UNITARIAN CHURCH

65

THIS CHURCH WELCOMES ALL WHO WISH TO WORSHIP IN A SPIRIT OF FREEDOM REASON AND

TOLERANCE

FIRST UNITARIAN UNIVERSAUST

Towards the Unitarity Limit in EFTs with Pions

H. W. Grießhammer

Institute for Nuclear Studies The George Washington University, DC, USA

Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY

Office of Nuclear Physics

ing Nuclear Matter - Quark?

- Emergent Phenomena in Nuclear Physics: "Order From Chaos"
- What Is The Unitarity Limit? And Why Should I Care?
- Output State St
- Concluding Conjecture and Questions

How to root Nuclear Physics in QCD? What is the underlying principle that makes simple structures emerge from complex nuclear dynamics?

König/hg/Hammer/van Kolck: *Phys. Rev. Lett.* **118** (2017) 202501 [1607.04623 [nucl-th]] Teng/hg: MSc Thesis GW 2023 and [2410.09653 [nucl-th]]

1. Emergent Phenomena in Nuclear Physics: "Order From Chaos"

1.1

2. What Is The Unitarity Limit? And Why Should I Care?

(a) Use Unitarity Expansion Only for Channels with Large NN Phase Shifts!

(b) Symmetries in the Unitarity Limit

χEFT cannot explain anomalous scatt. lengths/shallow binding: Worlds with $a \lesssim \frac{1}{m_{\pi}}$!

Noether Theorem 1918 [physics/0503066]:

Symmetries and their breaking result in conserved quantities.

(1) Amplitude saturated at Unitarity Limit: $\sigma = \frac{4\pi}{k^2}$ maximal (probability conservation).

(2) Scale Invariance: $\vec{k} \rightarrow e^{\lambda} \vec{k}$. actually nonrel. Conformal/Schrödinger Symmetry. Mehen/Stewart/Wise 2000

Nishida/Son 2007

(3) Wigner-SU(4) Symmetry of combined spin-isospin rotations $\begin{pmatrix} P \\ p \downarrow \\ n \uparrow \end{pmatrix} \rightarrow U \begin{pmatrix} P \\ p \downarrow \\ n \uparrow \end{pmatrix}$ Wigner, Hund 1937 for heavy nuclei n \uparrow of heavy nuclei 1939 cf. Mehen/Stewart/Wise 1999

In NN:
$$= \frac{4\pi}{M} \frac{1}{-\frac{1}{a} - ik} = A_{NN}({}^{3}S_{1}) = A_{NN}({}^{1}S_{0}) \text{ if } a({}^{3}S_{1}) = a({}^{1}S_{0}).$$

Theorists love Unitarity Limit as Nontrivial Fixed Point characterised by high symmetry: Wigner-SU(4) + scale-invariance close to FP protected in renormalisation.

What About Nature?

(c) Unitarity Expansion in EFT(*t*)

König/hg/Hammer/van Kolck: PRL 2017 [1607.04623] reviews: van Kolck [2003.09974]; Kievsky/... [2102.13504]

LO: No NN scale. \implies Nuclear Physics correlated to just one 3N RG scale fixed by B_3 via Efimov effect. PARADIGM SHIFT: Unitarity de-emphasises details of NN & pions, emphasises 3N scale & Universality. Information Theory in EFT: lossless compression into smallest number of parameters at given accuracy.

 \implies Explore Sweet Spot for patterns, unique signals of QCD:

bound weakly enough to be insensitive to interaction details ($\frac{kr}{2} \ll 1$),

but strongly enough to be insensitive to exact large system size ($ka \gg 1$).

(d) χ EFT Should Work In the Unitarity Expansion!

Explore transition "no \rightarrow nonperturbative pions" via Perturbative ("KSW") Pions (only undisputedly consistent χ EFT).

⇒ Clash of symmetries: Wigner/Unitarity vs. Chiral??

