
Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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Can we classically simulate scattering of composite particles from the Standard Model?

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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Lattice-gauge-theory methods based on Monte-Carlo sampling in Euclidean (imaginary) time have 
enabled this…but only at low energies so far…
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A SINGLE-WEAK PROCESS
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large quark masses. Clearly, it is the value of g
NN
⌫ (µ)

with the physical quark masses that is of phenomenolog-
ical interest and, a priori, the quark-mass dependence of
such an LEC is unknown. Therefore, an attempt to con-
strain g

NN
⌫ (µ) or the renormalization-scale–independent

quantity
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⌫ (µ) (50)

at the quark masses of this work will likely have little
bearing on the physical value of the coupling.

Nonetheless, one may still obtain an estimate of the
value of this LEC at the quark-mass value of this work,
in which case the corresponding values of two-nucleon
scattering parameters need to be used in the matching
relation. To date, there are two classes of LQCD compu-
tations of low-energy two-nucleon spectra and scattering
parameters at m⇡ ⇡ 800 MeV via the use of Lüscher’s
finite-volume formalism. The earlier computations in-
volve asymmetric two-nucleon correlation functions, and
point to the existence of rather deep bound states in
both the spin-singlet and spin-triplet two-nucleon chan-
nels [44, 50, 52, 55, 67, 68]. These were subsequently
used to constrain the relevant LECs in electromagnetic
and weak reactions of two-nucleon systems at various
pion masses and allowed preliminary extrapolations to
the physical point [20, 21, 45, 69, 70]. However, at
the finite-volume ground-state two-nucleon energy, which
sets the kinematics of the amplitude in this work, the pi-
onless EFT converges poorly when using the values for
the e↵ective range and scattering length in those stud-
ies. Therefore, obtaining the desired 0⌫��-decay ampli-
tude using those results requires extensions of the current
leading-order matching formalism, or the use of alternate
power-counting schemes. The other set of calculations at
m⇡ ⇡ 800 MeV build symmetric correlation functions to
enable accessing the low-lying spectra via a variational
method. These lead to upper bounds on ground-state en-
ergies that are also consistent with less bound or unbound
two-nucleon systems within uncertainties [54, 62, 71]. No
bound states are seen in complementary studies using the
Bethe-Salpeter potential method [72, 73]. While the as-
sociated scattering length and e↵ective range for these
bounds allow the use of the leading-order matching for-
malism here, it is non-trivial to turn variational bounds
on the energies to bounds on the desired LEC of the EFT,
given the nonlinearity of the matching relation.

Despite these caveats, the matching to the EFT am-
plitude using the above calculation of Ann!pp, leads to
g̃

NN
⌫ (µ = m⇡ = 806 MeV) values that di↵er by a factor of

four depending on whether the non-variational determi-
nations of two-nucleon energy and scattering parameters
or those from the variational studies are used (assuming
the variational bounds are saturated). In both cases, the
extracted values are within an order of magnitude of the
phenomenological estimate of Ref. [64]. Consequently, in-
creasingly controlled determinations of the two-nucleon
quantities that are input to the matching relation are

needed for a robust determination of this LEC. For cal-
culations with physical quark masses, such two-nucleon
quantities are well determined phenomenologically, which
would ease the matching procedure.

Improving on this situation thus requires calculations
of Ann!pp and the finite-volume two-nucleon spectrum
at or near the physical quark masses. A point worth
emphasizing is that the pionless EFT converges at the
finite-volume ground-state energy of the spin-singlet two-
nucleon system, provided that the lattice volume is suf-
ficiently large, hence putting another requirement on fu-
ture calculations. For an exploration of the impact of
volume on the determination of g

NN
⌫ (µ) at the physical

values of quark masses, see Ref. [37].

V. SUMMARY AND CONCLUSION

Within the coming few decades, the sensitivity of exper-
imental neutrinoless double-beta decay searches is pro-
jected to increase by several orders of magnitude, corre-
sponding to an order of magnitude decrease in the e↵ec-
tive 0⌫�� masses that can be probed [16]. Given current
best estimates of nuclear matrix elements, these exper-
iments will likely—but not definitively—be sensitive to
the entirety of the parameter space for the inverted hi-
erarchy of neutrino masses. These searches thus have a
large discovery potential but also present the possibility
of definitively ruling out the Majorana nature of the neu-
trino if they find no such decays and if neutrino oscillation
experiments confirm the inverted mass hierarchy. Thus,
either positive or negative results in next-generation ex-
periments will shed crucial light on this problem provided
that the dominant mode of decay is via the exchange of
a light Majorana neutrino and that the corresponding
nuclear matrix elements can be computed accurately to
extract m�� from measured (bounds on) half-lives.

Starting with the low-energy constants from nuclear
e↵ective field theories, nuclear many-body theories can
provide ab initio calculations of binding energies and
0⌫�� matrix elements in light to moderate (A . 48)
nuclei [74, 75]. For heavier nuclei (16 . A . 132),
EFT-based approximations to nuclear physics can pre-
dict 0⌫�� half-lives with more control than the nuclear
models currently used [76–78]. As such, determining
these low-energy constants in the timescales relevant for
these next-generation experiments is of substantial im-
portance to the nuclear- and particle-physics communi-
ties [16, 17].

This work presents the first LQCD calculation of the
long-distance 0⌫��-decay amplitude of a nuclear system,
yielding the result

a
2Ann!pp = 0.078(16) (51)

on a single LQCD ensemble with a lattice spacing of a =
0.145 fm, a lattice volume of (L/a)3⇥T/a = 323⇥48, and
quark masses corresponding to a pion mass of m⇡ = 806
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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There are mainly two issues…i) making complicated states, i.e., high-energy protons, or heavy ions, 
etc, and ii) imaginary-time nature of the classical Monte-Carlo calculations…no access to states as a 
function of Minkowski time elapsed after the collision!

What about high energies, like events at the Large Hadron Collider or the Relativistic 
Heavy-Ion Collider?

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23



THREE FEATURES MAKE LATTICE-QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with 
the number of quarks.

iii) Excitation gaps of nuclei are much smaller 
than the QCD scale.

ii) There is a severe signal-to-noise degradation.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)

Beane at al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)



No access to real-time non-equilibrium dynamics of matter in heavy-ion collisions or after 
the Big Bang…

…and to a wealth of dynamical response functions, transport properties, parton distribution 
functions, etc.

Path integral formulation: Hamiltonian evolution:
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U(t) = e�itH

SIGN PROBLEM MAKES CONVENTIONAL LATTICE-GAUGE-THEORY 
METHODS INTRACTABLE.
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Quantum 
simulation and 

quantum 
computation?

We turn to quantum simulation/computation 
since: 

i) Hilbert spaces can be encoded exponentially 
more compactly. 

ii) Operations can be highly parallelized using 
quantum superposition and entanglement!



Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.
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required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
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recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
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SO CAN WE STUDY HIGH-ENERGY SCATTERING VIA QUANTUM SIMULATION?

Graphic adopted from Bauer, ZD, Klco, and Savage, 
Nature Rev. Phys. 5 (2023) 7, 420-432.
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Degrees of freedom in the 
simulator: fermions, bosons, 
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

The engineered simulator 
Hamiltonian that mimics the 
Hamiltonian of target system.

Some of the leading analog simulators are: cold-atoms in optical lattices, 
Rydberg atoms with optical tweezers, trapped ions, superconducting 
circuits (including when coupled to photonics systems), etc. Atoms in optical lattices

Theory:  Jaksch et al. PRL (1998)

Experiment:  Kasevich et al., Science (2001);
Greiner et al., Nature (2001);
Phillips et al., J. Physics B (2002)       
Esslinger et al., PRL (2004);
and many more …

Eugene Demler lectures, 
Harvard University.CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND
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Digital

:
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Only qubits as DOF. Only 
universal single- and two-
qubit operations allowed.



Digital

DIFFERENT APPROACHES TO QUANTUM SIMULATION

t = NT � t

..
.

e�i(H1+H2+··· )t =
⇥
e�iH1�te�iH2�t · · ·

⇤t/�t
+O((�t)2)

Trotter-Suzuki expansion:

Other digitalization schemes also exist.

:

e�iH1�t

e�iH2�t

..
.

H = H1 +H2 + · · ·

Andrew Childs lectures on Quantum 
Simulation, University of Maryland.

Each of these can now potentially 
be decomposed to a universal 
set of single and two-qubit gates.

Example of a digital scheme:

…other methods exist too.
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.

Analog

t = NT � t

Evolve with 

t

..
.
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.
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.

DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog-Digital
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i) Quantum-simulation steps: A brief introduction 
ii) Various modes of quantum simulation: Digital, analog, hybrid 
iii) Digital-quantum-simulations basics: 

qubits and gates 
Encoding fermions and bosons onto qubits 
State-preparation strategies 
Time evolution (via product formulas) 
Measurement strategies and observables

A textbook of extreme popularity: 
Nielsen and Chuang, Quantum Computation 
and Quantum Information.
But some of the newer notions not there.
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State of two qubits: |ψ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩

≡ a

1
0
0
0

+ b

0
1
0
0

+ c

0
0
1
0

+ d

0
0
0
1

State of a single qubit: |ψ⟩ = a |0⟩ + b |1⟩ ≡ a (1
0) + b (0

1)
 ≡ cos(θ/2) |0⟩ + ieiϕ sin(θ/2) |1⟩



(Examples of ) quantum logic gates 

State of two qubits: |ψ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩

≡ a

1
0
0
0

+ b

0
1
0
0

+ c

0
0
1
0

+ d

0
0
0
1

State of a single qubit: |ψ⟩ = a |0⟩ + b |1⟩ ≡ a (1
0) + b (0

1)
 ≡ cos(θ/2) |0⟩ + ieiϕ sin(θ/2) |1⟩



(Examples of ) quantum logic gates 

State of two qubits: |ψ⟩ = a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩

≡ a

1
0
0
0

+ b

0
1
0
0

+ c

0
0
1
0

+ d

0
0
0
1

State of a single qubit: |ψ⟩ = a |0⟩ + b |1⟩ ≡ a (1
0) + b (0

1)
 ≡ cos(θ/2) |0⟩ + ieiϕ sin(θ/2) |1⟩

Any unitary on a finite number of qubits can be 
approximated efficiently by a finite sequence of a 
universal gate set. 

Two common choices for these gate sets are:

• Rx(θ) = e−iθσ x/2, Ry(θ) = e−iθσy/2, Rz(θ) = e−iθσ z/2, Pϕ = (1 0
0 eiϕ), CNOT

Example of) 
a quantum 
circuit:

Solovay (1995) and Kitaev (1997).

•  (  not strictly needed but more economical.)H, S, CNOT, T S
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Fermions are finite-dimensional locally but obey Fermi statistics. Mapping 
a fermionic Hamiltonian into a qubit Hamiltonian can be done: 

using one qubit per fermion but at the cost of non-local qubit 
interactions using Jordan-Wigner transformation: 

using more than one qubit per fermion to assist retaining any existing 
locality in the original fermionic Hamiltonian (e.g. Verstrate-Cirac, 
compact, superfast encodings).

ψi = (∏
j<i

σz
j )σ+

i , ψ†
i = (∏

j<i

σz
j )σ−

i



Fermions are finite-dimensional locally but obey Fermi statistics. Mapping 
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using one qubit per fermion but at the cost of non-local qubit 
interactions using Jordan-Wigner transformation: 

using more than one qubit per fermion to assist retaining any existing 
locality in the original fermionic Hamiltonian (e.g. Verstrate-Cirac, 
compact, superfast encodings).

ψi = (∏
j<i

σz
j )σ+

i , ψ†
i = (∏

j<i

σz
j )σ−

i

Bosons are infinite-dimensional locally but obey Bose statistics. Mapping 
a bosonic Hamiltonian into a qubit Hamiltonian can be done, e.g., 

using binary encoding, requiring  qubits per boson, 
where  is the cutoff on boson occupation per site: 

using unary encoding, requiring  qubits per boson.

η = ⌈log(Λ + 1)⌉
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i) Quantum-simulation steps: A brief introduction 
ii) Various modes of quantum simulation: Digital, analog, hybrid 
iii) Digital-quantum-simulations basics: 

qubits and gates 
Encoding fermions and bosons onto qubits 
State-preparation strategies 
Time evolution (via product formulas) 
Measurement strategies and observables

QUANTUM SIMULATION AND QUANTUM-COMPUTING BASICS



EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

Adiabatic state preparation: Prepare the ground state of a simple 
Hamiltonian, then adiabatically turn the Hamiltonian to that of the 
target Hamiltonian. Requires a non-closing energy gap. 

Imaginary time evolution: Start with an easily prepared state and 
evolve with imaginary time operator to settle in the ground state. 
Require implementing non-unitary operator which can be costly. 

Variational quantum eigensolver (VQE): Use the variational 
principle of quantum mechanic and classical processing to 
minimize the energy of a non-trivial ansatz wavefunction generated 
by a quantum circuit. The optimized circuit corresponding to the 
minimum energy generates an approximation to ground-state 
wavefunction. Can fail if stuck in local minima manifolds or 
manifolds with exponentially small gradients in qubit number. 

Classically computed states: Use classical computing such as 
Monte Carlo, Tensor Networks, Neural Networks to learn the state 
or features of the state when possible, for a direct implementation 
of the state as a quantum circuit, or as close enough state to the 
ground state as a starting point of the above algorithms so as to 
achieve more efficient implementations.
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Image credit: 
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OUTLINE OF PART II: 
QUANTUM SIMULATION AND QUANTUM-COMPUTING BASICS

i) Quantum-simulation steps: A brief introduction 
ii) Various modes of quantum simulation: Digital, analog, hybrid 
iii) Digital-quantum-simulations basics: 

qubits and gates 
Encoding fermions and bosons onto qubits 
State-preparation strategies 
Time evolution (via product formulas) 
Measurement strategies and observables
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First-order product formula
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RESOURCE ANALYSIS

Given the accuracy  on the time-evolution operator, how many qubits and costly gates are 
needed for simulating a Hamiltonian with given parameters for time  using the -order 
product formula?

ε
T pth

For a LGT Hamiltonian, these are volume, 
lattice spacing, couplings, masses, and 
truncation scale of the bosonic fields. 

The errors that accumulate to add up to the total error  include: 

i) Trotter error, 
ii) function-evaluation approximation error, 
iii) gate-synthesis error, 
iv) measurement error, and 
v) theoretical errors (finite-volume, discretization, truncation, etc.).

ϵ

Vp(T ) − e−iTH ≤ ε

The -order product formula requires   Trotter steps. Near-optimal 

algorithms based on completely different digitization strategies achieve .

pth O ( T (p+1)/p

ϵ1/p )
O (T, log ( 1

ε ))
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For FV effects, see, e.g.,: Burbano, Carrillo, Urek, 
Ciavarella, Briceño, arXiv:2506.06511 [hep-lat]. 
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OUTLINE OF PART II: 
QUANTUM SIMULATION AND QUANTUM-COMPUTING BASICS

i) Quantum-simulation steps: A brief introduction 
ii) Various modes of quantum simulation: Digital, analog, hybrid 
iii) Digital-quantum-simulations basics: 

qubits and gates 
Encoding fermions and bosons onto qubits 
State-preparation strategies 
Time evolution (via product formulas) 
Measurement strategies and observables



Energy and momentum, particle and charge (both locally 
and globally) 

Various correlation functions (both static and dynamical) 

Asymptotic S-matrix elements (assuming asymptotic final 
states are reached): 

• Exclusive processes: can be obtained from overlaps 
• Inclusive processes: can be obtained from two-current 

correltor via optical theorem 
• Semi-inclusive processes: can be obtained using 

projectors 

Entanglement measures such as estimates of entanglement 
spectrum (which can signal thermalization or lack of).

EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these 
can be measured directly in the computational basis, but others need a change of basis or other 
dedicated quantum circuits to access them.

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).
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FIG. 1. Schematic overview of the PTPQ-state preparation.
The colored squares in the R circuit denote randomly-chosen
single-qubit rotations around X and Y axes of the Bloch
sphere by angle ⇡

2
and the T gates. The entangling gates

are controlled-Z rotations. The two consecutive single-qubit
gates on each qubit are constrained to be di↵erent in this con-
struction. Entangling gates in each layer only act on adjacent
qubits and this pattern continues, see Ref. [119] for details.
H is a Hadamard gate.

be introduced by penalizing non-physical components of
the random pure state as they evolve in imaginary time.

By accurately obtaining, via a numerical simulation,
the phase diagram of a simple gauge theory (Z2 LGT in
1 + 1 D with matter) at finite temperature and chemical
potential, we demonstrate the utility of TPQ-state ap-
proach in studying thermodynamics of gauge theories for
the first time. Aiming at quantum-computing applica-
tions, associated quantum algorithms, quantum-resource
requirements, and robustness to algorithmic and hard-
ware errors are further studied. The results indicate that
the TPQ-state approach may be a suitable candidate for
e�cient phase-diagram studies of QCD in the future.

Thermal Pure Quantum States for Gauge Theories.
Canonical TPQ states are defined as [120]

��,N� ≡ e−
�
2 H
� R� , (1)

with � being the inverse temperature, N the number of
degrees of freedom of the (discrete) system, and � R� a
Haar-random state. TPQ states approximate thermal
expectation values of ‘mechanical’ operators, i.e., those
that are low-degree polynomials of local operators, via

�O�� ≈
� ��,N �O��,N� �r

� ��,N ��,N� �r

, (2)

with exponential convergence in the system size (as
well as in inverse temperature), see Supplemental Ma-
terial [125] for details. While a single TPQ state su�ces
as N →∞, for faster convergence at finite N , a stochastic
average over r TPQ states can be preformed, denoted by
�⋅�r in the formula.

In gauge theories, ��R� may be unphysical, in which
case Eq. (1) will not reproduce physical thermal observ-
ables. While this issue can be avoided by eliminating
the gauge-field degrees of freedom with certain boundary
conditions in 1+1 D, such a strategy is not generally ap-
plicable. Therefore, we propose ‘physical’ thermal pure
quantum (PTPQ) states

��,N�phys
≡ e−

�
2 H̃
� R� , (3)

by adding a term to the Hamiltonian, H̃ ≡H +∑n f(Gn)

where Gn are Gauss’s law operators at site n, that is
[H,Gn] = 0. The function f is chosen such that un-
physical components of the state as it evolves in imag-
inary time are penalized in energy. Such an approach
is customary in the context of enforcing Gauss’s law in
analog and digital quantum simulation of gauge theo-
ries, and can be applied to both Abelian and non-Abelian
cases [46, 84, 126–131].

A circuit to prepare PTPQ states on quantum com-
puters is illustrated in Fig. 1. First, a random circuit R,
consisting of layers of single-qubit gates and entangling
two-qubit gates, is used to prepare an approximate Haar-
random state. Various designs are suggested for such
task with studied performance [132], and we adopt the
e�cient implementation of Ref. [119]. This random cir-
cuit is followed by a non-unitary operator e−�H�2 acting
upon the resulting random state to produce a standard
canonical TPQ state. Gauss’s law is enforced through

action with QG ≡ e−
�
2 ∑n f(Gn), the circuit implementa-

tion of which depends on the f chosen, see below for the
example of Z2 LGT in 1+1 D. These elements will be
further studied in the following.

Thermal chiral phase diagram of Z1+1
2 . The model that

will be studied in the following to demonstrate the value
of the TPQ-state approach in gauge theories is Z2 LGT
in 1+1 D coupled to staggered fermions (Z1+1

2 ). This
model is su�ciently simple to allow numerical verifica-
tions on classical computers, while it still exhibits a non-
trivial phase diagram which is aimed to be reproduced
by quantum simulation. The Hamiltonian of the model
is

H =
1

2a

N−2

�
n=0

(c†
n
�̃z

n
cn+1 + h.c.) +m

N−1

�
n=0

(−1)nc†
n
cn − ✏

N−2

�
n=0

�̃x

n
,

(4)
where c†

n
(cn) is fermionic creation (annihilation) op-

erator, and �̄z

n
and �̄x

n
are Pauli spin operators re-

alizing the Z2 link and electric field operators, re-
spectively. Open boundary conditions are considered
throughout, and generalization to other boundary con-
ditions is straightforward. N , a, m, and ✏ are fermionic

Image credit: 
 Connor Powers (UMD)
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EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these 
can be measured directly in the computational basis, but others need a change of basis or other 
dedicated quantum circuits to access them.

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).
…

… Prepare   |ϕ⟩

Prepare   |ψ⟩

H x/y

  ⟨ψ |ϕ⟩

Energy and momentum, particle and charge (both locally 
and globally) 

Various correlation functions (both static and dynamical) 

Asymptotic S-matrix elements (assuming asymptotic final 
states are reached): 

• Exclusive processes: can be obtained from overlaps 
• Inclusive processes: can be obtained from two-current 

correltor via optical theorem 
• Semi-inclusive processes: can be obtained using 

projectors 

Entanglement measures such as estimates of entanglement 
spectrum (which can signal thermalization or lack of).
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Figure from: ZD, Hseih, and Kadam, Quantum 8, 1520 (2024).

QUANTUM SIMULATION OF SCATTERING CAN PROCEED WITH 
THE JORDAN-LEE-PRESKILL STRATEGY

3

FIG. 1. A schematic portrayal of JLP’s protocol, a quantum algorithm for simulating scattering processes
in the S-matrix formalism. The protocol consists of state preparation, time evolution under Hamiltonian
H, and measurement. In the JLP protocol, adiabatic evolution is required to transform the incoming wave
packets of the free theory, | i

in
free, into those of an interacting theory, | i

in
int. Similarly, outgoing wave packets

of the interacting theory, | i
out
int , are adiabatically turned into those of the free theory, | i

out
free, before any

measurement of the final state is performed. Alternatively, the state of the system can be measured at any
post-collision stage in a quantum simulation.

