asymptotically to the H(n=2)+H̄(1s),

and 2 Σ states converging asymptotically to the H(1s)+H̄(n=2) limit:

H(1s) + H̄(2s) H(1s) + H̄(2pz)

H(2s) + H̄(1s) H(2pz) + H̄(1s)

• 2 of the states have Q even symmetry, 2 have Q odd symmetry.

• There are 3 Σ states converging asymptotically to the H(n=3)+H̄(1s),

and 3 Σ states converging asymptotically to the H(1s)+H̄(n=3) limit:

H(1s) + H̄(3s) H(1s) + H̄(3pz) H(1s) + H̄(3dz2)

H(3s) + H̄(1s) H(3pz) + H̄(1s) H(3dz2) + H̄(1s)

• In the non-relativistic limit there are 2n Σ states for every main quantum number
n (n states are Q even and n are odd).
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Excited states (new results)
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Excited states (zoom)

New code allows for more systematic basis-set enlargement.

In contrast to previous calculations with this basis-set type, now the (free)
positronium states appear in the spectrum.

−→ Avoided crossings (resonances) between molecular and positronium states.
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Ground state (zoom)

Critical distance: avoided crossing???
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Deexcitation of excited H̄

Resonant deexcitation transfer: H(1s) + H̄(nl) = H(nl) + H̄(1s)

• Using calculated excited-state potential curves, elastic and excitation transfer
cross-sections were obtained.

• For example, the following scattering cross-sections are obtained:

H(1s) + H̄(2s) −→ H(1s) + H̄(2s) σel = 706 a.u.

H(1s) + H̄(2s) −→ H(2s) + H̄(1s) σet = 8468 a.u.

• The excitation-transfer cross-section is quite large, thus it may be a way for
deexcitation of H̄.
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Deexcitation of excited H̄

Resonant deexcitation transfer: H(1s) + H̄(nl) = H(nl) + H̄(1s)

• Using calculated excited-state potential curves, elastic and excitation transfer
cross-sections were obtained.

• For example, the following scattering cross-sections are obtained:

H(1s) + H̄(2s) −→ H(1s) + H̄(2s) σel = 706 a.u.

H(1s) + H̄(2s) −→ H(2s) + H̄(1s) σet = 8468 a.u.

• The excitation-transfer cross-section is quite large, thus it may be a way for
deexcitation of H̄.

However, the excited states indicate new complications!
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Vibrational states / Feshbach resonances
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Vibrational states / Feshbach resonances
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Density of states at threshold

Many states at threshold (only Q positive ones are shown).
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Summary

1. Confined particles (ultracold atoms in optical lattices or tweezers)

• Influence of the confining potential.

• Confinement-induced resonances (CIR).

2. Hydrogen-antihydrogen interaction.

Resonances in few-body systems are ubiquitous.

The influence of confining potentials can usually not be ignored.

A. Saenz: Resonances in few-body systems (58) ECT* Trento, 13.06.2025