3. Unitarity Expansion With Perturbative Pions in NN

based on Rupak/Shoresh [nucl-th/9902077] (¹S₀), (a) $\chi \text{EFT}(\mathbf{p}\pi)_{\text{UE}}$ at N²LO with $Q \sim \frac{1}{ka}, \frac{kr}{2}, \frac{k.m\pi}{\Lambda_{\text{NN}}} \ll 1$ Fleming/Mehen/Stewart [nucl-th/9911001] (¹S₀, ³S₁) mod, for unitarity Teng/hg MSc thesis GW 2023, [2410.09653] $\mathcal{O}(Q^{-1})$ (LO): Nonperturbative; no scale, perfect Wigner, pure S wave. from structureless contacts $C (N^{\dagger}N)^2$ $\mathcal{O}(Q^0)$ (NLO): Scaling and Wigner broken by contacts determined to reproduce PWA values of a, r. Non-iterated OPE: central only, does not break Wigner but scaling; first non-analyticity: branch point $\pm i \frac{m\pi}{2}$. $A_0^{(S)} = \left(\underbrace{-}_{a} + \underbrace{-}_{a} \right) \otimes \left(\underbrace{-}_{a} + \underbrace{-}_{a} \right) \otimes \left(\underbrace{-}_{a} + \underbrace{-}_{a} \right)$ LOS wave LOS wave \implies Unitarity, Wigner-SU(4) spin-isospin symmetry align naturally for Perturbative Pions at NLO. $\mathcal{O}(Q^1)$ (N²LO): Contacts adjusted to keep a, r at PWA values; multiplied with non-iterated OPE (central only). Once-iterated OPE added: first and second non-analyticity: branch points $\pm i \frac{m_{\pi}}{2}, \pm i m_{\pi}$. $A_{1\text{sym}}$: Central $S \to S \to S$ does not break Wigner but scaling: identical in ${}^{1}S_{0}$ and ${}^{3}S_{1}$. A_{1} break: Tensor $S \rightarrow D \rightarrow S$ breaks Wigner and scaling: only in ${}^{3}S_{1}$. $A_{1}^{(S)} = \left(\underbrace{-+}_{a,r}^{a,r} + \underbrace{-}_{a,r}^{a,r} + \underbrace{-}_{a,r}^{$ LO S wave LOS wave \implies Is breaking of Wigner-SU(4) spin-isospin symmetry for Perturbative Pions at N²LO indeed small? ・ロト ・同ト ・ヨト ・ヨト ヨヨ のへで

(b) Perturbative Pions at N²LO: ${}^{1}S_{0}$

perturbative pions to N²LO: Rupak/Shoresh 2000, Fleming/Mehen/Stewart 2000 unitarity for them: Teng/hg MSc Thesis GW 2023, [2410.09653]

Agrees within uncertainties with PWA for $\leq 250 \text{MeV}$ (even outside Unitarity Window).

Compare to EFT(π): minuscule impact of π .

(c) Perturbative Pions at N²LO: ${}^{3}S_{1}$

perturbative pions to N²LO: Fleming/Mehen/Stewart 2000 unitarity for them: Teng/hg MSc Thesis GW 2023, [2410.09653]

Compare to EFT(t): huge impact of pion.

Source of discrepancy: tensor int. (via SD). (central is identical in ${}^{3}S_{1}\&^{1}S_{0}$)

(c) Perturbative Pions at N²LO: ${}^{3}S_{1}$

perturbative pions to N²LO: Fleming/Mehen/Stewart 2000 unitarity for them: Teng/hg MSc Thesis GW 2023, [2410.09653]

Agrees within uncertainties with PWA for

 \geq 300 MeV (even outside Unitarity Window).

Compare to EFT(t): tiny impact of pion.

 \implies All very similar to ${}^{1}S_{0}$.

(d) Convergence to Data

Landau/Páez/Bordeianu: Comp. Phys., Lepage 1997 Teng/hg [2410.09653]