Refs. [18, 19], but they have been limited to low-energy and low inelasticity processes [20–22].
High-energy scattering of hadrons and nuclei are substantially more complex due to the composite
nature of the colliding particles and a plethora of asymptotic final-state particles that are often
produced. Beyond asymptotic scattering amplitudes, the evolution of matter as a function of time
elapsed after the collision holds the key to yet-not-fully understood mechanisms of fragmentation,
hadronization, and thermalization in particle colliders and in early universe [23–28]. Unfortu-
nately, perturbative and non-perturbative tools, with the aid of classical computing, have had
limited success in providing a full first-principles description of scattering processes to date.

Alternatively, one can resort to Hamiltonian simulation, whose real-time nature is deemed
favorable for simulating scattering processes from first principles. On classical computers, Tensor-
Network methods have proven e�cient in simulating gauge theories in the Hamiltonian formal-
ism [29–31], including for scattering processes in simple models [32–36]. However, the exponential
growth of the Hilbert space as a function of system size, and the accumulation of unbounded en-
tanglement in high-energy processes, are likely to make classical Hamiltonian simulation of gauge
theories of the Standard Model infeasible. This motivates exploring the potential of simulating
these theories on quantum hardware [37–42]. After mapping degrees of freedom of the system of
interest to those of quantum platforms, time evolution can proceed in a digital or analog mode
or a hybrid of both. The digital mode, which is the focus of this work, builds the unitary repre-
senting the Hamiltonian evolution out of a universal set of gates. The analog mode engineers a
simulator Hamiltonian to mimic the target Hamiltonian, which is then evolved continuously. A
hybrid mode combines features of both for more flexibility and e�ciency. Digital [43–69], ana-
log [70–90], and hybrid [91–95] schemes have been developed and implemented in recent years for
increasingly more complex gauge theories. Most implementations, nonetheless, concern dynamics
after a quantum quench [96]. A quench process involves preparing the simulation in a simple
initial state and abruptly changing the Hamiltonian to the Hamiltonian of interest in order to
create non-equilibrium conditions. In order to simulate scattering processes, however, one needs
to initialize the quantum simulation in more complex states, such as particle wave packets.
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Jordan, Lee, Preskill, Science 336, 1130-1133 (2012).

See also progress in scattering in: Schuhmacher et al, arXiv: 2505.20387 [quant-ph], Chai et 
al, arXiv:2505.21240 [quant-ph], Chai et al, Quantum 9, 1638 (2025), Farrell et al, 
arXiv:2505.03111 [quant-ph], Zemlevskiy, arXiv:2411.02486 [quant-ph], 

Beside Jordan, Lee, Preskill, Science 336, 1130-1133 (2012), check out other hadronic wave-
packet creation in: Turco et al, arXiv:2305.07692 [quant-ph], Kreshchuk et al, arXiv:2310.13742 
[quant-ph], Farrell et al, arXiv:2401.08044 [quant-ph].
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a number of entangling gates that is polynomial in the system size, and uses a single ancilla qubit,
benefiting from recently developed algorithms based on singular-value decomposition of opera-
tors [54]. The quantum circuit that prepares a single wave packet is constructed for the case of the
Z2 LGT. For 6 fermionic sites (12+1 qubits), this circuit is executed on Quantinuum’s hardware,
System Model H1, a quantum computer based on trapped-ion technology. Both the algorithmic
and experimental fidelities are analyzed, and various sources of errors are discussed. We further
discuss observables that can be measured e�ciently in experiment to verify the accuracy of the
generated wave packet. While (controlled) approximations are made to achieve shallower circuits,
and a rather simple noise mitigation is applied based on symmetry considerations, high fidelities
are still achieved in this small demonstration. Hence, quantum simulation of hadron-hadron col-
lisions in lower-dimensional gauge theories may be within the reach of the current generation of
quantum hardware.

This paper is organized as follows. In Sec. IIA, we introduce the 1+1-dimensional LGTs coupled
to staggered fermions. We then specify an interacting creation-operator ansatz in such theories in
Sec. II B, and demonstrate its validity through a numerical study in the case of Z2 and U(1) LGTs
in Sec. II C. The state-preparation algorithm and the circuit design are detailed in Sec. III A, with
a focus on the case of Z2 LGT given its lower simulation cost. Section III B includes our results on
the creation of wave packets with the use of both numerical simulators and a quantum computer.
We end in Sec. IV with a summary and outlook. A number of appendices are provided to provide
further details on the ansatz validity, circuit performance, and quantum-emulator comparisons.
All data associated with numerical optimizations and circuit implementations are provided in
Supplemental Material.
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in Sec. II C. The state-preparation algorithm and the circuit design are detailed in Sec. III A, with
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Beside Jordan, Lee, Preskill, Science 336, 1130-1133 (2012), check out other recent interesting digital algorithms for 
hadronic wave-packet creation in: Turco, Quinta, Seixas, and Omar, arXiv:2305.07692 [quant-ph], Kreshchuk, Vary, Love, 
arXiv:2310.13742 [quant-ph], Chai, Crippa, Jansen, Kühn, Pascuzzi, Tacchino, and Tavernelli, arXiv:2312.02272 [quant-ph], 
Farrell, Illa, Ciavarella, and Savage, arXiv:2401.08044 [quant-ph].
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ZD, Hsieh, and Kadam, Quantum 8, 1520 (2024) and arXiv:2505.20408 [quant-ph].
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FIG. 3. The degrees of freedom in the Z2 LGT are shown in (a). A lattice site n (taken to be even in this
figure) and its neighboring lattice site n + 1 are denoted by circles, and the gauge link connecting them
is denoted by a line. A fermion (antifermion) at n (n + 1) is represented by an occupied (unoccupied)
lattice site, which is shown here by 1 (0) in a green circle, and the absence of a fermion (antifermion) at
n (n + 1) is shown by 0 (1) in a red circle. The corresponding fermion (antifermion) mass term in Eq. (1)
is written above the lattice site n (n + 1). The spin- 12 hardcore boson residing on the link is indicated by
a blue arrow along with its electric-field Hamiltonian term given in Eq. (1). For ✏ < 0 which is used in
the simulations of this work and assumed in the figure, the down spin (green link) has higher electric-field
energy than the up spin (red link). The action of the operator ⇠

†
n�̃

x
n⇠n+1, which is a part of the fermion

hopping Hamiltonian in Eq. (1) for a Z2 LGT, is depicted in (b). The upper (lower) dotted box in (c)
shows configurations that satisfy the Gauss’s law given in Eq. (2) for the case of the Z2 LGT at an even
(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠

†
n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
N�1

n=0
⇠
†
n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have

Gauge bosons

Fermions
Hamiltonian:

6

such that Q̄n = 1 (�1) when a fermion (antifermion) is present at n, and Q̄n = 0 otherwise.
The system’s Hamiltonian H is given by

aH =
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where mf � 0 is the fermion mass and ✏ is the strength of the electric-field Hamiltonian. Here,
⇠Na is identified with ⇠0 due to the PBC. From here onward, we set a = 1, hence quantities are
expressed in units of lattice spacing. The PBC yields lattice translational invariance and allows
for specifying well-defined momentum quantum numbers.

The Gauss’s law operator in Eq. (3) commutes with the Hamiltonian in Eq. (5). The
Hamiltonian also commutes with a global operator Q given by the total fermionic occupation
in the lattice:

Q =
N�1X

n=0

⇠
†
n⇠n. (6)

Following our previous work [107], we restrict this study to the subspace of the Hilbert space
spanned by states with Q = NP . A special state in this subspace, called the strong-coupling
vacuum (SCV), is the ground state of the Hamiltonian in the limit of mf , ✏� 1, and is given by

|⌦i
SCV

= |0, 1, · · · , 0, 1i ⌦ |s, s, · · · , s, si . (7)

Here, s = " (#) for ✏ < 0 (✏ > 0).
The gauge degrees of freedom in (1+1)D LGTs are not dynamical in nature, and are often

rotated away when open boundary condition (OBC) are in place. In this case, only the fermionic-
matter degrees of freedom survive but at the expense of yielding a non-local Hamiltonian. Such
an elimination of the gauge bosons is achieved by transforming the fermionic fields as

⇠n !  n =

 
n�1Y

i=0

�̃
x
i

!
⇠n, (8a)

⇠
†
n !  

†
n =

 
n�1Y

i=0

�̃
x
i

!
⇠
†
n. (8b)

With the PBC, the gauge degrees of freedom cannot be completely rotated away. However, they
are reduced to a single spin degree of freedom on one link, which can be seen by examining the
Hamiltonian in Eq. (5) under the field re-definitions in Eq. (8):
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Here,
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n , (10)

and the second term in Eq. (9) resulted from the PBCs. The electric-field operator e⌃z
n is evaluated

using the Gauss’s law in Eq. (2):

e⌃z
n
:= �̃

z
n = e

i⇡
P

n

m=0 Q̄m �̃
z
N�1, (11)

7

FIG. 3. The degrees of freedom in the Z2 LGT are shown in (a). A lattice site n (taken to be even in this
figure) and its neighboring lattice site n + 1 are denoted by circles, and the gauge link connecting them
is denoted by a line. A fermion (antifermion) at n (n + 1) is represented by an occupied (unoccupied)
lattice site, which is shown here by 1 (0) in a green circle, and the absence of a fermion (antifermion) at
n (n + 1) is shown by 0 (1) in a red circle. The corresponding fermion (antifermion) mass term in Eq. (1)
is written above the lattice site n (n + 1). The spin- 12 hardcore boson residing on the link is indicated by
a blue arrow along with its electric-field Hamiltonian term given in Eq. (1). For ✏ < 0 which is used in
the simulations of this work and assumed in the figure, the down spin (green link) has higher electric-field
energy than the up spin (red link). The action of the operator ⇠

†
n�̃

x
n⇠n+1, which is a part of the fermion

hopping Hamiltonian in Eq. (1) for a Z2 LGT, is depicted in (b). The upper (lower) dotted box in (c)
shows configurations that satisfy the Gauss’s law given in Eq. (2) for the case of the Z2 LGT at an even
(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠

†
n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
N�1

n=0
⇠
†
n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have



OUR TESTING GROUND: 
 LATTICE GAUGE THEORY COUPLED TO FERMIONS IN 1+1 DZ2

7

FIG. 3. The degrees of freedom in the Z2 LGT are shown in (a). A lattice site n (taken to be even in this
figure) and its neighboring lattice site n + 1 are denoted by circles, and the gauge link connecting them
is denoted by a line. A fermion (antifermion) at n (n + 1) is represented by an occupied (unoccupied)
lattice site, which is shown here by 1 (0) in a green circle, and the absence of a fermion (antifermion) at
n (n + 1) is shown by 0 (1) in a red circle. The corresponding fermion (antifermion) mass term in Eq. (1)
is written above the lattice site n (n + 1). The spin- 12 hardcore boson residing on the link is indicated by
a blue arrow along with its electric-field Hamiltonian term given in Eq. (1). For ✏ < 0 which is used in
the simulations of this work and assumed in the figure, the down spin (green link) has higher electric-field
energy than the up spin (red link). The action of the operator ⇠

†
n�̃

x
n⇠n+1, which is a part of the fermion

hopping Hamiltonian in Eq. (1) for a Z2 LGT, is depicted in (b). The upper (lower) dotted box in (c)
shows configurations that satisfy the Gauss’s law given in Eq. (2) for the case of the Z2 LGT at an even
(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠

†
n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
N�1

n=0
⇠
†
n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have

Gauge bosons

Fermions
Hamiltonian:

6

such that Q̄n = 1 (�1) when a fermion (antifermion) is present at n, and Q̄n = 0 otherwise.
The system’s Hamiltonian H is given by

aH =
1

2

X

n2�

⇣
⇠
†
n�̃

x
n⇠n+a +H.c.

⌘
+ amf

X

n2�
(�1)n/a⇠†n⇠n + a✏

X

n2�
�̃
z
n, (5)

where mf � 0 is the fermion mass and ✏ is the strength of the electric-field Hamiltonian. Here,
⇠Na is identified with ⇠0 due to the PBC. From here onward, we set a = 1, hence quantities are
expressed in units of lattice spacing. The PBC yields lattice translational invariance and allows
for specifying well-defined momentum quantum numbers.

The Gauss’s law operator in Eq. (3) commutes with the Hamiltonian in Eq. (5). The
Hamiltonian also commutes with a global operator Q given by the total fermionic occupation
in the lattice:

Q =
N�1X

n=0

⇠
†
n⇠n. (6)

Following our previous work [107], we restrict this study to the subspace of the Hilbert space
spanned by states with Q = NP . A special state in this subspace, called the strong-coupling
vacuum (SCV), is the ground state of the Hamiltonian in the limit of mf , ✏� 1, and is given by

|⌦i
SCV

= |0, 1, · · · , 0, 1i ⌦ |s, s, · · · , s, si . (7)

Here, s = " (#) for ✏ < 0 (✏ > 0).
The gauge degrees of freedom in (1+1)D LGTs are not dynamical in nature, and are often

rotated away when open boundary condition (OBC) are in place. In this case, only the fermionic-
matter degrees of freedom survive but at the expense of yielding a non-local Hamiltonian. Such
an elimination of the gauge bosons is achieved by transforming the fermionic fields as

⇠n !  n =

 
n�1Y

i=0

�̃
x
i

!
⇠n, (8a)

⇠
†
n !  

†
n =

 
n�1Y

i=0

�̃
x
i

!
⇠
†
n. (8b)

With the PBC, the gauge degrees of freedom cannot be completely rotated away. However, they
are reduced to a single spin degree of freedom on one link, which can be seen by examining the
Hamiltonian in Eq. (5) under the field re-definitions in Eq. (8):

H =
1

2

N�2X

n=0

⇣
 
†
n n+1 +H.c.

⌘
+

1

2

⇣
 
†
N�1

e⌃x
 0 +H.c.

⌘
+mf

X

n2�
(�1)n †

n n + ✏

X

n2�

e⌃z
n. (9)

Here,

e⌃x :=
N�1Y

i=0

�̃
x
n , (10)

and the second term in Eq. (9) resulted from the PBCs. The electric-field operator e⌃z
n is evaluated

using the Gauss’s law in Eq. (2):

e⌃z
n
:= �̃

z
n = e

i⇡
P

n

m=0 Q̄m �̃
z
N�1, (11)

6

II. AN ANSATZ FOR MESONIC WAVE PACKETS IN GAUGE THEORIES IN 1+1 D

The goal of this work is to demonstrate a suitable wave-packet preparation method for gauge
theories that exhibit confined excitations. To keep the presentation compact, we focus on the case
of Abelian LGTs in 1+1 D, and further specialize our study to the Z2 and U(1) LGTs coupled
to one flavor of staggered fermions. We will later comment on the modifications required in the
construction of the ansatz to make it suitable for non-Abelian groups such as in SU(2) and SU(3)
LGTs. This section briefly introduces the LGTs of this work, presents details of our mesonic
creation-operator ansatz, and demonstrates the validity of the proposed operator upon numerical
optimizations in small systems. This ansatz will form the basis of our quantum-circuit analysis
and implementation in the next section.

A. Models: Z2 and U(1) LGTs coupled to fermions in 1+1 D

The Hamiltonian of an Abelian LGT coupled to one flavor of staggered fermions in 1+1 D can
be written in the generic form:

H =
1

2

X

n2�

⇣
⇠
†

nUn⇠n+a + H.c.
⌘

+ amf

X

n2�

(�1)n/a⇠†n⇠n + a✏

X

n2�

f(En). (1)

Here, � =
�
0, a, · · · , (N � 1)a

 
is the set of lattice-site coordinates. a is the lattice spacing and N

denotes the number of staggered sites (and is hence even). ⇠†n (⇠n) stands for the fermionic creation
(annihilation) operator at site n. In the staggered formulation, first developed in Refs. [119, 120],
fermions (antifermions) live on the even (odd) sites of the lattice while the links host the gauge
bosons. Un and En are non-commuting conjugate operators representing the gauge-link and the
electric-field operators on the link emanating from site n. mf � 0 is the fermion mass and ✏ is the
strength of the electric-field Hamiltonian, expressed with the function f(En) for generality. For
example, in the case of the Z2 LGT, f(En) = En while in the U(1) case, f(En) = E

2
n. For the rest

of this paper, we set a = 1. The continuum limit is, therefore, realized in the limit of mf , ✏ ! 0.
Similarly, the specific form of the gauge-link and electric-field operators and their action on

their respective local bosonic Hilbert space depend on the gauge group. In the case of the Z2

LGT, the local Hilbert space in the electric-field basis is spanned by |si with s =", #, the two
spin projections of a spin-1

2
hardcore boson along the z axis, with U = |"i h#| + |#i h"| ⌘ �̃

x and
E = |"i h"| � |#i h#| ⌘ �̃

z. For the U(1) LGT, the local Hilbert space in the electric field basis is
the infinite-dimensional Hilbert space of a quantum rotor |`i with ` 2 Z, with U =

P
`
|`+ 1i h`|

and E =
P

`
` |`i h`|. For practical purposes, the ` quantum number is cut o↵ at a finite value

⇤ > 0, i.e., �⇤  `  ⇤, up to an uncertainty that can be systematically controlled. The degrees
of freedom and the action of the Hamiltonian terms in Eq. (1) are illustrated in Figs. 3 (a) and
(b) for the case of the Z2 LGT.

Only a portion of the Hilbert space spanned by the fermionic and bosonic basis states is phys-
ically relevant. This is because physical states of the theory must satisfy local Gauss’s laws,

Gn | physi = g | physi 8n, (2)

with a specific value of the eigenvalue g. For the Z2 LGT, Gn = EnEn�1e
�i⇡(⇠

†

n⇠n�
1�(�1)n

2 ) with

g = 1, while for the U(1) LGT, Gn = En � En�1 + ⇠
†
n⇠n �

1�(�1)
n

2
with g = 0. The Gauss’s law

satisfying configurations are shown for the case of the Z2 LGT in Fig. 3(c).
We will later build the interacting vacuum out of the strong-coupling vacuum, |⌦i

0
, which is

the ground state of Eq. (1) in the limit of ✏ � 1. The fermion hopping is suppressed in the strong-
coupling limit, and the lowest-energy configuration corresponds to the lowest-energy configuration
of the electric field on all links with no fermion or antifermion present. For the Z2 LGT, this
implies all link spins pointing up (down) in the z basis for ✏ < 0 (✏ > 0), while for the U(1)

Gauss’s law: with
<latexit sha1_base64="SwyHf4tTXrMufaYTYbVEaWq8KpA=">AAACW3icdVFBb9MwFHYyYKUM6IY4cYmokMahVTwh4II0wQGOQ6LbpDqNHOclteY4kf2CViz/yZ3gwF9BuF0PsMEnWfr8fe/J730uOiUtpumPKN65c/fe7uD+8MHew0ePR/sHp7btjYCZaFVrzgtuQUkNM5So4LwzwJtCwVlx8WHtn30FY2Wrv+Cqg6zhtZaVFByDlI/Mx1y/YyhVCY5ZWTfcLxwrKvfN+//IudMT6mHhJOskU1DhnF3KXC9YyesazOYyYZXhwtHJ4YS+XGjvjjwzsl5i5vPROJ2mGyS3Cd2SMdniJB9dsbIVfQMaheLWzmnaYea4QSkU+CHrLXRcXPAa5oFq3oDN3CYbn7wISplUrQlHY7JR/+xwvLF21RShsuG4tDe9tfgvb95j9TZzUnc9ghbXD1W9SrBN1kEnpTQgUK0C4cLIMGsiljyEguE7hiEEenPl2+T0aEpfT+nnV+Pj99s4BuQZeU4OCSVvyDH5RE7IjAjynfyKdqNB9DPeiYfx3nVpHG17npC/ED/9DZg9uAc=</latexit>
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h
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FIG. 3. The degrees of freedom in the Z2 LGT are shown in (a). A lattice site n (taken to be even in this
figure) and its neighboring lattice site n + 1 are denoted by circles, and the gauge link connecting them
is denoted by a line. A fermion (antifermion) at n (n + 1) is represented by an occupied (unoccupied)
lattice site, which is shown here by 1 (0) in a green circle, and the absence of a fermion (antifermion) at
n (n + 1) is shown by 0 (1) in a red circle. The corresponding fermion (antifermion) mass term in Eq. (1)
is written above the lattice site n (n + 1). The spin- 12 hardcore boson residing on the link is indicated by
a blue arrow along with its electric-field Hamiltonian term given in Eq. (1). For ✏ < 0 which is used in
the simulations of this work and assumed in the figure, the down spin (green link) has higher electric-field
energy than the up spin (red link). The action of the operator ⇠

†
n�̃

x
n⇠n+1, which is a part of the fermion

hopping Hamiltonian in Eq. (1) for a Z2 LGT, is depicted in (b). The upper (lower) dotted box in (c)
shows configurations that satisfy the Gauss’s law given in Eq. (2) for the case of the Z2 LGT at an even
(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠

†
n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
N�1

n=0
⇠
†
n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have
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fermion hopping term between m and n if the meson does not contain the remnant gauge link,
otherwise, the fermion hopping term includes an additional e⌃x operator defined in Eq. (10) (whose
action reduces to �̃

x
N�1

on the bosonic Hilbert space in the MGF). A summary of Mm,n definitions
in both EGF and MGF is given in Table I, along with their mappings to the qubit space in the
MGF after the Jordan-Wigner transformations in Eq. (15).

In this confined theory, it is expected that the operators which have a support over an extent
much greater than the confinement scale will be suppressed exponentially. Motivated by this
intuition, we introduce an ansatz for b

†
k
that can be improved order by order, and takes the

following form:

b
†
k
=

1

N

N�1X

j=0

⌘
(j)

k
. (20)

Here, N is a normalization factor that will be discussed later. The superscript j denotes the
j
th order at which only the bare-meson creation operators with length less than or equal to j

contribute. The expression for ⌘(j)
k

is given by

⌘
(j)

k
=

X

m,n2�(j)
0

e
�↵

(j),k
0 |m�n|2

C
k

m,nMm,n +
X

m,n2�(j)
1

e
�↵

(j),k
1 |m�n|2

C
k

m,nMm,n, (21)

where �(j)

i
= {m,n 2 � || |m�n| = j and m mod 2 = i}. Here, |m� n| is taken to be the shortest

distance between m and n on a periodic lattice. C
k

m,n are kinematical factors given by

C
k

m,n =
X

p,q2e�

�k,p+qC (p,m)D(q, n), (22)

with the momentum sums in p and q running over the Brillouin zone of the staggered lattice, e�,
and

C (p,m) =

s
mf + !p

2⇡!p

e
ipm (Pm,0 + vpPm,1) , (23a)

D(q, n) =

s
mf + !q

2⇡!q

e
iqn (�vqPn,0 + Pn,1) , (23b)

which are obtained by solving for the plane-wave solutions in the free fermion theory on a staggered

lattice [50]. Here, !k =
q
m

2

f
+ sin2(k) and vk = sin(k)

mf+!k

. Moreover, Pn,0(1) =
1+(�1)

n+0(1)

2
is the

projection operator to the even (odd) staggered sites. One can rewrite Eq. (21) using Eqs. (22)
and (23) in terms of

P
m,n2� C (p,m)D(q, n)Mm,n. The ansatz is, therefore, built in such a way to

impart momentum p and q to the m and n end of the bare-meson creation operator Mm,n. The
Kronecker delta �k,p+q then ensures that the total momentum of the composite object is the desired

momentum k. Finally, the exponential factors e
�↵

(j),k
0/1 |m�n|2

control the strength of contribution of
each bare-meson creation operator according to their lengths, motivated by the discussions above.

At any given order j, the operator b†
k
can be approximated by b

(j)†
k

, which using Eqs. (20)-(23)
has the form:

b
(j)†
k

=
jX

j0=0

X

m,n2�(j0)

C
(j

0
),k

m,n Mm,n, (24)

Γ( j)
0 Γ( j)

1

n = 0 1 2 3 4 5
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Bare meson 
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where �(j) = �(j)
0

[ �(j)
1

and

C
(j),k

m,n =
1

N
e
�↵

(j),k
i

|m�n|2
C

k

m,n for m,n 2 �(j)
i

. (25)

We choose the normalization constant N at each order j such that
P

m,n2�(j) |C
(j),k

m,n |
2 = 1.

For a given k, there are two parameters to be optimized at each order j, ↵(j),k

0
and ↵

(j),k

1
. Given

the natural hierarchy of operators based on their lengths, the order-by-order optimization scheme

spares one from optimizing all the ↵(j),k

0/1
parameters simultaneously. One can start the optimization

process with j = 1 that restricts the ansatz to length-1 bare-meson creation operators.3 A

variational minimization algorithm can then be run for parameters ↵
(1),k

0/1
to obtain ↵

(1),k

0/1

⇤
that

minimizes the energy of the state b
(1)†
k

|⌦i. To improve the overlaps with the true lowest-energy
state with a momentum k, one can then choose to go to the next order in j and repeat the variational

minimization process on ↵
(1),k

0/1
and ↵

(2),k

0/1
. Nonetheless, the parameter space can be restricted to

a narrow region around the optimized ↵
(1),k

0/1

⇤
from the previous order of optimization to ease the

next optimization. The process is iterated for progressively larger j values, while restricting the

parameter space for ↵(`),k

0/1
with ` < j to a narrow range near the already optimized values ↵(`),k

0/1

⇤
.

One can then expect to obtain the form of b†
k
that is very close to the true momentum creation

operator of the interacting theory, which excites the |ki state when acted on the interacting vacuum
|⌦i.

Once the ansatzes for operators b†
k
are optimized to reach a target accuracy, the list of optimized

↵
(`),k

0/1

⇤
can be used in Eqs. (18) and (19) to define an operator b†

 
. This operator creates the desired

wave-packet state | i from the interacting vacuum:

| i =

0

@
X

k2e�

 (k)b†
k

1

A |⌦i ⌘ b
†
 
|⌦i . (26)

Furthermore, using the ansatzes for b†
k
from Eq. (20) and the Jordan-Wigner transformed definitions

of Mm,n, denoted by fMm,n in Table I, the operator b†
 
can be approximated by the operator b(j)†

 

built of b(j)†
k

operators:

b
(j)†
 

=
jX

j0=0

X

m,n2�(j0)
C

(j
0
)

m,n
fMm,n, (27)

where

C
(j)

m,n =
X

k2�̃

 (k)C(j),k

m,n . (28)

Thus, the coe�cients C
(j)

m,n depend on the optimized parameters ↵
(`),k

0/1

⇤
, the kinematic factors C

and D defined in Eqs. (23), and the wave-packet profile  (k). This form of b(j)†
 

⇡ b
†
 
will be used

in Sec. IV for preparing the initial scattering state.

3 Note that, ↵(j=0),k
0/1 do not enter the optimization process since the ansatz does not depend on them when m = n.
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FIG. 11. The parameter scan for the 26-site (1+1)D Z2 LGT demonstrates the performance of the ansatz
at a large system size. The infidelity 1�F is shown for non-negative momenta in the Brillouin zone in each
columns (on a logarithmic scale). Results using the j

th-order ansatz is shown in the j
th row. In general,

the ansatz performs better in the strong-coupling regime, which agrees with the results in a smaller system
in Sec. II C. F > 0.99 is achieved at the 3rd order except for |k = 6⇡

13 i with mf = 0.1, 0.3 and ✏ = �0.1. At
these couplings, there are other excited states (above the single-particle state) not belonging to the k = 6⇡

13
sector but with energies very similar to that of |k = 6⇡

13 i, reducing the e↵ectiveness of the MPS ansatz to
discern excited states reliably. The MPS states with these coupling are thus less reliable for the fidelity test,
and the corresponding parameter range is hashed in the figure.

successively using the same DMRG process upon constraining the output to be orthogonal to the
ground state and all other excited states with lower energy, if any. The MPS states are further
constrained such that the total fermionic excitation remains in the Q = NP sector, and thus the
gauge symmetry is guaranteed on a periodic lattice. All DMRG calculations in this work are carried
out using the ITensors library [205].

The DMRG calculations for the ground state and the 13 excited states with the lowest energy in
each momentum sector are performed for a range of (mf , ✏) values. In each DMRG optimization,
the maximum allowed bond dimension is set to 600, and the Schmidt coe�cients under 10�12 are
truncated. The number of sweeps is set to O(100) to ensure convergence in energy. To further
verify the quality of an output DMRG state | i

MPS
, the variance of energy is calculated:

Var := MPSh |H
2
| iMPS � (MPSh |H| iMPS)

2

(MPSh |H| iMPS)
2

. (A1)

If | i
MPS

is exactly an eigenstate of H, the variance should be zero. For all pairs (mf , ✏), the
DMRG parameters listed above can achieve Var = O(10�10).

Similar to Sec. II C, the fidelity between the order-by-order ansatz states |ki
op

and the DMRG
states |ki

MPS
, now assumed to approximate the exact eigenstates with very high accuracy, is

presented for each k value belonging to the Brillouin zone. However, one caveat is that the DMRG
momentum states |ki

MPS
for k 6= 0 are not accessible due to the energy degeneracy between
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FIG. 2. Shown is the circuit used in this work for simulating scattering in a (1+1)D Z2 LGT in the MGF.
The circuit acts on N + 1 system qubits representing the lattice associated with N staggered sites, and
one or more ancilla qubits denoted by a1,2,t. The system qubits are initialized in the SCV state |⌦iSCV, as
shown by the first vertical dotted line, while each ancilla starts in the |0i state. The circuit consists of three
subcircuit modules. The vertical dotted lines indicate the state of the system qubits after the application
of each module. The first module prepares the ground state, |⌦i, of the Hamiltonian in Eq. (16) using the
circuit block QGS with parameters ✓

h⇤ and ✓
m⇤. The second module prepares the initial scattering state

composed of two well-separated input wave packets, resulting in the state | 1, 2i. It requires at least one
ancilla qubit to prepare the initial state, shown here with a black solid line. Alternatively, it can also be
applied using an extra ancilla qubits, shown with a dotted black line, to improve the accuracy of preparing
the target state, as explained in the text. Finally, the last module, QTrott, performs the unitary time
evolution U(t) = e

�itH under the Hamiltonian H in Eq. (16). The circuit components in red are to perform
a Hadamard test to compute the return probability of the initial state as a function of time; they can be
omitted when measuring only the expectation values of diagonal operators. The Hadamard test requires an
additional ancilla and a controlled application of QTrott with control on the ancilla. Here, H denotes the
Hadamard gate and R

x(✓) := e
� i

2 ✓�
x
. To compute the return probability, as shown in Appendix D, one

needs to separately implement either the R
x(⇡4 ) or the H gate as the last operation on the at ancilla, which

is denoted in the circuit by R
x(⇡4 )/H. Details of each module and their constituent circuits are discussed in

Sec. III.

For the remainder of the main text, to reduce the clutter, we drop the superscript (j) from
quantities, since the order at which they are assumed will be clear from the context.

III. QUANTUM ALGORITHM AND CIRCUIT DESIGN

In this section, we use the Hamiltonian and the ansatz for hadron states defined in Sec. II to
lay out a digital quantum algorithm for performing multi-hadron scattering. We choose to work
with the MGF for a more e�cient circuit implementation.

The overall protocol used in this work starts from the SCV state |⌦i
SCV

in Eq. (14), which is
one of the computational basis states. The protocol is composed of three circuit modules:

1. QGS prepares the interacting vacuum |⌦i from |⌦i
SCV

.

2. QInit constructs the initial scattering state comprised of well-separated wave packets.

3. QTrott performs the Trotterized time evolution under the Hamiltonian in Eq. (16).

These three modules are depicted in Fig. 2, with each module separated by a dotted line, indicating
the corresponding quantum state prepared at the end of each stage. Each circuit module will be

OUR QUANTUM CIRCUIT FOR HADRON SCATTERING
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FIG. 3. Shown is the circuit QGS that prepares the interacting ground state |⌦i of the Hamiltonian in
Eq. (16). This circuit is parameterized by two parameters, ✓h and ✓

m. The circuit QGS acts on the strong-
coupling vacuum |⌦iSCV, which is given by alternating |0i and |1i states on qubits that represent fermion
lattice sites, labeled here with a subscript fi for the i

th site, and |0i state for the qubit that represents
the bosonic link in the MGF, denoted here by the subscript bN�1. The two-qubit gate are defined as

R
xx(✓) := e

� i
2 ✓ �

x
fi1

�
x
fi2 and R

yy(✓) := e
� i

2 ✓ �
y
fi1

�
y
fi2 , where i1 and i2 denote fermion lattice sites each gate

involves. The three-qubit gates R
xx̃x(✓) and R

yx̃y(✓) are defined in the similar manner with the overhead
tilde indicating the qubit operation on the bosonic link qubit bN�1, and ↵N is defined below Eq. (17).
Finally, the parameters ✓

h⇤ and ✓
m⇤ are obtained using a VQE method that minimize the energy of the

state prepared by the circuit with respect to the Hamiltonian in Eq. (16).

discussed in the following. Computing observables may require its own circuit module, which we
will partly discuss in Sec. IVD and Appendix D.

Before proceeding, we emphasize that our procedure constitutes a hybrid classical-quantum
algorithm, where both the ground state in module 1 and the k-momentum eigenstates required in
module 2 are prepared using the VQE method. In this work, the VQE results for the ground
state and k-momentum eigenstates are verified only through classical evaluation, in order to
save quantum-computing resources. However, in theory, it is possible to implement both VQE
calculations on a quantum computer provided that the expectation value of the Hamiltonian
operator can be determined with su�cient accuracy from the hardware results (which generally
require a large number of measurements).

A. QGS: Preparing the interacting vacuum

The circuit for QGS is similar to the one given in Ref. [107] (which was inspired by a VQE
ground-state circuit in the case of a (2+1)D Z2 LGT in Ref. [131]). The strategy is to prepare the
ground state via iterative evolution of an initial state using the terms in the Hamiltonian. Thus,
QGS is parameterized by ✓

h
x , ✓

m
x , and ✓

✏
x, which are related to H

h, Hm, and H
✏ in Eqs. (17a)- (17c),

respectively. The form of QGS is given by

QGS =
NGSY

x=1

 
Y

n2�
e
� i

2 ✓
h
xH

h

n,n+1

! 
Y

n2�
e
� i

2 ✓
m
x H

m
n

! 
Y

n2�
e
� i

2 ✓
✏
xH

✏
n

!
, (30)
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Lumia et al, PRX Quantum 
3, 020320 (2022).

FIRST ELEMENT: INTERACTING VACUUM PREPARATION

A variational quantum circuit:
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FIG. 12. (a) Shown is the circuit decomposition of QWP( ) that acts on the system and the ancilla qubits
as denoted in Fig. 4. Each inner light-blue circuit block represents a Trotter step for the Trotterized angle
⇡/2 in Eq. (34). The dots and the green circuit block within each light-blue block denote that each term
after the Trotter expansion is of the form e

�i✓⇥m,n for m,n 2 �, where ✓ depends on the Trotter order and
Trotter step and ⇥m,n is defined in Eq. (B1). (b) Shown is the circuit for e

�i✓⇥m,n with m 6= n following
Eq. (B3). Explicit circuits for the unitary operation Um,n (pink) and the diagonal operation e

�i✓Dm,n (light
green) are presented in Fig. 13 for the choice of j = 1 in Eq. (20), which we have used in this work. Circuits
for general j can be constructed similarly.

|ki
MPS

and |�ki
MPS

. The momentum quantum number is not specified during the DMRG sweeps.
We assume the output DMRG states with the same energy, labeled | 1iMPS

and | 2iMPS
, are

approximately a superposition of the actual momentum eigenstate |±ki
MPS

:
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2

��2 ⇡ 1. Since the orthogonality between the degenerate states holds
for the DMRG algorithm (up to numerical precision), i.e., MPSh 1| 2iMPS = MPSh k|� kiMPS = 0,

it is easily seen that
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��2 ⇡ 1. Furthermore, since the ansatz is built with
specified momentum, ophk|� kiMPS = 0. As a result, one can still access the fidelity of |ki
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The fidelity of the ansatz scanning over di↵erent mf and ✏ values is demonstrated in Fig. 11.
Similar to the parameter scan on a smaller system in Sec. II C, only non-negative momenta in
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the target state, as explained in the text. Finally, the last module, QTrott, performs the unitary time
evolution U(t) = e

�itH under the Hamiltonian H in Eq. (16). The circuit components in red are to perform
a Hadamard test to compute the return probability of the initial state as a function of time; they can be
omitted when measuring only the expectation values of diagonal operators. The Hadamard test requires an
additional ancilla and a controlled application of QTrott with control on the ancilla. Here, H denotes the
Hadamard gate and R

x(✓) := e
� i

2 ✓�
x
. To compute the return probability, as shown in Appendix D, one

needs to separately implement either the R
x(⇡4 ) or the H gate as the last operation on the at ancilla, which

is denoted in the circuit by R
x(⇡4 )/H. Details of each module and their constituent circuits are discussed in

Sec. III.

For the remainder of the main text, to reduce the clutter, we drop the superscript (j) from
quantities, since the order at which they are assumed will be clear from the context.

III. QUANTUM ALGORITHM AND CIRCUIT DESIGN

In this section, we use the Hamiltonian and the ansatz for hadron states defined in Sec. II to
lay out a digital quantum algorithm for performing multi-hadron scattering. We choose to work
with the MGF for a more e�cient circuit implementation.

The overall protocol used in this work starts from the SCV state |⌦i
SCV

in Eq. (14), which is
one of the computational basis states. The protocol is composed of three circuit modules:

1. QGS prepares the interacting vacuum |⌦i from |⌦i
SCV

.

2. QInit constructs the initial scattering state comprised of well-separated wave packets.

3. QTrott performs the Trotterized time evolution under the Hamiltonian in Eq. (16).

These three modules are depicted in Fig. 2, with each module separated by a dotted line, indicating
the corresponding quantum state prepared at the end of each stage. Each circuit module will be
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SECOND ELEMENT: WAVE-PACKETS PREPARATION

17

B. QInit: Preparing the initial scattering state

The second module, QInit( 1, 2), prepares the initial scattering state of two wave packets,

| 1, 2i. Each wave packet is defined in Eq. (18) in terms of non-unitary operators b
†
k
s. The

wave packets thus need to be created by implementing the b
†
k
operators in an extended Hilbert

space using one or two ancilla qubits, as shown in Fig. 4(a) and (b), respectively. Here, QWP( i)
creates a single wave packet state | ii using an ancilla qubit that is initiated in |0i. The method in
Fig. 4(a) uses only one ancilla qubit for both QWP( 1) and QWP( 2), with a �

x operator acting on
the ancilla in between the two circuits. In Fig. 4(b), on the other hand, each QWP uses a di↵erent
ancilla qubit. Compared to the latter, the former method uses fewer quantum resources but at a
cost of lower accuracy of achieving the target state, as will be discussed below.

The circuit for QWP is based on that in Ref. [75] for the momentum creation operators b
†
k
in

a non-interacting scalar field theory, in which case b
†
k
’s exact expressions are known. The method

relies on two properties of b†
k
: the operator obeys

h
bk, b

†
k0

i
= �k,k0 , and bk |⌦i = 0. It is expected

that the b
†
k
operators in the interacting theory, obtained via the ansatz in Eq. (20), obey these

relations only approximately. Then from Eq. (26), b |⌦i ⇡ 0 and [b , b
†
 
] ⇡ 1 for a wavefunction

profile  (k) that is normalized as ( | ) = 1, where

( 2| 1) :=
X

k2e�

 ⇤
2(k) 1(k). (32)

With this, one can introduce an ancilla qubit, a, and define the following Hermitian operator:

⇥ := b
†
 
⌦ |1aih0a|+ b ⌦ |0aih1a| (33)

such that

e
�i

⇡

2⇥ |⌦i ⌦ |0ai = �i | i ⌦ |1ai . (34)

The circuit block QWP( 1) in Fig. 4 implements Eq. (34) for the wave-packet profile  1(k).
The circuit acts upon qubit a1 initialized in |0a1i, and on the system qubits holding the interacting
vacuum |⌦i. Recall that |⌦i is prepared by QGS(✓h⇤, ✓m⇤) in the previous step. Furthermore, The
unitary operator e

�i
⇡

2⇥ is implemented via a Trotter expansion, where the terms constituting
⇥ are exponentiated separately a number of times with the angle ⇡/2 divided into a number
of Trotter steps ñt. Design and implementation of QWP is presented in our earlier work [107],
although within the EGF of the Z2 LGT. The methods used there can still be directly translated
to the MGF, as summarized in Appendix B. We have restricted our discussion to the case of a j = 1
order ansatz, and using a second-order product formula with one Trotter step only. In general,
preparing a single wave packet at order j (once the ansatz optimization is done classically or via
VQE) requires [4(j2 + 9j + 1)NP + 2j2 + 2j]⇥ 2ñt CNOT gates for an N -site theory.

After preparing the first wave packet | 1i in the initial scattering state, the remaining part of
the second module is achieved by applying the second QWP either using the same ancilla, following
the action of �x

a1
, as shown in Fig. 4(a), or by using a second ancilla, a2, initiated in |0a2i, as shown

in Fig. 4(b). In both cases, the state becomes �i | 1i ⌦ |0a0i with |0a0i being the corresponding
ancilla qubit. The second wave packet  2 can then be prepared by applying QWP ( 2) on the state
| 1i ⌦ |0a0i, provided that the overlap between two wave packets is negligible, i.e., ( 2| 1) ⇡ 0, a

Needs two similar modules, for each 
wave packet, of the form:

Creates two 
separated hadron 

wave packets
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FIG. 5. (a) Shown is the Trotterized time-evolution module QTrott from Fig. 2, in terms of its constituents
according to Eq. (37). The circuit blocks denote one Trotter step and the dots inside the circuit indicate

repeated application of this structure for nt Trotter step. Circuits for e�
i
2H

h
�t and e

� i
2H

m
�t can be obtained

from Fig. 3 as discussed in the text, and the circuit for e
�i✏H

✏
�t is given in (b). The qubit labels for both

(a) and (b), and the single-qubit gate R
z have been defined in the caption of Fig. 3. The dotted rows in (b)

indicate similar circuit structure for qubits from f2 to fN�3. The filled (unfilled) CNOT control indicates
that the target �̃

x gate on the boson-link qubit is applied if the control even (odd) matter-site qubit is in
|1i (|0i) implying a presence of fermion (anti-fermion); the R

z rotation that follows this operation adds the
appropriate phase to the state. A detailed explanation of its structure is given in the text.

We use the second-order Trotter product formula to approximate U(t), with �t as the Trotter
time step:

U(t) ⇡
ntY

j=1

⇣
e
� i

2 �tH
h

e
� i

2 �tH
m

e
�i�tH

✏

e
� i

2 �tH
m

e
� i

2 �tH
h
⌘
, (37)

where t = nt �t, and H
h, Hm and H

✏ are defined in Eq. (17). Circuits for terms containing H
m

and H
✏ can be realized without further approximation. Terms with H

h, on the other hand, are
implemented by expanding them using the first-order Trotter product formula to separate the terms

containing �x operators from the terms containing �y operators. The circuit blocks for e�
i

2 �tH
h

and

e
� i

2 �tH
m

are identical to the subcircuit composed of two-qubit gates and the subcircuit composed
of single-qubit gates in QGS in Fig. 3, with ✓

h = �t/4 and ✓m = mf�t/2, respectively. The circuit

for e
� i

2 �tH
✏

is shown in Fig. 5, which uses the fact that the phase from e
� i

2 �tH
✏

is related to the
boson link and the matter distribution across the lattice. If the fermion occupation is 1 (0) at even
(odd) fermion sites, the bosonic qubit is acted with a �̃

x such that the evolved phase is consistent
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FIG. 2. Shown is the circuit used in this work for simulating scattering in a (1+1)D Z2 LGT in the MGF.
The circuit acts on N + 1 system qubits representing the lattice associated with N staggered sites, and
one or more ancilla qubits denoted by a1,2,t. The system qubits are initialized in the SCV state |⌦iSCV, as
shown by the first vertical dotted line, while each ancilla starts in the |0i state. The circuit consists of three
subcircuit modules. The vertical dotted lines indicate the state of the system qubits after the application
of each module. The first module prepares the ground state, |⌦i, of the Hamiltonian in Eq. (16) using the
circuit block QGS with parameters ✓

h⇤ and ✓
m⇤. The second module prepares the initial scattering state

composed of two well-separated input wave packets, resulting in the state | 1, 2i. It requires at least one
ancilla qubit to prepare the initial state, shown here with a black solid line. Alternatively, it can also be
applied using an extra ancilla qubits, shown with a dotted black line, to improve the accuracy of preparing
the target state, as explained in the text. Finally, the last module, QTrott, performs the unitary time
evolution U(t) = e

�itH under the Hamiltonian H in Eq. (16). The circuit components in red are to perform
a Hadamard test to compute the return probability of the initial state as a function of time; they can be
omitted when measuring only the expectation values of diagonal operators. The Hadamard test requires an
additional ancilla and a controlled application of QTrott with control on the ancilla. Here, H denotes the
Hadamard gate and R

x(✓) := e
� i

2 ✓�
x
. To compute the return probability, as shown in Appendix D, one

needs to separately implement either the R
x(⇡4 ) or the H gate as the last operation on the at ancilla, which

is denoted in the circuit by R
x(⇡4 )/H. Details of each module and their constituent circuits are discussed in

Sec. III.