4. Concluding Conjecture and Questions

 χ EFT with Perturbative Pions in Unitarity Expansion $Q \sim \frac{1}{ka}, \frac{kr}{2}, \frac{m_{\pi}}{\overline{\Lambda}_{NN}} \ll 1$: needs $\delta \rightarrow \frac{\pi}{2} \Longrightarrow {}^{1}S_{0}, {}^{3}S_{1}$ only! **Chiral Physics:** $m_{\pi}, f_{\pi}, (\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q})(\tau_1 \cdot \tau_2)$ seem opposed to Wigner, but NN/few-N projection forces into it. Conjecture (at least for Perturbative Pions): Tensor/Wigner-SU(4) symmetry-breaking part of One-Pion Exchange is *super-perturbative* in few-N systems, i.e. does *not enter before* N³LO. \iff *Persistence:* Footprint of Symmetries in Unitarity Limit extends far into $p_{typ} \gtrsim m_{\pi}$, more relevant than γ iral symmetry in few-N?! \iff Better lossless compression of Information! **Evidence:** NN S-waves at N²LO converge order-by-order and to PWA inside all of Unitarity Window 30 MeV $\leq k \leq \overline{\Lambda}_{NN} \approx 300$ MeV. Successful extension of EFT(t) to pions. +xsym equall important nontrivial FP Appeal: Fine-Tuning \implies High Symmetry at Nontrivial Fixed Point: perfect scaling+Wigne Universality/scaling + Wigner-SU(4) Wigner-sym protected in renormalisation at FP \implies weakly broken in vicinity. dominates γ iral symmetry not explicit at FP: less protected? \implies Quantify! No Wigner in meson/1N sector \implies no change to χ PT, HB χ PT PC. "Coincidence": N²LO Perturbative Pions overpredict ${}^{3}SD_{1}$ mixing, ${}^{3}D_{1} \implies$ Zero without tensor int. at N²LO. Some Crucial Tests: If either fails without good reason, Conjecture falsified. N³LO cf. Beane Nonperturbative Pions to N²LO in $d\pi \rightarrow d\pi, \gamma d \rightarrow \pi d$ Nd scattering Kaplan/Vuorinen cf. Borasoy/hg 2003 cf. Bedague/hg 2000 strict perturbation LO: hg 2023 9 Kaplan 2020 イロト イヨト イヨト イヨト ヨヨー のへで

Need expansion parameter related to Wigner-SU(4) to characterise tensor suppression near Fixed Point.

Entanglement Power \mathcal{E} : Deviation of QM states from direct product position \otimes spin \otimes isospin \implies operators! classical 1.0 Σ : phase avg. Δ : phase diff. $S = e^{2i\Sigma} \left[\mathbb{1} \cos \Delta + i \, \text{SWAP}_{\sigma} \, \sin \Delta \right],$ entanglement (normalised) 0.8 spin swap : SWAP_{σ} := $\frac{1}{2}(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2) = \begin{cases} +1: {}^{3}S_1 \\ -1: {}^{1}S_2 \end{cases}$ 0.6 Unitarity: $S = e^{2i(\Sigma = \frac{\pi}{2}, \Delta = 0)} = -1 \implies \mathcal{E} = 0$: classical 0.4 How to Define Entanglement Power \mathcal{E} of *Operator*?: 0.2 Rényi entropy of 1N density matrix $\mathcal{E}_{BKKS} = \sin^2[2\Delta]$ of avg. over direct-product $|in\rangle$ 0.0 Beane/Kaplan/Klco/Savage 2019 150 $\mathcal{E}_{\text{Miller}} = H\left[\frac{\cos^2\Delta\left(\cos\Delta - \cos 2\Sigma\right)^2}{(1 - \cos\Delta\cos 2\Sigma)^2}\right] \text{ von Neumann}_{\text{entropy Miller 2023}}$ 120 Nijmegen Σ (avg δ) Niimegen PWA $H[f] = -x \ln x - (1-x) \ln(1-x), x = \frac{1}{2}(1+\sqrt{f})$ S [°] 90 relative von Neumann entropy $\mathcal{E}_{ad hoc} = H[\sin^2 \Delta]$ SWAP vs total hgrie 2024 60 In Unitarity Window, $\mathcal{E} \in [0, 1]$, saturates at $k \approx \frac{m_{\pi}}{2}$. 30 → Relevance of Entanglement in Unitarity Window?? 50 100 0 150 200 250 300 How to find \mathcal{E} before computation?? $k_{\rm cm}$ [MeV]

Need expansion parameter related to Wigner-SU(4) to characterise tensor suppression near Fixed Point.