For the remainder of the main text, to reduce the clutter, we drop the superscript (j) from
quantities, since the order at which they are assumed will be clear from the context.

III. QUANTUM ALGORITHM AND CIRCUIT DESIGN

In this section, we use the Hamiltonian and the ansatz for hadron states defined in Sec. II to
lay out a digital quantum algorithm for performing multi-hadron scattering. We choose to work
with the MGF for a more e�cient circuit implementation.

The overall protocol used in this work starts from the SCV state |⌦i
SCV

in Eq. (14), which is
one of the computational basis states. The protocol is composed of three circuit modules:

1. QGS prepares the interacting vacuum |⌦i from |⌦i
SCV

.

2. QInit constructs the initial scattering state comprised of well-separated wave packets.

3. QTrott performs the Trotterized time evolution under the Hamiltonian in Eq. (16).

These three modules are depicted in Fig. 2, with each module separated by a dotted line, indicating
the corresponding quantum state prepared at the end of each stage. Each circuit module will be
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with the Hamiltonian H
✏ in Eq. (17c). Furthermore, the conserved charge Q = NP implies that

after the controlled operation on the last fermion-site qubit, the boson-link qubit is restored to its
original value, and thus its phase can be evaluated according to the first term in Eq. (17c). Each
layer of second-order Trotterized time evolution requires 18NP + 8 CNOT gates.

This concludes the discussion on all the circuit elements involved in preparing the initial
scattering state and its time evolution. In the next section, we present the quantum-emulator
and hardware results arising from implementing these circuits to study a scattering process.

IV. QUANTUM HARDWARE AND EMULATOR RESULTS

The circuit layout shown in Fig. 2 was employed to study scattering in a (1+1)D Z2 LGT with
dynamical matter. The viability of this circuit was demonstrated by executing it on the IonQ Forte

quantum computer—a Ytterbium-ion-based quantum computer with 32 qubits, and high-fidelity
single- and two-qubit gates [119]. Due to limited device-time availability, the VQE optimizations
required for the parameters in the QGS circuit, and for the parameters that characterize the ansatz
in Eq. (20), as well as the Hadamard test for computing the return probability, were performed
using a noiseless quantum-circuit emulator. The quantum hardware was instead used to implement
the vacuum and wave-packet preparation circuits with known parameters, and to evolve the wave
packets in a Trotterized manner. A few noise-mitigation strategies are also employed to improve
the outcome of the simulations. All these results are presented and discussed in this section.

We work with two di↵erent system sizes, NP = 5 and NP = 13, corresponding to N = 10 and
N = 26, or equivalently 11 and 27 qubits, respectively. The Hilbert space with the symmetry
restriction Q = NP has 504 states for NP = 5, and 20, 801, 200 states for NP = 13. The former
system size is within the reach of the exact-diagonalization technique on a standard computer, while
the low-energy states of the latter system size could be obtained using the DMRG method [132]
applied to an MPS ansatz for the states [133], as discussed in Appendix A. We further set mf = 1.0
and ✏ = �0.3, which are the parameters used in our previous work [107]. This parameter set ensures
that the ratio of the contribution to the vacuum energy from the non-diagonal Hamiltonian, Hh,
to that from the diagonal Hamiltonian, Hm +H

✏, is approximately 0.221 in the ground state for
both NP = 5 and NP = 13. This choice, therefore, puts us in a non-trivial regime of parameters,
away from the strong- or weak-coupling limits.

A. Variational-quantum-eigensolver optimization

The VQE optimization for ✓
h⇤ and ✓

m⇤ parameters can proceed via the quantum circuit
introduced in Sec. III A. The results for these parameters, as well as the fidelity of the prepared
ground state, are summarized in Table V in Appendix G. These results clearly indicate that the
ground state prepared after the first module in Fig. 2 is a very good approximation of the true
ground state |⌦i. Next, the parameters that characterize the ansatz for the low-lying momentum-

eigenstate creation operator b
†
k
in Eq. (20) are obtained for each target momentum kt 2

e�. One
performs a VQE energy minimization for the states arising from QWP( ) acted on |⌦i with
 (k) = �k,kt in Eq. (18). We use the second-order Trotter formula on the angle ⇡/2 in Eq. (34)
with ten and two Trotter steps for NP = 5 and NP = 13, respectively. These choices lead to a small
Trotter error while keeping the VQE optimization time manageable on the noiseless emulator. The
results of the VQE optimization and the corresponding fidelities are summarized in Tables VI
and VII in Appendix G. These results indicate that the target states are captured with a very high
fidelity.

Each layer of Trotter evolution:
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IonQ Forte quantum processor with 32 qubits



22

FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.

24

FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,
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The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.
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The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
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Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =
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†
n ni if n 2 even,
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†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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NP Appx Qubits
Single-qubit gates
(raw/transpiled)

CNOT gates
(raw/transpiled) /a

5
I 13 12757/13343 11324/7315 13.25%

II 12 310/369 236/167 6.96%

13
I 29 6925/7660 5948/3934 11.08%

II 28 494/572 300/197 6.07%

TABLE III. Shown are the number of qubits, single-qubit gates, and CNOT gates required for preparing
the initial scattering state | 1, 2i in Fig. 2 with the wave-packet parameters in Table II. The raw gate
counts can be obtained from the circuits described in the main text, while the transpiled gate counts are
obtained with the Qiskit transpiler. (Version 1.1.1 was used for Appx I while version 1.0.2 was used for
Appx II.) The two approximations, Appx I and Appx II, yield di↵erent accuracy as described in Sec IVB.
Only circuits for Appx II were implemented on the IonQ Forte quantum computer. Finally, the last column
denotes the ancilla-violation error /a, calculated using the noiseless Aer simulator (with 5⇥ 105 shots).

They are compared against the ideal results obtained from exact numerical results (for NP = 5) and
using an MPS ansatz for the states (for NP = 13). The Appx I results are in better agreement with
the ideal results. Appx II results, nonetheless, are not far o↵. Adopting Appx II, therefore, is not
unreasonable especially since its required resources are significantly lower than Appx I. These results
are obtained by discarding measurements for which the ancilla qubit(s) do not have the correct
value(s) |1a1 , 1a2i for Appx I and |1a1i for Appx II. The percentage of discarded measurements are
shown in Table III under the column /a, the ancilla-violation error. More states are discarded in
Appx I than Appx II, since a part of the erroneous states are hidden in the valid ancilla values in
Appx II, see discussions in Sec. III B.

The two-wave-packet preparation circuits within Appx II were executed on the IonQ Forte

quantum computer, with 1000 shots per circuit. The �n and E values obtained from these runs are
shown in Fig. 7. The hardware results contain various errors that are sourced from the trapped-
ion quantum devices. Similar to Ref. [107], we employ a simple post-processing error-mitigation
scheme based on the global symmetry of the fermion-qubits configurations. Explicitly, we discard
the states from the final results that exhibit Q 6= NP . Such states indicate the occurrence of at
least one error in the fermion qubits. We refer to this error as the symmetry-violation error, and
denote it by /Q. We find /Q = 49.40% for NP = 5 and /Q = 71.20% for NP = 13. The states
in the set complementary to /Q are not necessarily contamination free, since the errors that do
not change Q are not filtered away. Part of these errors percolate into the ancilla-violation error:
/a = 14.82% for NP = 5 and /a = 18.40% for NP = 13. These are larger than their respective
noiseless-simulator results in Table III, due to additional hardware errors. The error /a is calculated
over the shots remained after discarding those with a /Q error. States with the incorrect values
of ancilla measurement are also discarded before evaluating the observables’ expectation-values.
Finally, the error bars in Fig. 7 are obtained from the standard deviation of the mean of the
bootstrap samples of the physical events with 100 resampled configurations (at which value the
bootstrap-sample mean distributions is stabilized).

The hardware results are in a good agreement with their noiseless-simulator counterparts for
both observables. The deviation from noiseless simulator is generally more prominent at the center
of the wave packet. This feature can be attributed to the fact that the qubits at the center of
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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in Table II are summarized in Table III considering both approximations.
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noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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NP Appx Qubits
Single-qubit gates
(raw/transpiled)

CNOT gates
(raw/transpiled) /a

5
I 13 12757/13343 11324/7315 13.25%

II 12 310/369 236/167 6.96%

13
I 29 6925/7660 5948/3934 11.08%

II 28 494/572 300/197 6.07%

TABLE III. Shown are the number of qubits, single-qubit gates, and CNOT gates required for preparing
the initial scattering state | 1, 2i in Fig. 2 with the wave-packet parameters in Table II. The raw gate
counts can be obtained from the circuits described in the main text, while the transpiled gate counts are
obtained with the Qiskit transpiler. (Version 1.1.1 was used for Appx I while version 1.0.2 was used for
Appx II.) The two approximations, Appx I and Appx II, yield di↵erent accuracy as described in Sec IVB.
Only circuits for Appx II were implemented on the IonQ Forte quantum computer. Finally, the last column
denotes the ancilla-violation error /a, calculated using the noiseless Aer simulator (with 5⇥ 105 shots).

They are compared against the ideal results obtained from exact numerical results (for NP = 5) and
using an MPS ansatz for the states (for NP = 13). The Appx I results are in better agreement with
the ideal results. Appx II results, nonetheless, are not far o↵. Adopting Appx II, therefore, is not
unreasonable especially since its required resources are significantly lower than Appx I. These results
are obtained by discarding measurements for which the ancilla qubit(s) do not have the correct
value(s) |1a1 , 1a2i for Appx I and |1a1i for Appx II. The percentage of discarded measurements are
shown in Table III under the column /a, the ancilla-violation error. More states are discarded in
Appx I than Appx II, since a part of the erroneous states are hidden in the valid ancilla values in
Appx II, see discussions in Sec. III B.

The two-wave-packet preparation circuits within Appx II were executed on the IonQ Forte

quantum computer, with 1000 shots per circuit. The �n and E values obtained from these runs are
shown in Fig. 7. The hardware results contain various errors that are sourced from the trapped-
ion quantum devices. Similar to Ref. [107], we employ a simple post-processing error-mitigation
scheme based on the global symmetry of the fermion-qubits configurations. Explicitly, we discard
the states from the final results that exhibit Q 6= NP . Such states indicate the occurrence of at
least one error in the fermion qubits. We refer to this error as the symmetry-violation error, and
denote it by /Q. We find /Q = 49.40% for NP = 5 and /Q = 71.20% for NP = 13. The states
in the set complementary to /Q are not necessarily contamination free, since the errors that do
not change Q are not filtered away. Part of these errors percolate into the ancilla-violation error:
/a = 14.82% for NP = 5 and /a = 18.40% for NP = 13. These are larger than their respective
noiseless-simulator results in Table III, due to additional hardware errors. The error /a is calculated
over the shots remained after discarding those with a /Q error. States with the incorrect values
of ancilla measurement are also discarded before evaluating the observables’ expectation-values.
Finally, the error bars in Fig. 7 are obtained from the standard deviation of the mean of the
bootstrap samples of the physical events with 100 resampled configurations (at which value the
bootstrap-sample mean distributions is stabilized).

The hardware results are in a good agreement with their noiseless-simulator counterparts for
both observables. The deviation from noiseless simulator is generally more prominent at the center
of the wave packet. This feature can be attributed to the fact that the qubits at the center of
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FIG. 8. Shown are the expectation values of the staggered density �n across lattice-site index n, in a
Trotterized time-evolved scattering state of two meson wave packets for NP = 5 with 11 system qubits.
Each column (row) shares the x-axis (y-axis) label. The plot legends and error bars are the same as in
Fig. 7. The exact results correspond to the evaluation of time-evolution unitary matrix U(t) = e

�itH

upon exact exponentiation of the Hamiltonian matrix for a given time t, acting on the corresponding initial
state in Fig. 7(a). The noiseless-simulator and hardware results correspond to 5 ⇥ 105 and 3000 shots,
respectively. The quantum circuits for the Trotter time evolution are taken with time steps of �t = 1. The
meshed squares for the t = 7 and t = 8 plots denote the hardware-noise-dominated results. The number of
single-qubit and CNOT gates implemented for the combined state-preparation and time-evolution circuits
for each t is provided in Table IV.
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.

N = 10
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t 1 2 3 4 5 6 7 8

Single-qubit gates 573 771 969 1167 1365 1563 1761 1959

CNOT gates 227 287 347 407 467 527 587 647

/Q 56.07% 62.43% 67.13% 70.77% 71.73% 73.47% 73.63% 76.73%

/a 15.78% 17.66% 16.02% 19.61% 18.28% 19.47% 20.61% 20.77%

TABLE IV. Shown are the values of the single- and two-qubit gate counts, symmetry-violation error /Q,
and the ancilla-violation error /a, for di↵erent Trotter steps t in time evolution of two meson wave packets,
resulted from the IonQ Forte device. The gate counts are associated with the transpiled quantum circuit
by the Qiskit transpiler. (The raw gate counts can be obtained from those provided in Table III for the
state preparation and the cost of each Trotter step of evolution given in the text.)

Secs. IVC and IVD by studying di↵erent observables under time evolution.
Finally, our method can be extended to prepare multiple spatially spaced wave packets. One

can repeat the application of QWP( i) with one or more ancilla qubits as many times as needed.
We have demonstrated the preparation of three wave packets in an NP = 13 system on the IonQ

Forte, see Appendix C, observing good agreement with the expected results.

C. Time-evolved observables

We use the circuit for Trotterized time evolution via a second-order Trotter product formula
shown in Sec. III C to evolve an initial two-wave-packet state on an IonQ Forte quantum computer.
The NP = 5 parameters in Table II are chosen for this purpose since each Trotter time step involves
a shallower circuit than the larger-system counterpart: each Trotter-step circuit block constitutes
204 single-qubit gates and 60 CNOT gates. The three modules in Fig. 2 are implemented with
Appx II for 3000 shots and �t = 1. The number of shots and the size of the Trotter step required
to match the theoretical prediction are estimated using the noisy emulator provided for this device
by IonQ.6

The device results are analyzed using the methods described in the previous subsection, and
the /Q and /a values calculated for each Trotter step are shown in Table IV. The growing /Q and /a

errors with each Trotter step indicate increasing noise in the device results with deeper circuits. As
mentioned before, the /a error in the noiseless simulation denotes the systematic error due to the

approximate nature of b†
k
operators. In this case, this error does not change with time evolution

as the ancilla qubit used for the initial-state preparation does not participate in the time-evolution
circuit. Thus, the increasing /a error with each Trotter step in Table IV purely reflects the increasing
hardware error.

The results for the time-evolved staggered density are shown in the Fig. 8. The values obtained
from the quantum circuits are compared against the exact calculations that do not exhibit the
Trotter error (i.e., they are obtained by calculating U(t) using exact matrix exponentiation). From
these results, the wave packets can be seen to be moving towards each other with their peak

6 For future simulations involving large system sizes, a viable strategy is to repeat experiment for a range of Trotter-
step sizes and shot numbers to reach convergence in measured observables.

N = 10
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FIG. 9. Shown are the expectation values of the electric field E at the boson qubit, in a Trotterized time-
evolved scattering state of two wave packets for NP = 5 with 11 system qubits. The hardware results (cyan
triangles) are dominated by noise. Results obtained using the IonQ Forte noisy emulator are shown in
Appendix F to demonstrate a possible recovery of the signal using additional noise-mitigation tools, such
as Pauli twirling and operator decoherence renormalization, at the cost of additional quantum-processing
time.

values decreasing with time. The noiseless results (using 5 ⇥ 105 shots) in both approximations
(Appxs I and II) follow the exact wave-packet profile in the early times, but deviate from the
exact values with increasing evolution time due to accumulated Trotter error. In fact, in some
instances, the cruder, hence less resource-intensive, Appx II displays less Trotter error than Appx
II. This observation makes it clear that small deviations in the initial states may be insignificant in
subsequent simulation steps given the e↵ect of other errors during the evolution. Nonetheless, the
shape of the profile for both initial-state approximations resembles the exact wave-packet evolution,
and still o↵ers qualitative description of the physical process.

The hardware results also show the qualitative features of time-evolved staggered density,
however, the device noise starts to dominate after Trotter time t = 6. Furthermore, our results are
obtained without performing any additional error-mitigation-circuit runs and only by discarding
the /a and /Q errors during post-processing. Nonetheless, we have checked that discarding the /a

and /Q data does not significantly improve the outcome, and only leads to reduced statistics, hence
larger shot noise. The reason can be attributed to the fact that most of symmetry-violated errors
are associated with a few (mostly one) bit-flip errors in primarily random locations in the qubit
register, whose e↵ect becomes insignificant when computing expectation value of local operators.
Our observation is consistent with the conclusions of Ref. [136], which finds that the e↵ect of
symmetry-based noise mitigation is both quantity dependent and time dependent.

We further compute the time evolution of the electric-field expectation value at the boson qubit,
E, as shown in Fig. 9. Here, the noiseless result agrees with the exact result up to Trotter errors,
and almost retains its value at t = 0 throughout the evolution. The reason is that flipping the
electric field at the boson qubit costs an energy proportional to the system size, see Eq. (17c).
The hardware result for this quantity, on the other hand, significantly deviates from the exact
value. Thus, obtaining the Trotter time evolution of E requires further noise-mitigation techniques.
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FIG. 16. Shown are the noise-mitigated result obtained from Pauli twirling followed by operator decoherence
renormalization (ODR) for the electric field at the boson qubit, E, after two-wave-packet state evolution for
time t in theNP system (compare with Fig. 9). The inverted magenta triangles are the results from the Pauli-
twirled U(t) circuits. The black crosses are the Pauli-twirled identity circuits, U(0), with similar structure as
U(t). Both of these results were obtained using the noisy emulator for the IonQ Forte quantum computer
using 3000 shots. The error bars obtained from 1000 bootstrap samples are smaller than the markers, and
thus, they are not shown here. The latter is used to scale the values associated with the inverted magenta
triangles to the ODR results, denoted here by blue stars, and the error bars are obtained through error
propagation. The results from the IonQ Forte device (cyan stars), which were calculated after removing /Q

and /a errors during post-processing, are also shown for comparison.

are shown in Fig. 15 at four di↵erent values of time, t 2 {1, 4, 6, 11}. These sample values of t are
chosen to compare �n when return probability for Appx II shows relatively large deviation from
its ideal result (exhibiting 15% to 30% relative errors). As is observed, this local observable shows
very small deviation from the ideal result for both Appxs I and II, confirming that local observables
are more robust to small di↵erences in initial states.

Appendix F: Pauli twirling and operator decoherence renormalization

In this appendix, we describe and implement a noise-mitigation strategy for obtaining the values
of E = h�̃

z
i under the Trotter time evolution. The results for this quantity are obtained from runs

on the IonQ Forte quantum computer using Appx II, and are displayed in cyan triangles in Fig. 9
and below in Fig. 16. These results clearly show significant error in this quantity. Even at t = 1,
the value deviates from the ideal result, and it quickly diverges further away from the ideal values
during the evolution. On the other hand, as was seen in in Fig. 7, there exists reasonable agreement
between hardware and simulator results for this quantity at t = 0 (i.e., after the wave-packets’
preparation). We, therefore, conjuncture that the error in the time-evolved observable results from
the larger number of entangling gates applied to the boson qubit compared to fermionic qubits,
see Fig. 5(b).

The desired result could be recovered, nonetheless, by executing a few additional noise-
mitigating circuits, as shown in Fig. 16, and described below:

Noise mitigation
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
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The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.

* Turn the coherent error 
to incoherent error, then 
use a similar circuit with 
known solution to 
normalize the result of 
the target circuit. 

N = 10
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FIG. 10. Shown is the return probability, R(t), of the initial two wave-packet state for NP = 13 (27 system
qubits) against time. The Trotter time step is �t = 0.25, but results for only integer times are plotted. The
MPS results are obtained using the TDVP algorithm, and the values for Appxs I and II cases are calculated
using the circuit for the Hadamard test.

We have demonstrated this in Appendix F using the IonQ Forte noisy emulator where Pauli
twirling [137], along with operator decoherence renormalization [86, 138, 139], are employed to
recover the time-evolved value of E.7

The hardware runs’ moderate coherence time, and time evolution’s large circuit depth, prohibit
accessing interesting long-time scattering dynamics in this hardware study. Another issue is the
small system size, leading to boundary a↵ects in the simulation outcome in the long-time limit. One
would, therefore, need to simulate evolution of wave packets in larger systems, but the associated
circuit depths would increase considerably. Nonetheless, the results presented here marks the first
hadron-scattering simulation on a quantum computer;8 it has pushed the limits of what is possible
for such an involved simulation problem on any quantum hardware to date.

D. Return probability

Computing the scattering S-matrix, which relates scattering states in early and late times, is
a critical observable in nuclear and high-energy physics. In this section, we compute the return
probability (also known as the survival probability and Loschmidt echo):

R(t) := |h 1, 2|U(t)| 1, 2i|
2
, (41)

which is a diagonal entry of the scattering S-matrix. Here, we restrict our discussion to the
computation of return probability for the initial state consisting of the two wave packets prepared
in Sec. IVB, rather than its phenomenological implications, or more interesting, but significantly
more involved, final-state-momentum-dependent overlaps.

7 We relied on the noisy emulator for this analysis because such mitigation techniques require more quantum
processing, and our access to the device was limited.

8 See also the parallel submission by Schuhmacher et al. in the same arXiv listing.
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FIG. 14. (a) Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2, 2) circuit,
plotted against their corresponding lattice-site index n for a system of NP = 13 physical sites, using Appx II
for the preparation circuit. The wave-packet parameters for the first two wave packets are listed in Table II.
The third wave packet is produced with µ3 = 13, �3 = 3⇡/13 and k̄3 = 2⇡/13 in Eq. (38). The optimized
ansatz parameters are provided in Table VII. For other details, see the caption of Fig. 6. (b) Shown are the
staggered density �n (left) and the electric field at the boson qubit E (right) for an initial state containing
three wave packets on a NP = 13 lattice. Only Appx II is used to execute the three-wave-packet version
of the QInit circuit. The Aer noiseless-simulator results corresponds to 5⇥ 105 shots while the IonQ Forte
quantum-computer results correspond to 2000 shots.
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Consider the amplitude
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The return probability R(t) is then given by

R(t) := |A(t)|2 = Re(A(t))2 + Im(A(t))2, (D2)
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FIG. 10. Shown is the return probability, R(t), of the initial two wave-packet state for NP = 13 (27 system
qubits) against time. The Trotter time step is �t = 0.25, but results for only integer times are plotted. The
MPS results are obtained using the TDVP algorithm, and the values for Appxs I and II cases are calculated
using the circuit for the Hadamard test.

We have demonstrated this in Appendix F using the IonQ Forte noisy emulator where Pauli
twirling [137], along with operator decoherence renormalization [86, 138, 139], are employed to
recover the time-evolved value of E.7

The hardware runs’ moderate coherence time, and time evolution’s large circuit depth, prohibit
accessing interesting long-time scattering dynamics in this hardware study. Another issue is the
small system size, leading to boundary a↵ects in the simulation outcome in the long-time limit. One
would, therefore, need to simulate evolution of wave packets in larger systems, but the associated
circuit depths would increase considerably. Nonetheless, the results presented here marks the first
hadron-scattering simulation on a quantum computer;8 it has pushed the limits of what is possible
for such an involved simulation problem on any quantum hardware to date.

D. Return probability

Computing the scattering S-matrix, which relates scattering states in early and late times, is
a critical observable in nuclear and high-energy physics. In this section, we compute the return
probability (also known as the survival probability and Loschmidt echo):

R(t) := |h 1, 2|U(t)| 1, 2i|
2
, (41)

which is a diagonal entry of the scattering S-matrix. Here, we restrict our discussion to the
computation of return probability for the initial state consisting of the two wave packets prepared
in Sec. IVB, rather than its phenomenological implications, or more interesting, but significantly
more involved, final-state-momentum-dependent overlaps.

7 We relied on the noisy emulator for this analysis because such mitigation techniques require more quantum
processing, and our access to the device was limited.

8 See also the parallel submission by Schuhmacher et al. in the same arXiv listing.
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FIG. 15. Shown are the staggered density �n corresponding to four instances of time during the evolution,
plotted against the lattice-site index n. The values of �n agree well with the ideal result for both Appxs
I and II. These are to be compared with the return-probability results plotted in Fig. 10, which exhibit a
significant deviation for Appx II.

The real (Re) and imaginary (Im) parts of A(t) can be computed using a standard Hadamard
test. The state | 1, 2i ⌦ |0ati is first acted with a Hadamard gate on the ancilla at, followed by
a controlled U(t) operation upon the |1i state of the ancilla. Finally, a Hadamard or an R

x(⇡
4
)

gate is acted on the ancilla to obtain the real or imaginary parts, respectively. Denote by p0 and
p1 the probability for the ancilla to be measured in state |0ati and |1ati, respectively. Then the
quantity p0 � p1 obtains the real or the imaginary part out of the respective circuits. The circuit
for controlled U(t) can be obtained by controlling each block in Fig. 5 upon the state of the ancilla

at every Trotter step. The controlled e
�i�tH

h

and e
�i�tH

m

circuits are given by controlling every
constituent gate, while the controlled e

�i�tH
✏

is obtained by replacing the R
z gates with their

controlled versions. This is because in the absence of the R
z gates in the circuit in Fig. 5(b), the

collective action of the entangling gates is an identity on the state of fermion and the boson qubits.

Appendix E: Time evolution of local observable for NP=13

In Fig. 10 of the main text, we presented the results for the return probability R(t) for an
NP = 13 system obtained from the MPS ansatz, as well as Appxs I and II using the noiseless
Aer emulator. We observed significant deviation in this non-local quantity for the cruder Appx
II, possibly due to large interference e↵ects. In this appendix, we consider time evolution of the
staggered density �n instead, to investigate if the same deviation is seen for a local quantity.

To enable this comparison, we set all the simulation parameters identical to those in Fig. 10,
i.e., Trotter time step �t = 0.25 with 5 ⇥ 105 shots for the noiseless emulator. The results for �n

WHAT ABOUT LOCAL QUANTITIES AT TIMES           DEVIATES? 
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.

N = 26



Costly adiabatic state preparation can be avoided by resorting to well-motivated 
composite-particle ansatzes generated out of the interacting vacuum, which can be 
constrained by hybrid classical-quantum methods such as VQE. 

Our algorithm has polynomial scaling with system size, and can be systematically 
improved using truncated bare-meson operators, which is justified given the finite 
correlation length in the system. 

Local quantities are far less sensitive to infidelities in the initial state than non-
local quantities. In the future simulations, therefore, accurate state preparation for 
extracting S-matrix elements is essential. 

Our ansatz works likely for all 1+1 D gauge theories, but need to be generalized to 
higher dimensions following the same logic. 

One may need to think about how to incorporate a wealth information on hadronic 
states from lattice-QCD classical computations to construct good ansatzes for 
scattering states on quantum computers.

TAKE-HOME MESSAGES FOR PART III:

See, e.g., Gupta, White, ZD, 
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THE MODEL: U(1) LATTICE GAUGE THEORY 
COUPLED TO FERMIONS IN 1+1 D

2

be implemented in a simple circuit with minimal ingre-
dients and approximations, making it particularly suit-
able for near-term quantum simulation. Our second ob-
jective is a numerical exploration of high-energy real-
time scattering phenomenology in the model. We work
in the nonperturbative regime, near the confinement-
deconfinement critical point and in the thermodynamic
limit, using uniform matrix product states (uMPS) [89],
which in turn allows for the construction [47, 48] and
collision of numerically-exact quasiparticle wave packets
in the interacting theory at various energies, resulting
in nontrivial inelastic e↵ects. In contrast, earlier works
were limited to elastic scattering at either weak (nearly
free fermions) [46] or strong (nearly free bosons) [45] cou-
pling regimes. We focus on a detailed spatial, temporal,
and momentum-resolved diagnostic of elastic and inelas-
tic processes of quark and meson states, involving phe-
nomena such as meson disintegration, dynamical string
formation and breaking, and the creation of quark and
(excited) meson states. We also investigate the role of
entanglement in high-energy scattering [45, 90–97].

Model and circuit-QED implementation.—The mas-
sive Schwinger model has the Lagrangian density

L =  ̄
�
i�µ@µ � e�uAµ �m

�
 � 1

4
Fµ⌫F

µ⌫ , (1)

where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [98, 99]

H =

Z
dx


⇧2

2
+

(@x�)2

2
+

M2�2

2
�u cos(��� ✓)

�
, (2)

where �(x) and ⇧(x) are the scalar field and conjugate
momentum, respectively, M = e/

p
⇡, � =

p
4⇡, and u =

e�

2⇡⇤m, where � is Euler’s constant and ⇤ is a UV scale
(we assume ~ = c = 1 throughout, where c is the speed
of light). Finally, ✓ 2 (�⇡,⇡], with its origin explained
in Ref. [99] and the Supplemental Material (SM) [100].
We work with a lattice discretization of Eq. (2) given by

H = �
X

x


⇡2
x

2
+
(�x � �x�1)2

2
+
µ2�2x
2

�� cos(��x � ✓)

�
,

(3)
where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
µ2 = M2a2, � = ua2, and a is the lattice spacing. We set

EL0

EJEC EL

�i�1 �i �i+1

�ext

FIG. 1. Lumped-element circuit diagram that realizes Eq. (3).

FIG. 2. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
2�2 � � cos

�p
4⇡�� ✓

�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

a = 1, with the continuum limit corresponding to µ,�!
0. Quantities are assumed in lattice units throughout.

Remarkably, Eq. (3) can be exactly realized in a sim-
ple superconducting circuit, shown in Fig. 1. The cir-
cuit can be regarded as a chain of inductively coupled
fluxoniums [101]. It consists of nodes i, each correspond-
ing to a lattice site with a local bosonic degree of free-
dom described by flux �i and charge ⇡i, composed of a
parallel arrangement of a capacitor, an inductor, and a
Josephson junction with respective energies EC , EL, and
EJ [102]. Further, nodes are coupled by inductors with
energy EL0 . The circuit parameters are related to those

of Eq. (3) via � = 8EC
�2 , EL0�4

8EC
= 1, µ2 = EL�4

8EC
,� = EJ�

2

8EC
,

and ✓ = �ext � ⇡, where �ext is a tunable external flux
threading each loop, and � 6= 0 can be chosen arbitrarily
(see the SM [100] for the full derivation). In fact, when
� 6=

p
4⇡, the circuit describes a more general model

known as the massive Thirring-Schwinger model [103].
In the SM [100], we present a method for preparing ini-
tial wave packets of bosonic particles using two ancillary
qubits, hence providing a complete protocol for prepara-
tion and evolution of mesonic wave packets for a scat-
tering experiment. Measurements of the local field �x
[104] or the output field at the edges [105, 106] can be
performed using standard techniques.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative
predictions for the continuum theory require an extrapo-
lation procedure [56, 107], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s

6

function even for smaller bond dimensions. Below gc, on the other hand, m⇡/mq > 2, and a qualitatively di↵erent
behavior is observed as a function of D, signaling sensitivity to the choice of bond dimension. All this indicates that
the bound state in the deconfined phase only exists for su�ciently large g, in agreement with the analytical prediction
in the previous section. For small g < gc, the minimization of the topologically trivial uMPS ansatz results in a
two-particle state that is not an eigenstate, but is rather a superposition of many eigenstates from the continuum.
The two particles in that state are forced together into a small region of size ⇠ log(D), and hence as D is increased,
the particles are allowed to spread, which decreases their interaction energy and makes the energy of the variational
ansatz approach the bottom of the two-particle band at 2mq.

II. CIRCUIT-QED IMPLEMENTATION

In this section, we derive the circuit-QED Hamiltonian from a lumped-element model and present a scheme for
preparing meson excitations.

A. Hamiltonian derivation

Consider the circuit diagram in Fig. S2, which is a more detailed version of Fig. 1 of the main text. Here, each
unit cell consists of a capacitor with capacitance C, an inductor with inductance L, and a Josephson junction with
critical current Ic, in parallel, representing a general rf-SQUID circuit, which includes the fluxonium as a special case
[S11]. Each L-J loop is threaded by an external flux �ext, and di↵erent unit cells are coupled together via inductors
with inductance L0. Node fluxes are labeled by �i, branch fluxes by �i

C , �
i
J , and �i

L, for the corresponding elements
within node i, and the inter-node branch fluxes coupling nodes i and i+ 1 by �i,i+i

L0 . The branch currents are related

to the branch fluxes by IiC = C�̈i, IiL = �i
L/L, I

i,i+1
L0 = �i,i+1

L0 /L0, and IiJ = Ic sin
�
�i
J

�
, for the capacitor, inductors,

and the Josephson junction, respectively [S12].
The Hamiltonian of the circuit can be derived by standard means. The capacitor branch fluxes are chosen to

be equal to the node fluxes �i
C = �i 8 i. Flux quantization yields the remaining branch fluxes: �i

J + �i
C = �ext,

�i
C + �i

L = 0, �i�1
J + �i

C + �i�1,i
L0 = 0. Current conservation gives Ii�1,i

L0 � IiC + IiL + IiJ � Ii,i+1
L0 = 0, which, together

with the above, yields the equation of motion

�C�̈i �
1

L
�i + Ic sin(�ext � �i) +

1

L0 (�i�1 � 2�i + �i+1) = 0. (S22)

The corresponding Lagrangian is

L =
X

i

"
C�̇2

i

2
� (�i � �i�1)2

2L0 � �2
i

2L
� Ic cos(�i � �ext)

#
. (S23)

Defining the conjugate momentum ⇡i =
@L
@�̇i

= C�̇i and imposing the canonical commutation relations [�i,⇡j ] = i�ij ,

we obtain the Hamiltonian

H =
X

i


4EC⇡

2
i +

EL0(�i � �i�1)2

2
+

EL�2
i

2
+ EJ cos(�i � �ext)

�
, (S24)
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FIG. S2. Circuit diagram implementing the massive Thirring-Schwinger model. An external flux �ext threads each L-J loop.

Lagrangian in the continuum:

Bosonized Hamiltonian on 
the lattice [Coleman, etc.]

Hamiltonian of 
circuit QED:

2

after fixing the gauge to A1(x) = 0, reads

@xE = �@2xA0 = e⇢, (S2)

where ⇢(x) =  †(x) (x) is the charge-density operator. The solution to this equation is

A0(x) = a0 �
e✓

2⇡
x� e

2

Z
dx0 ⇢(x0)|x� x0|, (S3)

where a0 and ✓ are integration constants. As argued in Ref. [S3], physics depends on ✓ only modulo 2⇡, and so a
suitable range for this variable is ✓ 2 (�⇡,⇡]. The Hamiltonian can be derived in the standard fashion, noting the
expression for the electric field from Eq. (S2) with A0 given in Eq. (S3). In the charge-zero subspace

R
dx ⇢(x) = 0,

the (normal-ordered) Hamiltonian of the Thirring-Schwinger model becomes

H =

Z
dx :  †�0

�
�i�1@x +m

�
 : �e2✓

2⇡

Z
dx x : ⇢(x) :

� e2

4

Z
dx

Z
dx0 |x� x0| : ⇢(x)⇢(x0) : +

g

2

Z
dx :

h
⇢(x)2 �

�
 †(x)�0�1 (x)

�2i
. (S4)

Our conventions are such that {�µ, �⌫} = 2⌘µ⌫ , with metric signature ⌘00 = �⌘11 = +1. The two-component
spinor operators,  (x, t) ⌘ ( 1(x, t), 2(x, t))T , satisfy the canonical anticommutation relations { a(x, t), 

†
b(x

0, t)} =
�ab�(x � x0), where a, b = 1, 2. The model described above can be shown to be dual to a bosonic theory with the
Hamiltonian [S1–S4]

H =

Z
dx


⇧2

2
+

(@x�)2

2
+

M2(�+ ✓/�)2

2
� u cos(��)

�
, (S5)

where [�(x),⇧(y)] = i�(x� y) and [⇧(x),⇧(y)] = [�(x),�(y)] = 0. The model parameters are related to those in the
fermionic model as follows:

M =
ep
⇡

1p
1 + g/⇡

, u =
e�

2⇡
⇤m, � =

s
4⇡

1 + g/⇡
, (S6)

with � being the Euler’s constant and ⇤ � e,m being a UV hard momentum cuto↵, see Ref. [S2] for details.
Furthermore, the following relation holds between the fermionic current  �µ and the bosonic field � [S2]:

 �µ = � �

2⇡
✏µ⌫@⌫�. (S7)

Here, ✏µ⌫ is the Levi-Civita tensor. Now, using @xE = e �0 [see Eq. (S2)], one arrives at e�
2⇡� = E, which relates

the scalar field � to the electric field E. It is more convenient to work with a shifted �: � ! �� ✓/�, such that the
Hamiltonian is

H =

Z
dx


⇧2

2
+

(@x�)2

2
+

M2�2

2
� u cos(��� ✓)

�
, (S8)

and the relation to the electric field is now e�
2⇡� = E + e✓

2⇡ ⌘ ET , which in the limit g = 0 reproduces the relation
presented in the main text between the total electric field ET and the bosonic field of the massive Schwinger model.
When g = 0, Eq. (S8) reduces to Eq. (2) of the main text. Finally, note that the dimensionless coupling e/m in the
fermionic theory corresponds to the combination ⇤M/u in the bosonic theory [S5].

B. Quark-antiquark interactions and bound states

In this section, we derive an e↵ective quark-antiquark Hamiltonian in the nonrelativistic limit in perturbation
theory and use this Hamiltonian to confirm the existence of quark-antiquark bound states (mesons). We also study
the meson bound states using nonperturbative tensor-network computation of the low-lying spectrum.
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after fixing the gauge to A1(x) = 0, reads

@xE = �@2xA0 = e⇢, (S2)

where ⇢(x) =  †(x) (x) is the charge-density operator. The solution to this equation is

A0(x) = a0 �
e✓

2⇡
x� e

2

Z
dx0 ⇢(x0)|x� x0|, (S3)

where a0 and ✓ are integration constants. As argued in Ref. [S3], physics depends on ✓ only modulo 2⇡, and so a
suitable range for this variable is ✓ 2 (�⇡,⇡]. The Hamiltonian can be derived in the standard fashion, noting the
expression for the electric field from Eq. (S2) with A0 given in Eq. (S3). In the charge-zero subspace

R
dx ⇢(x) = 0,

the (normal-ordered) Hamiltonian of the Thirring-Schwinger model becomes

H =

Z
dx :  †�0

�
�i�1@x +m

�
 : �e2✓

2⇡

Z
dx x : ⇢(x) :

� e2

4

Z
dx

Z
dx0 |x� x0| : ⇢(x)⇢(x0) : +

g

2

Z
dx :

h
⇢(x)2 �

�
 †(x)�0�1 (x)

�2i
. (S4)

Our conventions are such that {�µ, �⌫} = 2⌘µ⌫ , with metric signature ⌘00 = �⌘11 = +1. The two-component
spinor operators,  (x, t) ⌘ ( 1(x, t), 2(x, t))T , satisfy the canonical anticommutation relations { a(x, t), 

†
b(x

0, t)} =
�ab�(x � x0), where a, b = 1, 2. The model described above can be shown to be dual to a bosonic theory with the
Hamiltonian [S1–S4]

H =

Z
dx


⇧2

2
+

(@x�)2

2
+

M2(�+ ✓/�)2

2
� u cos(��)

�
, (S5)

where [�(x),⇧(y)] = i�(x� y) and [⇧(x),⇧(y)] = [�(x),�(y)] = 0. The model parameters are related to those in the
fermionic model as follows:

M =
ep
⇡

1p
1 + g/⇡

, u =
e�

2⇡
⇤m, � =

s
4⇡

1 + g/⇡
, (S6)

with � being the Euler’s constant and ⇤ � e,m being a UV hard momentum cuto↵, see Ref. [S2] for details.
Furthermore, the following relation holds between the fermionic current  �µ and the bosonic field � [S2]:

 �µ = � �

2⇡
✏µ⌫@⌫�. (S7)

Here, ✏µ⌫ is the Levi-Civita tensor. Now, using @xE = e �0 [see Eq. (S2)], one arrives at e�
2⇡� = E, which relates

the scalar field � to the electric field E. It is more convenient to work with a shifted �: � ! �� ✓/�, such that the
Hamiltonian is

H =

Z
dx


⇧2

2
+

(@x�)2

2
+

M2�2

2
� u cos(��� ✓)

�
, (S8)

and the relation to the electric field is now e�
2⇡� = E + e✓

2⇡ ⌘ ET , which in the limit g = 0 reproduces the relation
presented in the main text between the total electric field ET and the bosonic field of the massive Schwinger model.
When g = 0, Eq. (S8) reduces to Eq. (2) of the main text. Finally, note that the dimensionless coupling e/m in the
fermionic theory corresponds to the combination ⇤M/u in the bosonic theory [S5].
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In this section, we derive an e↵ective quark-antiquark Hamiltonian in the nonrelativistic limit in perturbation
theory and use this Hamiltonian to confirm the existence of quark-antiquark bound states (mesons). We also study
the meson bound states using nonperturbative tensor-network computation of the low-lying spectrum.
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where we defined the energies

EC =
1

8C
, EL0 =

1

L0 , EL =
1

L
, IJ = EJ . (S25)

Redefining �i ! ��i and ⇡i ! ⇡i/�, we obtain

H = �
X

i


⇡2
i

2
+

(�i � �i�1)2

2
+

µ2�2
i

2
� � cos(��i � ✓)

�
, (S26)

which is Eq. (3) of the main text with

� =
8EC

�2
,

EL0�4

8EC
= 1, µ2 =

EL�4

8EC
, � =

EJ�2

8EC
, ✓ = �ext � ⇡. (S27)

Recall that the parameters of the bosonized lattice Hamiltonian are

� =
1

a
, µ2 = M2a2, � = ua2. (S28)

Equations (S27) and (S28) together constitute a dictionary between the parameters of the bosonized massive Thirring-
Schwinger model and those of the circuit-QED Hamiltonian.

B. Experimental meson–wave-packet preparation

In this section, we describe a scheme for preparing initial wave packets, focusing on meson excitations. The quarks,
being topological excitations, do not couple to local operators, hence their preparation is left to future work. Our
proposal goes as follows. We assume the system [i.e., Eq. (3) of the main text] is cooled down to its ground state in
the confined phase. We add two ancillary qubits [S13] far away from each other. Initializing the qubits in the excited
state and coupling them to the system will result in the decay of the two qubit excitations into the system, producing
two wave packets of quasiparticles. Choosing a weak coupling will ensure that multi-particle states are not be excited.