Candidate Expansion of QCD for a large number $N_C \rightarrow \infty$ of colours:

Kaplan/Savage [hep-ph/9509371] Kaplan/Manohar [nucl-th/9612021] Calle Cordón/Ruiz Arriola [0807.2918]

Predicts that all V_{NN} in S waves are suppressed against central (Wigner-SU(4)) – except tensor 2.

Way out?: Wigner-SU(4) only realised in long-range parts, strongly broken in short-range?? Calle Cordón/Ruiz Arriola Here: Wigner-SU(4) breaking only in LECs: short-range – long-range ($k \rightarrow 0$) still Wigner-SU(4) symmetric.

Way out?!: $1/N_c$ expansion assumes that coefficients "of natural size".

Wigner-SU(4)/proximity to Unitarity forces leading- $1/N_c$ coefficient of tensor- $V_{\rm NN}$ to be exact zero.

Advantage: Guaranteed to survive renormalisation by Unitarity FP symmetry.

(c) Nonperturbative Pions at LO: Maybe Not Hopeless

hg 2023 Carter/Thiem/hg in preparation

Unitarity & KSW, ECT* Universality 45+15', 12.06.2028

・ロト ・母ト ・ヨト ・ヨト ・タマや

4. Concluding Conjecture and Questions

You have much skill in expressing yourself to be effective.

(b) Whence the Hockey Stick in ${}^{3}S_{1}$?

(c) Convergence to Data

Landau/Páez/Bordeianu: Comp. Phys., Lepage 1997 Teng/hg [2410.09653]

(d) NLO & N²LO Bayesian Truncation Uncertainties

hg/...[1203.6834], Cacciari/Houdeau [1105.5152] BUQEYE [1506.01343], hg/... [1511.01952] Teng/hg [2410.09653]

Bayesian N²LO truncation uncertainty at k: $\pm Q^3 \max\left\{\frac{\cot\delta_0(k) - \cot\delta_0(0)}{O}; \frac{\cot\delta_1(k)}{O^2}\right\}$ with $Q = \frac{\max\{k; m_{\pi}\}}{\overline{\Lambda}_{NN} \sim 300 \text{ MeV}}$

assuming uniform&log-uniform prior.

Only Wigner-symmetric forms have N²LO uncertainties consistent with NLO. and NLO&N²LO consistent with PWA.

(e) Different Ways To Extract Phase Shifts at NLO and N²LO

Teng/hg [2410.09653]

(f) Different Renormalisation/Parameter-Determination Points

Teng/hg [2410.09653]

(g) Virtual/Real Bound-State Pole Positions and Residues

Teng/hg [2410.09653]

(h) ³SD₁ Mixing: Full vs. Wigner

(a) Two Identical Bosons in Resummed-Range EFT

follow Habashi/Sen/Fleming/van Kolck [2007.07360], [2012.14995], [2209.08432]

(b) Three Identical Bosons in Resummed-Range EFT

hg/van Kolck [2308.01394]

Faddeev integral equation for half off-shell S-wave amplitude $T(\mu^2; K, Q)$, total cm energy μ^2 , rescaled by $M^m |r_0^{-1}|^n$. with $V_{\text{S-ex}}(\mu^2; P, Q) = \frac{1}{PO} \ln \frac{P^2 + Q^2 + PQ - \mu^2}{O^2 + O^2 - PO - \mu^2}$ kernel $\mathcal{K}(\mu^2; P, Q)$ $T(\mu^{2};K,P) = 4\pi V_{\text{S-ex}}(\mu^{2};P,K) + \frac{4}{\pi} \int_{0}^{\infty} dQ Q^{2} \frac{V_{\text{S-ex}}(\mu^{2};P,Q)}{\xi + \frac{3Q^{2} - 4\mu^{2}}{\xi} + \sqrt{3Q^{2} - 4\mu^{2}}} T(\mu^{2};K,Q)$ $\frac{1}{\xi + \frac{3Q^2 + 4\kappa_3^2}{4} + \sqrt{3Q^2 + 4\kappa_3^2}}$ **3B Binding Expectations** from (BB) propagator ($\mu^2 = -\kappa_3^2$) eff. range effect $\implies \rightarrow \frac{1}{Q^2}$ tames UV, no divergence \implies no 3BI \implies no limit cycle. $O \gg \kappa_3, \xi$ $\frac{3Q^2 + 4\kappa_3^2}{4} \gg \sqrt{3Q^2 + 4\kappa_3^2} \gtrsim 4 \implies \text{Quick convergence - can bound state be supported?}$ $\frac{3Q^2 + 4\kappa_3^2}{4} \gtrsim 4 \gtrsim \sqrt{3Q^2 + 4\kappa_3^2} \implies \text{All of similar size.} \implies \kappa_3 \lesssim 2 \text{ likely, effective-range effects large.}$ $\frac{3Q^2 + 4\kappa_3^2}{4} \ll \sqrt{3Q^2 + 4\kappa_3^2} \lesssim 4 \implies \rightarrow \frac{1}{\xi + \sqrt{3Q^2 + 4\kappa_3^2}} \approx \text{Effective range perturbative.} \implies \text{Efimov'ish.}$