To see this, first note that, in terms of the quasiparticle degrees of freedom, Eq. (S26) can be re-expressed as follows:

H =
X

j

X

k

!k,j 
†
k,j k,j + interactions, (S29)

where k is a label for the eigenstates assuming open boundary conditions.  †
k,j and  k,j are the creation and

annihilation operators for the jth meson with energy !k,j , i.e.,

 †
k,j |vaci = |⇡k,ji , (S30)

 k,j |vaci = 0, (S31)

where |⇡k,ji are the meson quasiparticles.
Next, consider, for simplicity, a single qubit (e.g., a transmon or a fluxonium [S14]) with frequency �, coupled at

position i = L. The addition to Eq. (S26) is

Hqubit =
�

2
�z + g(t)�x(aL + a†L), (S32)

where ai, a
†
i = �i±i⇡ip

2
are the creation and annihilation operators satisfying [ai, a

†
j ] = �ij , and g(t) is the coupling

(which can be controlled in time using a tunable coupler [S15]). In terms of mesonic quasiparticles, the entire
Hamiltonian [Eq. (S26) plus Eq. (S32)] can be written as

H =
X

j

X

k

!k,j 
†
k,j k,j +

X

j

X

k

h
g(t)�k,j 

†
k,j�� +H.c.

i
+
�

2
�z, (S33)

under a rotating-wave approximation (RWA) that assumes only a single excitation in the combined qubit-system
and hence ignores interactions from Eq. (S29). �k,j ⌘ h⇡k,j | aL + a†L |vaci is a matrix element that depends on the

Fermions
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be implemented in a simple circuit with minimal ingre-
dients and approximations, making it particularly suit-
able for near-term quantum simulation. Our second ob-
jective is a numerical exploration of high-energy real-
time scattering phenomenology in the model. We work
in the nonperturbative regime, near the confinement-
deconfinement critical point and in the thermodynamic
limit, using uniform matrix product states (uMPS) [89],
which in turn allows for the construction [47, 48] and
collision of numerically-exact quasiparticle wave packets
in the interacting theory at various energies, resulting
in nontrivial inelastic e↵ects. In contrast, earlier works
were limited to elastic scattering at either weak (nearly
free fermions) [46] or strong (nearly free bosons) [45] cou-
pling regimes. We focus on a detailed spatial, temporal,
and momentum-resolved diagnostic of elastic and inelas-
tic processes of quark and meson states, involving phe-
nomena such as meson disintegration, dynamical string
formation and breaking, and the creation of quark and
(excited) meson states. We also investigate the role of
entanglement in high-energy scattering [45, 90–97].

Model and circuit-QED implementation.—The mas-
sive Schwinger model has the Lagrangian density

L =  ̄
�
i�µ@µ � e�uAµ �m

�
 � 1

4
Fµ⌫F

µ⌫ , (1)

where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [98, 99]

H =

Z
dx


⇧2

2
+

(@x�)2

2
+

M2�2

2
�u cos(��� ✓)

�
, (2)

where �(x) and ⇧(x) are the scalar field and conjugate
momentum, respectively, M = e/

p
⇡, � =

p
4⇡, and u =

e�

2⇡⇤m, where � is Euler’s constant and ⇤ is a UV scale
(we assume ~ = c = 1 throughout, where c is the speed
of light). Finally, ✓ 2 (�⇡,⇡], with its origin explained
in Ref. [99] and the Supplemental Material (SM) [100].
We work with a lattice discretization of Eq. (2) given by

H = �
X

x


⇡2
x

2
+
(�x � �x�1)2

2
+
µ2�2x
2

�� cos(��x � ✓)

�
,

(3)
where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
µ2 = M2a2, � = ua2, and a is the lattice spacing. We set

EL0

EJEC EL

�i�1 �i �i+1

�ext

FIG. 1. Lumped-element circuit diagram that realizes Eq. (3).

FIG. 2. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
2�2 � � cos

�p
4⇡�� ✓

�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

a = 1, with the continuum limit corresponding to µ,�!
0. Quantities are assumed in lattice units throughout.

Remarkably, Eq. (3) can be exactly realized in a sim-
ple superconducting circuit, shown in Fig. 1. The cir-
cuit can be regarded as a chain of inductively coupled
fluxoniums [101]. It consists of nodes i, each correspond-
ing to a lattice site with a local bosonic degree of free-
dom described by flux �i and charge ⇡i, composed of a
parallel arrangement of a capacitor, an inductor, and a
Josephson junction with respective energies EC , EL, and
EJ [102]. Further, nodes are coupled by inductors with
energy EL0 . The circuit parameters are related to those

of Eq. (3) via � = 8EC
�2 , EL0�4

8EC
= 1, µ2 = EL�4

8EC
,� = EJ�

2

8EC
,

and ✓ = �ext � ⇡, where �ext is a tunable external flux
threading each loop, and � 6= 0 can be chosen arbitrarily
(see the SM [100] for the full derivation). In fact, when
� 6=

p
4⇡, the circuit describes a more general model

known as the massive Thirring-Schwinger model [103].
In the SM [100], we present a method for preparing ini-
tial wave packets of bosonic particles using two ancillary
qubits, hence providing a complete protocol for prepara-
tion and evolution of mesonic wave packets for a scat-
tering experiment. Measurements of the local field �x
[104] or the output field at the edges [105, 106] can be
performed using standard techniques.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative
predictions for the continuum theory require an extrapo-
lation procedure [56, 107], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s

Gauge bosons

New boson 
DOF
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function even for smaller bond dimensions. Below gc, on the other hand, m⇡/mq > 2, and a qualitatively di↵erent
behavior is observed as a function of D, signaling sensitivity to the choice of bond dimension. All this indicates that
the bound state in the deconfined phase only exists for su�ciently large g, in agreement with the analytical prediction
in the previous section. For small g < gc, the minimization of the topologically trivial uMPS ansatz results in a
two-particle state that is not an eigenstate, but is rather a superposition of many eigenstates from the continuum.
The two particles in that state are forced together into a small region of size ⇠ log(D), and hence as D is increased,
the particles are allowed to spread, which decreases their interaction energy and makes the energy of the variational
ansatz approach the bottom of the two-particle band at 2mq.

II. CIRCUIT-QED IMPLEMENTATION

In this section, we derive the circuit-QED Hamiltonian from a lumped-element model and present a scheme for
preparing meson excitations.

A. Hamiltonian derivation

Consider the circuit diagram in Fig. S2, which is a more detailed version of Fig. 1 of the main text. Here, each
unit cell consists of a capacitor with capacitance C, an inductor with inductance L, and a Josephson junction with
critical current Ic, in parallel, representing a general rf-SQUID circuit, which includes the fluxonium as a special case
[S11]. Each L-J loop is threaded by an external flux �ext, and di↵erent unit cells are coupled together via inductors
with inductance L0. Node fluxes are labeled by �i, branch fluxes by �i

C , �
i
J , and �i

L, for the corresponding elements
within node i, and the inter-node branch fluxes coupling nodes i and i+ 1 by �i,i+i

L0 . The branch currents are related

to the branch fluxes by IiC = C�̈i, IiL = �i
L/L, I

i,i+1
L0 = �i,i+1

L0 /L0, and IiJ = Ic sin
�
�i
J

�
, for the capacitor, inductors,

and the Josephson junction, respectively [S12].
The Hamiltonian of the circuit can be derived by standard means. The capacitor branch fluxes are chosen to

be equal to the node fluxes �i
C = �i 8 i. Flux quantization yields the remaining branch fluxes: �i

J + �i
C = �ext,

�i
C + �i

L = 0, �i�1
J + �i

C + �i�1,i
L0 = 0. Current conservation gives Ii�1,i

L0 � IiC + IiL + IiJ � Ii,i+1
L0 = 0, which, together

with the above, yields the equation of motion

�C�̈i �
1

L
�i + Ic sin(�ext � �i) +

1

L0 (�i�1 � 2�i + �i+1) = 0. (S22)

The corresponding Lagrangian is

L =
X

i

"
C�̇2

i

2
� (�i � �i�1)2

2L0 � �2
i

2L
� Ic cos(�i � �ext)

#
. (S23)

Defining the conjugate momentum ⇡i =
@L
@�̇i

= C�̇i and imposing the canonical commutation relations [�i,⇡j ] = i�ij ,

we obtain the Hamiltonian

H =
X

i


4EC⇡

2
i +

EL0(�i � �i�1)2

2
+

EL�2
i

2
+ EJ cos(�i � �ext)

�
, (S24)

LC Ic

L0

�i�1,i
L0

�i
J�i

C �i
L

�i�1 �i �i+1

L0

�i,i+1
L0

�ext

FIG. S2. Circuit diagram implementing the massive Thirring-Schwinger model. An external flux �ext threads each L-J loop.
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sulting in nontrivial inelastic e↵ects. In contrast, ear-
lier works were limited to elastic scattering at either
weak (nearly free fermions) [48] or strong (nearly free
bosons) [47] coupling regimes. We focus on spatial, tem-
poral, and momentum-resolved diagnostics of elastic and
inelastic processes of quark and meson states, involv-
ing phenomena such as meson disintegration, dynami-
cal string formation and breaking, and the creation of
quark and (excited) meson states. We also investigate the
role of entanglement in high-energy scattering [47, 90–
97]. Our second objective is to propose an analog circuit-
QED implementation of the bosonized lattice Schwinger
model. Recently, the bosonic dual was shown to be ap-
proximately realizable by circular Rydberg states [98].
In contrast, we will show that circuit QED’s basic com-
ponents, its native bosonic degrees of freedom, and the
available ultrastrong coupling [99, 100] allow the model to
be implemented in a simple circuit with minimal ingredi-
ents and approximations, making it particularly suitable
for near-term quantum simulation that goes beyond the
classical simulation methods.

Model.—The massive Schwinger model has the La-
grangian density

L =  ̄
�
i�µ@µ � e�µAµ �m

�
 � 1

4
Fµ⌫F

µ⌫ , (1)

where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [101, 102]

H =

Z
dx :


⇧2

2
+
(@x�)2

2
+
e2�2

2⇡
�
bme cos

�p
4⇡�� ✓

�

2⇡3/2

�
:,

(2)
where normal-ordering (::) is with respect to e/

p
⇡, �(x)

and ⇧(x) are the scalar field and conjugate momentum,
respectively, b = exp(�) with � being Euler’s constant,
and ✓ 2 (�⇡,⇡], with its origin explained in Ref. [102]
and the Supplemental Material (SM) [103] (we assume
~ = c = 1 throughout, where c is the speed of light). We
work with a lattice regularization of Eq. (2) given by

H = �
X

x


⇡2
x

2
+
(�x � �x�1)2

2
+
µ2�2x
2

�� cos(��x � ✓)

�
,

(3)
where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
� =

p
4⇡, µ2 = a2e2/⇡, � = a2 bme exp[2⇡�(a)]/2⇡3/2,

a is the lattice spacing, and �(a) is the lattice Feynman
propagator at the origin [104, 105]. We set a = 1, with
the continuum limit corresponding to µ,� ! 0. Quanti-
ties are assumed in lattice units throughout.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative

FIG. 1. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
2�2 � � cos

�p
4⇡�� ✓

�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

predictions for the continuum theory require an extrapo-
lation procedure [58, 106], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s
law, @xE = e † , ties the total electric field ET = E✓+E
to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [107].

We study two regimes near the Z2 critical point, shown
in Fig. 1 as (b) and (c). Point (b) is in the decon-
fined phase [red line at ✓ = ⇡ in Fig. 1(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 1(b,i)]. Here, fundamental exci-
tations are “half-asymptotic” [102] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 1(b,ii)]. Point (c) in Fig. 1(a) is in the confined
phase, with a unique ground state [Fig. 1(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.— Constructing a uMPS
representation of the two ground states [108] in the de-
confined phase [Fig. 1(b)], we use the uMPS quasipar-
ticle ansatz [109, 110] to obtain single-particle energy-
momentum eigenstates with dispersion E(p) and mo-
menta p 2 [�⇡,⇡) [103]. From this, we construct two
Gaussian wave packets, localized in momentum and po-
sition space, centered at opposite momenta ±p0. The
initial state consists of a finite nonuniform region of 150
to 300 sites containing the two wave packets, and is sur-
rounded by the uniform vacuum [we choose the vacuum
with positive ET , i.e., the right minimum of Fig. 1(b,i)].
We then time-evolve this state under the Hamiltonian in
Eq. (3), while dynamically expanding the nonuniform re-
gion [111–113] up to 600 to 1300 sites (see SM [103]). By
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to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [107].

We study two regimes near the Z2 critical point, shown
in Fig. 1 as (b) and (c). Point (b) is in the decon-
fined phase [red line at ✓ = ⇡ in Fig. 1(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 1(b,i)]. Here, fundamental exci-
tations are “half-asymptotic” [102] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 1(b,ii)]. Point (c) in Fig. 1(a) is in the confined
phase, with a unique ground state [Fig. 1(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.— Constructing a uMPS
representation of the two ground states [108] in the de-
confined phase [Fig. 1(b)], we use the uMPS quasipar-
ticle ansatz [109, 110] to obtain single-particle energy-
momentum eigenstates with dispersion E(p) and mo-
menta p 2 [�⇡,⇡) [103]. From this, we construct two
Gaussian wave packets, localized in momentum and po-
sition space, centered at opposite momenta ±p0. The
initial state consists of a finite nonuniform region of 150
to 300 sites containing the two wave packets, and is sur-
rounded by the uniform vacuum [we choose the vacuum
with positive ET , i.e., the right minimum of Fig. 1(b,i)].
We then time-evolve this state under the Hamiltonian in
Eq. (3), while dynamically expanding the nonuniform re-
gion [111–113] up to 600 to 1300 sites (see SM [103]). By
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sulting in nontrivial inelastic e↵ects. In contrast, ear-
lier works were limited to elastic scattering at either
weak (nearly free fermions) [48] or strong (nearly free
bosons) [47] coupling regimes. We focus on spatial, tem-
poral, and momentum-resolved diagnostics of elastic and
inelastic processes of quark and meson states, involv-
ing phenomena such as meson disintegration, dynami-
cal string formation and breaking, and the creation of
quark and (excited) meson states. We also investigate the
role of entanglement in high-energy scattering [47, 90–
97]. Our second objective is to propose an analog circuit-
QED implementation of the bosonized lattice Schwinger
model. Recently, the bosonic dual was shown to be ap-
proximately realizable by circular Rydberg states [98].
In contrast, we will show that circuit QED’s basic com-
ponents, its native bosonic degrees of freedom, and the
available ultrastrong coupling [99, 100] allow the model to
be implemented in a simple circuit with minimal ingredi-
ents and approximations, making it particularly suitable
for near-term quantum simulation that goes beyond the
classical simulation methods.

Model.—The massive Schwinger model has the La-
grangian density

L =  ̄
�
i�µ@µ � e�µAµ �m
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 � 1

4
Fµ⌫F
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where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [101, 102]
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where normal-ordering (::) is with respect to e/

p
⇡, �(x)

and ⇧(x) are the scalar field and conjugate momentum,
respectively, b = exp(�) with � being Euler’s constant,
and ✓ 2 (�⇡,⇡], with its origin explained in Ref. [102]
and the Supplemental Material (SM) [103] (we assume
~ = c = 1 throughout, where c is the speed of light). We
work with a lattice regularization of Eq. (2) given by
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where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
� =

p
4⇡, µ2 = a2e2/⇡, � = a2 bme exp[2⇡�(a)]/2⇡3/2,

a is the lattice spacing, and �(a) is the lattice Feynman
propagator at the origin [104, 105]. We set a = 1, with
the continuum limit corresponding to µ,� ! 0. Quanti-
ties are assumed in lattice units throughout.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative

FIG. 1. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
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�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.
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sponding to µ/� in Eq. (3), and the angle ✓ representing
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in Fig. 1 as (b) and (c). Point (b) is in the decon-
fined phase [red line at ✓ = ⇡ in Fig. 1(a) terminat-
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be implemented in a simple circuit with minimal ingre-
dients and approximations, making it particularly suit-
able for near-term quantum simulation. Our second ob-
jective is a numerical exploration of high-energy real-
time scattering phenomenology in the model. We work
in the nonperturbative regime, near the confinement-
deconfinement critical point and in the thermodynamic
limit, using uniform matrix product states (uMPS) [89],
which in turn allows for the construction [47, 48] and
collision of numerically-exact quasiparticle wave packets
in the interacting theory at various energies, resulting
in nontrivial inelastic e↵ects. In contrast, earlier works
were limited to elastic scattering at either weak (nearly
free fermions) [46] or strong (nearly free bosons) [45] cou-
pling regimes. We focus on a detailed spatial, temporal,
and momentum-resolved diagnostic of elastic and inelas-
tic processes of quark and meson states, involving phe-
nomena such as meson disintegration, dynamical string
formation and breaking, and the creation of quark and
(excited) meson states. We also investigate the role of
entanglement in high-energy scattering [45, 90–97].

Model and circuit-QED implementation.—The mas-
sive Schwinger model has the Lagrangian density

L =  ̄
�
i�µ@µ � e�uAµ �m
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4
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µ⌫ , (1)

where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [98, 99]

H =

Z
dx
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where �(x) and ⇧(x) are the scalar field and conjugate
momentum, respectively, M = e/
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4⇡, and u =

e�

2⇡⇤m, where � is Euler’s constant and ⇤ is a UV scale
(we assume ~ = c = 1 throughout, where c is the speed
of light). Finally, ✓ 2 (�⇡,⇡], with its origin explained
in Ref. [99] and the Supplemental Material (SM) [100].
We work with a lattice discretization of Eq. (2) given by
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where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
µ2 = M2a2, � = ua2, and a is the lattice spacing. We set
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FIG. 1. Lumped-element circuit diagram that realizes Eq. (3).

FIG. 2. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
2�2 � � cos

�p
4⇡�� ✓

�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

a = 1, with the continuum limit corresponding to µ,�!
0. Quantities are assumed in lattice units throughout.

Remarkably, Eq. (3) can be exactly realized in a sim-
ple superconducting circuit, shown in Fig. 1. The cir-
cuit can be regarded as a chain of inductively coupled
fluxoniums [101]. It consists of nodes i, each correspond-
ing to a lattice site with a local bosonic degree of free-
dom described by flux �i and charge ⇡i, composed of a
parallel arrangement of a capacitor, an inductor, and a
Josephson junction with respective energies EC , EL, and
EJ [102]. Further, nodes are coupled by inductors with
energy EL0 . The circuit parameters are related to those

of Eq. (3) via � = 8EC
�2 , EL0�4

8EC
= 1, µ2 = EL�4

8EC
,� = EJ�

2

8EC
,

and ✓ = �ext � ⇡, where �ext is a tunable external flux
threading each loop, and � 6= 0 can be chosen arbitrarily
(see the SM [100] for the full derivation). In fact, when
� 6=

p
4⇡, the circuit describes a more general model

known as the massive Thirring-Schwinger model [103].
In the SM [100], we present a method for preparing ini-
tial wave packets of bosonic particles using two ancillary
qubits, hence providing a complete protocol for prepara-
tion and evolution of mesonic wave packets for a scat-
tering experiment. Measurements of the local field �x
[104] or the output field at the edges [105, 106] can be
performed using standard techniques.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative
predictions for the continuum theory require an extrapo-
lation procedure [56, 107], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s
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A. Uniform Matrix Product States

We begin with a general review of uniform matrix product states (see Ref. [S22] for more details). A uniform matrix
product state (uMPS), describing a translationally invariant state, is graphically represented as

| (A)i = · · · A A A A A

sn�1 sn sn+1

· · · , (S34)

where As is a D⇥D matrix for each basis index s. When dealing with a bosonic theory, even the local Hilbert space
is infinite dimensional and needs to be truncated. For the parameters used in the main text, we found the local energy
basis to be an e�cient choice, i.e., the local (single-site) part of the Hamiltonian in Eq. (3) of the main text was
diagonalized using a very large Fock-state basis (of ⇠ 2000 levels), keeping only the lowest d eigenstates (we found
d = 12 to be su�cient for the scattering considered in the main text). The full Hamiltonian was then projected on
this truncated local eigenbasis, and the ground state was subsequently found using variational methods [S23].

The quasiparticle excitations on top of the ground state can be described with the MPS quasiparticle ansatz [S10,
S23, S24]

|�p(B)i =
X

n

eipn · · · AL AL B ÃR ÃR

. . . sn�1 sn sn+1 . . .

· · · . (S35)

This state is written in the so-called mixed canonical form, with the ground-state tensors AL and ÃR in the left-
and right-orthonormal forms, respectively. AL and ÃR can either represent the same ground state for a topologically
trivial excitation, in which case they are related by a gauge transformation (i.e AL = C�1ARC for a D ⇥D matrix
C), or di↵erent degenerate ground states for a topological excitation in case of a spontaneously broken symmetry.
The variational optimization of the B tensor reduces to an eigenvalue problem for each p 2 [�⇡,⇡), providing both
the dispersion relation E(p) and the p-dependent eigenvectors B(p).

The dispersion relation is shown in Fig. S4 for the three parameter regimes studied in the main text: the deconfined
phase where ✓ = ⇡, and the confined phase where ✓ = ⇡�" with " = 0.04, 0.07. At low energies (insets), the dispersion
is well approximated by the relativistic relation E(p) ⇡

p
m2 + p2, where m is the mass of the particle [obtained from

m ⌘ E(p = 0)].

FIG. S4. Dispersion relation as a function of (positive) momentum for the three parameter regimes considered in the main
text [with E(�p) = E(p)]. Solid lines are the numerical uMPS results [obtained using Eq. (S35)], and dashed lines are the
relativistic approximations E(p) ⇡

p
m2 + p2, where m is E(p = 0) for the corresponding particle: quarks q in the deconfined

phase (" = 0) and mesons ⇡j in the confined phase with " = 0.04, 0.07 (only the lightest two mesons corresponding to j = 1, 2
are shown). Insets show a zoom in the low-energy regime.

B. MPS wave-packet preparation

In this section, we describe the numerical procedure for preparing initial wave-packet states using the uMPS
quasiparticles. We follow a procedure similar to the one in Refs. [S25, S26] albeit with some di↵erences that are
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one meson
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FIG. S3. Number of mesons in the confined phase. Purple (yellow) region corresponds to one (two or more) mesons. The
two regions are determined by obtaining the two lowest eigenvalues above the ground state using the topologically trivial MPS
quasiparticle ansatz (see Sec. III A). The single (two or more) meson region correspond to the second eigenvalue being bigger
(smaller) than twice the lowest eigenvalue (mass of the fundamental meson). The remaining parameters are � = 1 and µ2 = 0.1
as in the main text. The star and circle indicate the parameters used in the main text [� = 0.5 and ✓ = ⇡ � 0.04 (star) or
✓ = ⇡ � 0.07 (circle)]. The vertical axis range is [�⇡ + 0.001,⇡ � 0.001] so as to avoid the deconfined phase at ✓ = �⇡,⇡.

overlaps of aL and a†L between the vacuum |vaci and the meson eigenstates |⇡k,ji. Turning on g(t), the (initially)
excited qubit will decay into the system, producing a mesonic wave packet. The central momentum and the shape
of the resulting wave packet can be controlled by choosing the qubit frequency � and the time dependence of the
qubit-system coupling g(t), as described in the Supplementary Methods of Ref. [S16]. Placing the qubit at the (left)
right edge can ensure that only (right-)left-moving excitations are created. The matrix element �k,j can either be
calculated numerically or accounted for (prior to performing the actual scattering experiment) using measurements of
the resulting wave-packet shape and a feedback loop. The wave-packet shape can be determined from, for example,
local measurements of the fields �x [S17] or from spectroscopic measurements of the transmitted amplitude at the
other edge of the system [S18, S19].

An important subtlety is that the qubit generically couples to all mesons in the theory. If there is more than a single
meson flavor, this will result in an undesired superposition of wave packets of di↵erent mesons. To mitigate this issue,
this scheme can be combined with adiabatic state preparation. One can first tune the system to a parameter regime
where there is only a single meson particle. A simple example is the free-boson limit with � = 0. More generally, the
“phase diagram” in Fig. S3, obtained using the uMPS methods of Sec. III A, shows the region in the {�, ✓} parameter
space with only a single meson particle for µ2 = 0.1. This phase diagram is consistent with the perturbative result
of Coleman [S3], predicting the existence of one meson for |✓| >⇠ ⇡/2 in the limit �/µ ! 0 (i.e., the strong-coupling
limit of the original Schwinger model). After preparing the meson wave packets in the single-meson regime, one can
adiabatically tune � and ✓ to their desired regime, preparing in this way the fundamental mesons of the interacting
theory. Tuning both ✓ and � can be accomplished using external time-dependant flux control. In order to be able to
tune �, each Josephson junction in Fig. S2 can be replaced by a SQUID, a loop composed of two junctions, realizing an
e↵ective single flux-tunable junction [S20]. Designing the two loops (the L-J loop from Fig. S2 and the SQUID loop)
to be asymmetric in size allows one to control both �(�ext) and ✓(�ext) with a single external flux [S18, S19, S21].

III. NUMERICAL METHODS

In this section, we provide more details on the uniform-matrix-product-state methods, describing the wave-packet
preparation and particle detection.
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be implemented in a simple circuit with minimal ingre-
dients and approximations, making it particularly suit-
able for near-term quantum simulation. Our second ob-
jective is a numerical exploration of high-energy real-
time scattering phenomenology in the model. We work
in the nonperturbative regime, near the confinement-
deconfinement critical point and in the thermodynamic
limit, using uniform matrix product states (uMPS) [89],
which in turn allows for the construction [47, 48] and
collision of numerically-exact quasiparticle wave packets
in the interacting theory at various energies, resulting
in nontrivial inelastic e↵ects. In contrast, earlier works
were limited to elastic scattering at either weak (nearly
free fermions) [46] or strong (nearly free bosons) [45] cou-
pling regimes. We focus on a detailed spatial, temporal,
and momentum-resolved diagnostic of elastic and inelas-
tic processes of quark and meson states, involving phe-
nomena such as meson disintegration, dynamical string
formation and breaking, and the creation of quark and
(excited) meson states. We also investigate the role of
entanglement in high-energy scattering [45, 90–97].

Model and circuit-QED implementation.—The mas-
sive Schwinger model has the Lagrangian density

L =  ̄
�
i�µ@µ � e�uAµ �m

�
 � 1

4
Fµ⌫F

µ⌫ , (1)

where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [98, 99]

H =

Z
dx
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2
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M2�2
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�u cos(��� ✓)

�
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where �(x) and ⇧(x) are the scalar field and conjugate
momentum, respectively, M = e/

p
⇡, � =

p
4⇡, and u =

e�

2⇡⇤m, where � is Euler’s constant and ⇤ is a UV scale
(we assume ~ = c = 1 throughout, where c is the speed
of light). Finally, ✓ 2 (�⇡,⇡], with its origin explained
in Ref. [99] and the Supplemental Material (SM) [100].
We work with a lattice discretization of Eq. (2) given by

H = �
X
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(�x � �x�1)2
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µ2�2x
2

�� cos(��x � ✓)
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where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
µ2 = M2a2, � = ua2, and a is the lattice spacing. We set
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FIG. 1. Lumped-element circuit diagram that realizes Eq. (3).

FIG. 2. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
2�2 � � cos

�p
4⇡�� ✓

�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

a = 1, with the continuum limit corresponding to µ,�!
0. Quantities are assumed in lattice units throughout.

Remarkably, Eq. (3) can be exactly realized in a sim-
ple superconducting circuit, shown in Fig. 1. The cir-
cuit can be regarded as a chain of inductively coupled
fluxoniums [101]. It consists of nodes i, each correspond-
ing to a lattice site with a local bosonic degree of free-
dom described by flux �i and charge ⇡i, composed of a
parallel arrangement of a capacitor, an inductor, and a
Josephson junction with respective energies EC , EL, and
EJ [102]. Further, nodes are coupled by inductors with
energy EL0 . The circuit parameters are related to those

of Eq. (3) via � = 8EC
�2 , EL0�4

8EC
= 1, µ2 = EL�4

8EC
,� = EJ�

2

8EC
,

and ✓ = �ext � ⇡, where �ext is a tunable external flux
threading each loop, and � 6= 0 can be chosen arbitrarily
(see the SM [100] for the full derivation). In fact, when
� 6=

p
4⇡, the circuit describes a more general model

known as the massive Thirring-Schwinger model [103].
In the SM [100], we present a method for preparing ini-
tial wave packets of bosonic particles using two ancillary
qubits, hence providing a complete protocol for prepara-
tion and evolution of mesonic wave packets for a scat-
tering experiment. Measurements of the local field �x
[104] or the output field at the edges [105, 106] can be
performed using standard techniques.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative
predictions for the continuum theory require an extrapo-
lation procedure [56, 107], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s
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law, @xE = e † , ties the total electric field ET = E✓+E
to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [108].
Two regimes will be studied near the Z2 critical point,

shown in Fig. 2 as (b) and (c). Point (b) is in the de-
confined phase [red line at ✓ = ⇡ in Fig. 2(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 2(b,i)]. Here, fundamental ex-
citations are “half-asymptotic” [99] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 2(b,ii)]. Point (c) in Fig. 2(a) is in the confined
phase, with a unique ground state [Fig. 2(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.—We first consider quark-
antiquark scattering in the deconfined phase [Fig. 2(b)].
Constructing a uMPS representation of the two ground
states [109], we use the uMPS quasiparticle ansatz [110,
111] to obtain single-particle energy-momentum eigen-
states with dispersion E(p) and momenta p 2 [�⇡,⇡)
(see the SM [100]). From this, we construct two Gaus-
sian wave packets, localized in momentum and position
space, centered at opposite momenta ±p0. The initial
state consists of a finite nonuniform region of 150–300
sites containing the two wave packets, and is surrounded
(on the left and the right) by the uniform vacuum [we
choose the vacuum with positive ET , i.e., the right mini-
mum of Fig. 2(b,i)]. We then time-evolve this state under
the Hamiltonian in Eq. (3), while dynamically expand-
ing the nonuniform region [112–114] up to 600–1300 sites
(see the SM [100] for a more detailed description). By
working near the critical point, where the quark mass
mq ⌘ E(p = 0) (i.e., the gap) is small, one can con-
sider momenta up to |p0| <⇠ 0.8. These are su�ciently
small to keep the physics in the long-wavelength regime of
the lattice model, where the dispersion is approximately
relativistic E(p) ⇡ (p2 +m2

q)
1
2 , but highly relativistic

center-of-mass (CM) energies ECM ⌘ 2E(p0) <⇠ 30mq are
achieved.

Figure 3(a) shows the space-time distribution of the
electric field for collisions at three representative ener-
gies, ECM/mq = 11.4, 23.0, and 28.8. Initially, the quark
and antiquark are separated, resembling Fig. 2(b,ii), with
electric field between the charges equal in magnitude but
opposite in sign to the field outside [the two regions corre-
spond to the two degenerate ground states in Fig. 2(b,i)].
Under time evolution, the two charges propagate ballis-
tically, shrinking the negative-field region until they col-
lide. During the collision, the particles bounce o↵ each
other and reverse their propagation direction elastically,
the sole process at lower energies. Specifically, as can
be seen in Fig. 3(a), at the lowest energy, ECM/mq =
11.4, the post-collision value of ET between the charges
is practically equal to the pre-collision value. For the
higher-energy collisions, ECM/mq = 23.0 and 28.8, an in-
crease of the post-collision electric field is observed, sig-
nalling additional charge production.

FIG. 3. Quark-antiquark scattering in the deconfined phase.
(a) Time evolution of the electric field for di↵erent center-
of-mass energies. (b) Time evolution of the von Neumann
entanglement entropy for a cut at x = 0, for the same three
collisions as in (a). (c) Elastic scattering probability (right,
blue) and asymptotic von Neumann entanglement entropy for
the x = 0 cut (left, green) as a function of the center-of-mass
energy. The parameters are µ2 = 0.1 and � = 0.5 [see Eq. (3)].

While our numerical approach does not rely on strong-
or weak-coupling expansion, the relevant scattering chan-
nels can be understood from weak-coupling arguments as
follows. In the SM [100], we derive, in the nonrelativis-
tic limit, an e↵ective potential between opposite charges
at the lowest order in e/m starting from Eq. (1), which
reads (in the center-of-mass frame)

Ve↵(x) =
e2

2

✓
|x|� ✓

⇡
x

◆
+

e2

4m2
�(x) . (4)

Here, x is the distance between charges. For ✓ 6= ⇡, one
recovers linear confinement [Fig. 2(c,ii)] [50, 99, 108, 115],
while at ✓ = ⇡, charges experience short-range repulsion
due to the delta function in Eq. (4) [Fig. 2(b,ii)]. This im-
plies the absence of stable bound states (mesons) in the
deconfined phase, which is confirmed numerically in the
SM [100]. All possible scattering channels are, therefore,
(even-numbered) multi-quark states. The lowest-order
channel after the elastic one (qq̄ ! qq̄) is the four-quark
production (qq̄ ! qq̄qq̄), exhibiting quark fragmentation.
In the latter case, the two inner particles screen the elec-
tric field produced by the outer two, consistent with the
two rightmost panels in Fig. 3(a).

Elastic and inelastic processes are also distinguished
by the production of von Neumann entanglement entropy
[SvN(x, t) = � tr(⇢>x(t) ln ⇢>x(t)) with ⇢>x(t) being the
reduced density matrix for sites y > x] across the collision
point (x = 0), shown in Fig. 3(b) as a function of time.
Figure 3(c) also shows the asymptotic (t ! 1) entangle-
ment generated as a function of the collision energy. The
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sulting in nontrivial inelastic e↵ects. In contrast, ear-
lier works were limited to elastic scattering at either
weak (nearly free fermions) [48] or strong (nearly free
bosons) [47] coupling regimes. We focus on spatial, tem-
poral, and momentum-resolved diagnostics of elastic and
inelastic processes of quark and meson states, involv-
ing phenomena such as meson disintegration, dynami-
cal string formation and breaking, and the creation of
quark and (excited) meson states. We also investigate the
role of entanglement in high-energy scattering [47, 90–
97]. Our second objective is to propose an analog circuit-
QED implementation of the bosonized lattice Schwinger
model. Recently, the bosonic dual was shown to be ap-
proximately realizable by circular Rydberg states [98].
In contrast, we will show that circuit QED’s basic com-
ponents, its native bosonic degrees of freedom, and the
available ultrastrong coupling [99, 100] allow the model to
be implemented in a simple circuit with minimal ingredi-
ents and approximations, making it particularly suitable
for near-term quantum simulation that goes beyond the
classical simulation methods.

Model.—The massive Schwinger model has the La-
grangian density

L =  ̄
�
i�µ@µ � e�µAµ �m

�
 � 1

4
Fµ⌫F

µ⌫ , (1)

where  (x, t) is a 2-component Dirac spinor, �0 =
�z, �1 = i�y with �z,�y being the Pauli matrices, m
is the mass, e is the electric charge, and Aµ(x, t) and
Fµ⌫(x, t) are the gauge field and the field-strength ten-
sor, respectively. Equation (1) is dual to a bosonic scalar
field theory with the Hamiltonian [101, 102]

H =

Z
dx :
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2
+
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where normal-ordering (::) is with respect to e/

p
⇡, �(x)

and ⇧(x) are the scalar field and conjugate momentum,
respectively, b = exp(�) with � being Euler’s constant,
and ✓ 2 (�⇡,⇡], with its origin explained in Ref. [102]
and the Supplemental Material (SM) [103] (we assume
~ = c = 1 throughout, where c is the speed of light). We
work with a lattice regularization of Eq. (2) given by

H = �
X

x


⇡2
x

2
+
(�x � �x�1)2

2
+
µ2�2x
2

�� cos(��x � ✓)

�
,

(3)
where x labels lattice sites, [�x,⇡y] = i�xy, � = 1/a,
� =

p
4⇡, µ2 = a2e2/⇡, � = a2 bme exp[2⇡�(a)]/2⇡3/2,

a is the lattice spacing, and �(a) is the lattice Feynman
propagator at the origin [104, 105]. We set a = 1, with
the continuum limit corresponding to µ,� ! 0. Quanti-
ties are assumed in lattice units throughout.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative

FIG. 1. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1

2µ
2�2 � � cos

�p
4⇡�� ✓

�
[Eq. (3)]. Panels

(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

predictions for the continuum theory require an extrapo-
lation procedure [58, 106], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s
law, @xE = e † , ties the total electric field ET = E✓+E
to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [107].

We study two regimes near the Z2 critical point, shown
in Fig. 1 as (b) and (c). Point (b) is in the decon-
fined phase [red line at ✓ = ⇡ in Fig. 1(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 1(b,i)]. Here, fundamental exci-
tations are “half-asymptotic” [102] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 1(b,ii)]. Point (c) in Fig. 1(a) is in the confined
phase, with a unique ground state [Fig. 1(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.— Constructing a uMPS
representation of the two ground states [108] in the de-
confined phase [Fig. 1(b)], we use the uMPS quasipar-
ticle ansatz [109, 110] to obtain single-particle energy-
momentum eigenstates with dispersion E(p) and mo-
menta p 2 [�⇡,⇡) [103]. From this, we construct two
Gaussian wave packets, localized in momentum and po-
sition space, centered at opposite momenta ±p0. The
initial state consists of a finite nonuniform region of 150
to 300 sites containing the two wave packets, and is sur-
rounded by the uniform vacuum [we choose the vacuum
with positive ET , i.e., the right minimum of Fig. 1(b,i)].
We then time-evolve this state under the Hamiltonian in
Eq. (3), while dynamically expanding the nonuniform re-
gion [111–113] up to 600 to 1300 sites (see SM [103]). By
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� =

p
4⇡, µ2 = a2e2/⇡, � = a2 bme exp[2⇡�(a)]/2⇡3/2,

a is the lattice spacing, and �(a) is the lattice Feynman
propagator at the origin [104, 105]. We set a = 1, with
the continuum limit corresponding to µ,� ! 0. Quanti-
ties are assumed in lattice units throughout.

To gain insight into the anticipated phenomenology, we
proceed with a numerical study of the collision dynam-
ics in the lattice Schwinger model. While quantitative

FIG. 1. (a) Sketch of the phase diagram of the massive
Schwinger model as a function of e/m (corresponding to
µ/�) and ✓. The red dot is the Ising critical point, where
the deconfined phase (red line) terminates. Points (b) and
(c) correspond to the two regimes considered in the main
text. Panels (b,i) and (c,i) show the corresponding scalar
potential V (�) = 1
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(b,ii) and (c,ii) show both the e↵ective potential between the
quarks [Eq. (4)] (green) and the electric/scalar-field distribu-
tions (blue) due to the quarks and mesons.

predictions for the continuum theory require an extrapo-
lation procedure [58, 106], here only fixed, but su�ciently
small, values of µ and � are considered. The model
has two dimensionless parameters, the ratio e/m, corre-
sponding to µ/� in Eq. (3), and the angle ✓ representing
a constant background electric field E✓ = e

2⇡ ✓. Gauss’s
law, @xE = e † , ties the total electric field ET = E✓+E
to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [107].

We study two regimes near the Z2 critical point, shown
in Fig. 1 as (b) and (c). Point (b) is in the decon-
fined phase [red line at ✓ = ⇡ in Fig. 1(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 1(b,i)]. Here, fundamental exci-
tations are “half-asymptotic” [102] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 1(b,ii)]. Point (c) in Fig. 1(a) is in the confined
phase, with a unique ground state [Fig. 1(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.— Constructing a uMPS
representation of the two ground states [108] in the de-
confined phase [Fig. 1(b)], we use the uMPS quasipar-
ticle ansatz [109, 110] to obtain single-particle energy-
momentum eigenstates with dispersion E(p) and mo-
menta p 2 [�⇡,⇡) [103]. From this, we construct two
Gaussian wave packets, localized in momentum and po-
sition space, centered at opposite momenta ±p0. The
initial state consists of a finite nonuniform region of 150
to 300 sites containing the two wave packets, and is sur-
rounded by the uniform vacuum [we choose the vacuum
with positive ET , i.e., the right minimum of Fig. 1(b,i)].
We then time-evolve this state under the Hamiltonian in
Eq. (3), while dynamically expanding the nonuniform re-
gion [111–113] up to 600 to 1300 sites (see SM [103]). By
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shown in Fig. 2 as (b) and (c). Point (b) is in the de-
confined phase [red line at ✓ = ⇡ in Fig. 2(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 2(b,i)]. Here, fundamental ex-
citations are “half-asymptotic” [99] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 2(b,ii)]. Point (c) in Fig. 2(a) is in the confined
phase, with a unique ground state [Fig. 2(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.—We first consider quark-
antiquark scattering in the deconfined phase [Fig. 2(b)].
Constructing a uMPS representation of the two ground
states [109], we use the uMPS quasiparticle ansatz [110,
111] to obtain single-particle energy-momentum eigen-
states with dispersion E(p) and momenta p 2 [�⇡,⇡)
(see the SM [100]). From this, we construct two Gaus-
sian wave packets, localized in momentum and position
space, centered at opposite momenta ±p0. The initial
state consists of a finite nonuniform region of 150–300
sites containing the two wave packets, and is surrounded
(on the left and the right) by the uniform vacuum [we
choose the vacuum with positive ET , i.e., the right mini-
mum of Fig. 2(b,i)]. We then time-evolve this state under
the Hamiltonian in Eq. (3), while dynamically expand-
ing the nonuniform region [112–114] up to 600–1300 sites
(see the SM [100] for a more detailed description). By
working near the critical point, where the quark mass
mq ⌘ E(p = 0) (i.e., the gap) is small, one can con-
sider momenta up to |p0| <⇠ 0.8. These are su�ciently
small to keep the physics in the long-wavelength regime of
the lattice model, where the dispersion is approximately
relativistic E(p) ⇡ (p2 +m2

q)
1
2 , but highly relativistic

center-of-mass (CM) energies ECM ⌘ 2E(p0) <⇠ 30mq are
achieved.

Figure 3(a) shows the space-time distribution of the
electric field for collisions at three representative ener-
gies, ECM/mq = 11.4, 23.0, and 28.8. Initially, the quark
and antiquark are separated, resembling Fig. 2(b,ii), with
electric field between the charges equal in magnitude but
opposite in sign to the field outside [the two regions corre-
spond to the two degenerate ground states in Fig. 2(b,i)].
Under time evolution, the two charges propagate ballis-
tically, shrinking the negative-field region until they col-
lide. During the collision, the particles bounce o↵ each
other and reverse their propagation direction elastically,
the sole process at lower energies. Specifically, as can
be seen in Fig. 3(a), at the lowest energy, ECM/mq =
11.4, the post-collision value of ET between the charges
is practically equal to the pre-collision value. For the
higher-energy collisions, ECM/mq = 23.0 and 28.8, an in-
crease of the post-collision electric field is observed, sig-
nalling additional charge production.
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FIG. 3. Quark-antiquark scattering in the deconfined phase.
(a) Time evolution of the electric field for di↵erent center-
of-mass energies. (b) Time evolution of the von Neumann
entanglement entropy for a cut at x = 0, for the same three
collisions as in (a). (c) Elastic scattering probability (right,
blue) and asymptotic von Neumann entanglement entropy for
the x = 0 cut (left, green) as a function of the center-of-mass
energy. The parameters are µ2 = 0.1 and � = 0.5 [see Eq. (3)].