(c) 3B Bound States in Resummed Range EFT

Renormalisable at LO without 3B Interaction. \implies Stable ground state, no (new) 3B parameter.

Meets expectations: $\kappa_3^{(0)} \le 2.1 \leftrightarrow \le 2$; no state for large $|\kappa_2^-|$; Efimov's Discrete Scale Invariance approximate.

[&]amp; KSW, EC1* Universality 45+15', 12.06.2025

mmer, INS@GWU

(d) Are Trajectories Self-Similar?: Lay On Top Of Each Other!

(e) Short-Range EFT as Low-Energy Re Σ RangeEFT: Fixing Efimov's Tower

(目) (目) 目目 のへの

	zero binding	quasi-unitarity	threshold
state	$\kappa_2^-(\kappa_3=0) [r_0^{-1}]$	$\kappa_3(\kappa_2^-=0)[r_0^{-1}]$	$\kappa_3 \stackrel{!}{=} \kappa_2^- \left[r_0^{-1} \right]$
ground	$-2.04318(6) \cdot 10^{-1}$	$2.35412(3) \cdot 10^{-1}$	2.11862(2)
1st exc.	$-6.9517(5) \cdot 10^{-3}$	$1.03030(5) \cdot 10^{-2}$	$1.25108(1) \cdot 10^{-1}$
2nd exc.	$-3.0144(1) \cdot 10^{-4}$	$4.53987(1) \cdot 10^{-4}$	$6.320(1) \cdot 10^{-3}$
3rd exc.	$-1.3269(2) \cdot 10^{-5}$	$2.00039(5) \cdot 10^{-5}$	$2.810(3) \cdot 10^{-4}$
$j \rightarrow \infty$	$-0.1551(1) e^{-j\frac{\pi}{s_0}}$	$0.23381(8) e^{-j\frac{\pi}{s_0}}$	$3.31(2) e^{-j\frac{\pi}{s_0}}$

$Re\SigmaRangeEFT$ for $\xi\to 0$ encompass	es SREFT. \Longrightarrow
Match Efimov scale Λ_{\ast} of 3BI in "hard	cutoff regularisation"
$H_0(\Lambda) \simeq -A \frac{\sin[s_0 \ln \frac{\Lambda}{\Lambda_*} - a]}{\sin[s_0 \ln \frac{\Lambda}{\Lambda_*} + a]}$	rccot s_0]Bedaque/ Hammer/ van Kolck [nucl-th/9809025]
to Re∑RangeEFT at same 2B binding	$\kappa_{2}^{-}(\xi=0)$ per state.

state	Efimov's $\Lambda_{*}\left[r_{0}^{-1} ight]$	amplitude A		
ground	0.614379(2)	0.87866(2)		
1st excited	0.610223(1)	0.87866(1)		
2nd excited	0.610206(1)	0.87866(1)		
3rd excited	0.610206(1)	0.87866(1)		
$j \rightarrow \infty$	0.610206(1)	0.87866(1)		

A: cf. Braaten/Kang/Platter[1101.2854]: 3 SigFig, no uncertainy

2. Quick Look At Scattering in Resummed-Range EFT

(a) Scattering B on Bound (BB) at cm Momentum *K*, Energy $\frac{3K^2}{4} - (\kappa_2^-)^2$

ho/van Kolck