While our numerical approach does not rely on strong-
or weak-coupling expansion, the relevant scattering chan-
nels can be understood from weak-coupling arguments as
follows. In the SM [100], we derive, in the nonrelativis-
tic limit, an e↵ective potential between opposite charges
at the lowest order in e/m starting from Eq. (1), which
reads (in the center-of-mass frame)
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Here, x is the distance between charges. For ✓ 6= ⇡, one
recovers linear confinement [Fig. 2(c,ii)] [50, 99, 108, 115],
while at ✓ = ⇡, charges experience short-range repulsion
due to the delta function in Eq. (4) [Fig. 2(b,ii)]. This im-
plies the absence of stable bound states (mesons) in the
deconfined phase, which is confirmed numerically in the
SM [100]. All possible scattering channels are, therefore,
(even-numbered) multi-quark states. The lowest-order
channel after the elastic one (qq̄ ! qq̄) is the four-quark
production (qq̄ ! qq̄qq̄), exhibiting quark fragmentation.
In the latter case, the two inner particles screen the elec-
tric field produced by the outer two, consistent with the
two rightmost panels in Fig. 3(a).

Elastic and inelastic processes are also distinguished
by the production of von Neumann entanglement entropy
[SvN(x, t) = � tr(⇢>x(t) ln ⇢>x(t)) with ⇢>x(t) being the
reduced density matrix for sites y > x] across the collision
point (x = 0), shown in Fig. 3(b) as a function of time.
Figure 3(c) also shows the asymptotic (t ! 1) entangle-
ment generated as a function of the collision energy. The
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law, @xE = e † , ties the total electric field ET = E✓+E
to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [108].
Two regimes will be studied near the Z2 critical point,

shown in Fig. 2 as (b) and (c). Point (b) is in the de-
confined phase [red line at ✓ = ⇡ in Fig. 2(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 2(b,i)]. Here, fundamental ex-
citations are “half-asymptotic” [99] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 2(b,ii)]. Point (c) in Fig. 2(a) is in the confined
phase, with a unique ground state [Fig. 2(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.—We first consider quark-
antiquark scattering in the deconfined phase [Fig. 2(b)].
Constructing a uMPS representation of the two ground
states [109], we use the uMPS quasiparticle ansatz [110,
111] to obtain single-particle energy-momentum eigen-
states with dispersion E(p) and momenta p 2 [�⇡,⇡)
(see the SM [100]). From this, we construct two Gaus-
sian wave packets, localized in momentum and position
space, centered at opposite momenta ±p0. The initial
state consists of a finite nonuniform region of 150–300
sites containing the two wave packets, and is surrounded
(on the left and the right) by the uniform vacuum [we
choose the vacuum with positive ET , i.e., the right mini-
mum of Fig. 2(b,i)]. We then time-evolve this state under
the Hamiltonian in Eq. (3), while dynamically expand-
ing the nonuniform region [112–114] up to 600–1300 sites
(see the SM [100] for a more detailed description). By
working near the critical point, where the quark mass
mq ⌘ E(p = 0) (i.e., the gap) is small, one can con-
sider momenta up to |p0| <⇠ 0.8. These are su�ciently
small to keep the physics in the long-wavelength regime of
the lattice model, where the dispersion is approximately
relativistic E(p) ⇡ (p2 +m2

q)
1
2 , but highly relativistic

center-of-mass (CM) energies ECM ⌘ 2E(p0) <⇠ 30mq are
achieved.

Figure 3(a) shows the space-time distribution of the
electric field for collisions at three representative ener-
gies, ECM/mq = 11.4, 23.0, and 28.8. Initially, the quark
and antiquark are separated, resembling Fig. 2(b,ii), with
electric field between the charges equal in magnitude but
opposite in sign to the field outside [the two regions corre-
spond to the two degenerate ground states in Fig. 2(b,i)].
Under time evolution, the two charges propagate ballis-
tically, shrinking the negative-field region until they col-
lide. During the collision, the particles bounce o↵ each
other and reverse their propagation direction elastically,
the sole process at lower energies. Specifically, as can
be seen in Fig. 3(a), at the lowest energy, ECM/mq =
11.4, the post-collision value of ET between the charges
is practically equal to the pre-collision value. For the
higher-energy collisions, ECM/mq = 23.0 and 28.8, an in-
crease of the post-collision electric field is observed, sig-
nalling additional charge production.
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FIG. 3. Quark-antiquark scattering in the deconfined phase.
(a) Time evolution of the electric field for di↵erent center-
of-mass energies. (b) Time evolution of the von Neumann
entanglement entropy for a cut at x = 0, for the same three
collisions as in (a). (c) Elastic scattering probability (right,
blue) and asymptotic von Neumann entanglement entropy for
the x = 0 cut (left, green) as a function of the center-of-mass
energy. The parameters are µ2 = 0.1 and � = 0.5 [see Eq. (3)].
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due to the delta function in Eq. (4) [Fig. 2(b,ii)]. This im-
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deconfined phase, which is confirmed numerically in the
SM [100]. All possible scattering channels are, therefore,
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and antiquark are separated, resembling Fig. 2(b,ii), with
electric field between the charges equal in magnitude but
opposite in sign to the field outside [the two regions corre-
spond to the two degenerate ground states in Fig. 2(b,i)].
Under time evolution, the two charges propagate ballis-
tically, shrinking the negative-field region until they col-
lide. During the collision, the particles bounce o↵ each
other and reverse their propagation direction elastically,
the sole process at lower energies. Specifically, as can
be seen in Fig. 3(a), at the lowest energy, ECM/mq =
11.4, the post-collision value of ET between the charges
is practically equal to the pre-collision value. For the
higher-energy collisions, ECM/mq = 23.0 and 28.8, an in-
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(a) Time evolution of the electric field for di↵erent center-
of-mass energies. (b) Time evolution of the von Neumann
entanglement entropy for a cut at x = 0, for the same three
collisions as in (a). (c) Elastic scattering probability (right,
blue) and asymptotic von Neumann entanglement entropy for
the x = 0 cut (left, green) as a function of the center-of-mass
energy. The parameters are µ2 = 0.1 and � = 0.5 [see Eq. (3)].
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tric field produced by the outer two, consistent with the
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energy. The parameters are µ2 = 0.1 and � = 0.5 [see Eq. (3)].
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recovers linear confinement [Fig. 2(c,ii)] [50, 99, 108, 115],
while at ✓ = ⇡, charges experience short-range repulsion
due to the delta function in Eq. (4) [Fig. 2(b,ii)]. This im-
plies the absence of stable bound states (mesons) in the
deconfined phase, which is confirmed numerically in the
SM [100]. All possible scattering channels are, therefore,
(even-numbered) multi-quark states. The lowest-order
channel after the elastic one (qq̄ ! qq̄) is the four-quark
production (qq̄ ! qq̄qq̄), exhibiting quark fragmentation.
In the latter case, the two inner particles screen the elec-
tric field produced by the outer two, consistent with the
two rightmost panels in Fig. 3(a).

Elastic and inelastic processes are also distinguished
by the production of von Neumann entanglement entropy
[SvN(x, t) = � tr(⇢>x(t) ln ⇢>x(t)) with ⇢>x(t) being the
reduced density matrix for sites y > x] across the collision
point (x = 0), shown in Fig. 3(b) as a function of time.
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FIG. 14. One of the steps involved in lattice-QCD calculations of relevance to the 0⌫�� program is to
determine how the physical transition rates can be accessed from a lattice-QCD calculation that is performed
in a finite and Euclidean spacetime. This process must be done within each LNV scenario and may need
the EFT descriptions to be assisting the matching. Figure is taken from Ref. [199].

relation functions of the two-hadron state. This formalism, known as Lüscher’s method [176, 177],
has been extended to more general scenarios, including to three-hadron scattering amplitudes, see
Ref. [208, 209] for recent reviews. Furthermore, one-to-two hadronic transitions induced by a lo-
cal current can be determined from a corresponding lattice-QCD three-point function involving
the current and hadronic states, with successful applications in constraining matrix elements of
relevance to flavor physics [163, 210, 211]. The generalization of this formalism, known as Lellouch-
Lüscher method [212], is essential in determining the nn ! pp transition amplitude from lattice
QCD (see Refs. [213, 214] for early formalisms for two-nucleon transition amplitudes).

In particular, general model-independent formalisms for accessing one-to-two and two-to-two
hadronic transition amplitudes induced by local currents exist [215–217]. Therefore, once lattice
QCD determines the three-point functions relevant for the nn ! pp process with the higher-
dimensional local operators introduced in Sec. II D, these can be turned into the physical two-
nucleon matrix elements of interest. Similarly, if the matrix elements of relevance to the subprocess
n ! ⇡p are needed to constrain the hadronic EFTs, the path to evaluating such matrix elements is
clear. The challenge to be faced in the upcoming years is to not only accurately and precisely deter-
mine the relevant lattice-QCD matrix elements, but also to constrain two-nucleon elastic scattering
amplitudes at the quark masses at which the nn ! pp calculations are performed. This is because
the Lellouch-Lüscher-type matching conditions require information on the energy dependence of
the two-nucleon scattering amplitude near the transition energy. This puts further emphasis on
reliable and precise two-nucleon spectroscopy from lattice QCD, as described in Sec. III A.

Furthermore, for the scenario involving a light Majorana neutrino, matrix elements of two
spacetime-separated insertions of local currents are required, where hadronic and leptonic contri-
butions are convoluted via a neutrino propagator, hence complicating the matching process. In
fact, due to the long-range nature of the light-neutrino propagation between nuclear states, the
separation of short- and long-distance e↵ects necessary for arriving at a general model-independent
mapping is obscured, but the matching can be perfectly developed within a corresponding EFT.
Building upon the matching formalisms for one-to-one and simpler two-to-two bi-local matrix el-
ements [218–221], the formalism for matching to the leading-order pionless EFT for the 0⌫��
decay has been recently developed [222], hence providing the path to constraining the leading-
order unknown short-distance LEC gNN

⌫ introduced in Sec. II D. With a non-local matrix element,
another involved feature is the possibility of intermediate multi-hadron states with on-shell kine-
matics, which give rise to a di↵erent analytic structure of the four-point function in Euclidean
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FIG. 4. Meson-meson scattering in the confined phase. (a) Time evolution of the electric field for di↵erent ✓ = ⇡ � " at all
positions x [panels (i)] and at x = 0 [panels (ii)] with µ2 = 0.1 and � = 0.5 as in Fig. 3. The wave packets are centered at
p0 = ±0.6, corresponding to ECM/m⇡1 = 6.84, 5.95 for " = 0.04, 0.07. (b) Time evolution of the von Neumann entanglement
entropy at all positions x [panels (i)] and at x = 0 [panels (ii)]. (c) Momenta and positions (mean ± std. extracted from a
Gaussian fit of the projected distributions) of the quarks for " = 0.04 (top) and the mean positions of the right-moving mesons
for " = 0.07 (bottom). (d) Probabilities of two-particle states µ⌫ (µ, ⌫ 2 [⇡1,⇡2, q, q̄]) where µ/⌫ is the particle on the left/right.
The curves for ⇡1⇡2 and ⇡2⇡1 overlap due to the reflection symmetry of the initial state. Near the initial collision (shaded
region), as well as near the secondary collision at t ⇠ 550 for " = 0.07, the state cannot be captured by a basis of asymptotic
particles.

entanglement entropy is maximal during the collision but
quickly approaches a constant afterwards. At lower ener-
gies, it nearly returns to its pre-collision (vacuum) value.
A small increase is observed because di↵erent momentum
components of the wave packets acquire slightly di↵erent
elastic scattering phase shifts, making the two scattered
wave packets slightly entangled [48]. At higher energies,
however, significant net entanglement is generated, indi-
cating inelastic particle production [32].

Finally, we compute elements of the momentum-
resolved scattering S-matrix by projecting the post-
collision state onto a basis of asymptotic two-particle
states (see the SM [100] for details). This basis is con-
structed from the single-particle wavefunctions, requiring
the particles to be widely separated to ensure orthogo-
nality and avoid interaction e↵ects. For 2 ! 2 scatter-
ing, this is guaranteed su�ciently far from the collision
point, but not for higher-order scattering. From this, we
obtain the elastic scattering probability P (qq̄), displayed
in Fig. 3(c), as a function of the collision energy.

The elastic scattering probability is near unity at
lower energies, decreasing monotonically, falling below
0.5 around ECM/mq

>⇠ 28. Interestingly, the energy re-
quired for significant inelastic scattering is many times
the threshold energy (ECM = 4mq). While we did not
obtain the precise contribution of the four-quark (or
higher-quark-number) states [116], the decrease of P (qq̄)
confirms the presence of significant inelastic scattering,
consistent with the increase in entanglement entropy in
Fig. 3(b) and the screening of ET in Fig. 3(a).

Meson-meson scattering.—We next consider scatter-

ing in the confined phase [Fig. 2(c)] at ✓ = ⇡ � ". We
choose " ⌧ 1, which gives rise to weak confinement of
quarks, but keeps us close to the critical point (all other
parameters are unchanged). In contrast to the deconfined
regime, the interplay of high-energy and weak confine-
ment yields rich behavior following the collision. There
are multiple stable meson excitations, which are labeled
by ⇡j (j = 1, 2, ...), with increasing masses m⇡j . Here, we
consider ⇡1⇡1 collisions, with meson wave packets pre-
pared similarly as before, centered at p0 = ±0.6 with
ECM/m⇡1 = 6.84 (5.95) for " = 0.04 (0.07).
The electric-field evolution for the two collisions is dis-

played in Fig. 4(a,i). Before the collision, the background
electric field is only locally disturbed by the charge-
neutral mesons [Fig. 2(c,ii)], unlike in the deconfined case
where the presence of free quarks can lead to electric-
field screening at arbitrary long distances. After the
collision, the mesons partially fragment into a quark-
antiquark pair. The quarks are joined by an electric-field
string which screens the background electric field (light-
blue regions) inside the collision cone. As the quarks
travel outward, their kinetic energy gets converted into
the potential energy of the string. Eventually, they turn
and propagate back in the opposite direction [see also
Fig. 4(c)] causing a second collision. Weaker confinement
" = 0.04 allows the quarks to propagate farther.
Next, we project the time-evolved state onto two-

particle components, focusing on the lightest two mesons
⇡1,⇡2, and the quark-antiquark pair qq̄. While the
latter are not true (i.e., asymptotic) quasiparticles, at
weak confinement " ⌧ 1, (anti)quarks can be approx-
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FIG. 4. Meson-meson scattering in the confined phase. (a) Time evolution of the electric field for di↵erent ✓ = ⇡ � " at all
positions x [panels (i)] and at x = 0 [panels (ii)] with µ2 = 0.1 and � = 0.5 as in Fig. 3. The wave packets are centered at
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for " = 0.07 (bottom). (d) Probabilities of two-particle states µ⌫ (µ, ⌫ 2 [⇡1,⇡2, q, q̄]) where µ/⌫ is the particle on the left/right.
The curves for ⇡1⇡2 and ⇡2⇡1 overlap due to the reflection symmetry of the initial state. Near the initial collision (shaded
region), as well as near the secondary collision at t ⇠ 550 for " = 0.07, the state cannot be captured by a basis of asymptotic
particles.
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quickly approaches a constant afterwards. At lower ener-
gies, it nearly returns to its pre-collision (vacuum) value.
A small increase is observed because di↵erent momentum
components of the wave packets acquire slightly di↵erent
elastic scattering phase shifts, making the two scattered
wave packets slightly entangled [48]. At higher energies,
however, significant net entanglement is generated, indi-
cating inelastic particle production [32].

Finally, we compute elements of the momentum-
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where the presence of free quarks can lead to electric-
field screening at arbitrary long distances. After the
collision, the mesons partially fragment into a quark-
antiquark pair. The quarks are joined by an electric-field
string which screens the background electric field (light-
blue regions) inside the collision cone. As the quarks
travel outward, their kinetic energy gets converted into
the potential energy of the string. Eventually, they turn
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entanglement entropy is maximal during the collision but
quickly approaches a constant afterwards. At lower ener-
gies, it nearly returns to its pre-collision (vacuum) value.
A small increase is observed because di↵erent momentum
components of the wave packets acquire slightly di↵erent
elastic scattering phase shifts, making the two scattered
wave packets slightly entangled [48]. At higher energies,
however, significant net entanglement is generated, indi-
cating inelastic particle production [32].

Finally, we compute elements of the momentum-
resolved scattering S-matrix by projecting the post-
collision state onto a basis of asymptotic two-particle
states (see the SM [100] for details). This basis is con-
structed from the single-particle wavefunctions, requiring
the particles to be widely separated to ensure orthogo-
nality and avoid interaction e↵ects. For 2 ! 2 scatter-
ing, this is guaranteed su�ciently far from the collision
point, but not for higher-order scattering. From this, we
obtain the elastic scattering probability P (qq̄), displayed
in Fig. 3(c), as a function of the collision energy.

The elastic scattering probability is near unity at
lower energies, decreasing monotonically, falling below
0.5 around ECM/mq

>⇠ 28. Interestingly, the energy re-
quired for significant inelastic scattering is many times
the threshold energy (ECM = 4mq). While we did not
obtain the precise contribution of the four-quark (or
higher-quark-number) states [116], the decrease of P (qq̄)
confirms the presence of significant inelastic scattering,
consistent with the increase in entanglement entropy in
Fig. 3(b) and the screening of ET in Fig. 3(a).

Meson-meson scattering.—We next consider scatter-

ing in the confined phase [Fig. 2(c)] at ✓ = ⇡ � ". We
choose " ⌧ 1, which gives rise to weak confinement of
quarks, but keeps us close to the critical point (all other
parameters are unchanged). In contrast to the deconfined
regime, the interplay of high-energy and weak confine-
ment yields rich behavior following the collision. There
are multiple stable meson excitations, which are labeled
by ⇡j (j = 1, 2, ...), with increasing masses m⇡j . Here, we
consider ⇡1⇡1 collisions, with meson wave packets pre-
pared similarly as before, centered at p0 = ±0.6 with
ECM/m⇡1 = 6.84 (5.95) for " = 0.04 (0.07).
The electric-field evolution for the two collisions is dis-

played in Fig. 4(a,i). Before the collision, the background
electric field is only locally disturbed by the charge-
neutral mesons [Fig. 2(c,ii)], unlike in the deconfined case
where the presence of free quarks can lead to electric-
field screening at arbitrary long distances. After the
collision, the mesons partially fragment into a quark-
antiquark pair. The quarks are joined by an electric-field
string which screens the background electric field (light-
blue regions) inside the collision cone. As the quarks
travel outward, their kinetic energy gets converted into
the potential energy of the string. Eventually, they turn
and propagate back in the opposite direction [see also
Fig. 4(c)] causing a second collision. Weaker confinement
" = 0.04 allows the quarks to propagate farther.
Next, we project the time-evolved state onto two-

particle components, focusing on the lightest two mesons
⇡1,⇡2, and the quark-antiquark pair qq̄. While the
latter are not true (i.e., asymptotic) quasiparticles, at
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entanglement entropy is maximal during the collision but
quickly approaches a constant afterwards. At lower ener-
gies, it nearly returns to its pre-collision (vacuum) value.
A small increase is observed because di↵erent momentum
components of the wave packets acquire slightly di↵erent
elastic scattering phase shifts, making the two scattered
wave packets slightly entangled [48]. At higher energies,
however, significant net entanglement is generated, indi-
cating inelastic particle production [32].

Finally, we compute elements of the momentum-
resolved scattering S-matrix by projecting the post-
collision state onto a basis of asymptotic two-particle
states (see the SM [100] for details). This basis is con-
structed from the single-particle wavefunctions, requiring
the particles to be widely separated to ensure orthogo-
nality and avoid interaction e↵ects. For 2 ! 2 scatter-
ing, this is guaranteed su�ciently far from the collision
point, but not for higher-order scattering. From this, we
obtain the elastic scattering probability P (qq̄), displayed
in Fig. 3(c), as a function of the collision energy.

The elastic scattering probability is near unity at
lower energies, decreasing monotonically, falling below
0.5 around ECM/mq

>⇠ 28. Interestingly, the energy re-
quired for significant inelastic scattering is many times
the threshold energy (ECM = 4mq). While we did not
obtain the precise contribution of the four-quark (or
higher-quark-number) states [116], the decrease of P (qq̄)
confirms the presence of significant inelastic scattering,
consistent with the increase in entanglement entropy in
Fig. 3(b) and the screening of ET in Fig. 3(a).
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choose " ⌧ 1, which gives rise to weak confinement of
quarks, but keeps us close to the critical point (all other
parameters are unchanged). In contrast to the deconfined
regime, the interplay of high-energy and weak confine-
ment yields rich behavior following the collision. There
are multiple stable meson excitations, which are labeled
by ⇡j (j = 1, 2, ...), with increasing masses m⇡j . Here, we
consider ⇡1⇡1 collisions, with meson wave packets pre-
pared similarly as before, centered at p0 = ±0.6 with
ECM/m⇡1 = 6.84 (5.95) for " = 0.04 (0.07).
The electric-field evolution for the two collisions is dis-

played in Fig. 4(a,i). Before the collision, the background
electric field is only locally disturbed by the charge-
neutral mesons [Fig. 2(c,ii)], unlike in the deconfined case
where the presence of free quarks can lead to electric-
field screening at arbitrary long distances. After the
collision, the mesons partially fragment into a quark-
antiquark pair. The quarks are joined by an electric-field
string which screens the background electric field (light-
blue regions) inside the collision cone. As the quarks
travel outward, their kinetic energy gets converted into
the potential energy of the string. Eventually, they turn
and propagate back in the opposite direction [see also
Fig. 4(c)] causing a second collision. Weaker confinement
" = 0.04 allows the quarks to propagate farther.
Next, we project the time-evolved state onto two-

particle components, focusing on the lightest two mesons
⇡1,⇡2, and the quark-antiquark pair qq̄. While the
latter are not true (i.e., asymptotic) quasiparticles, at
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FIG. 14. One of the steps involved in lattice-QCD calculations of relevance to the 0⌫�� program is to
determine how the physical transition rates can be accessed from a lattice-QCD calculation that is performed
in a finite and Euclidean spacetime. This process must be done within each LNV scenario and may need
the EFT descriptions to be assisting the matching. Figure is taken from Ref. [199].

relation functions of the two-hadron state. This formalism, known as Lüscher’s method [176, 177],
has been extended to more general scenarios, including to three-hadron scattering amplitudes, see
Ref. [208, 209] for recent reviews. Furthermore, one-to-two hadronic transitions induced by a lo-
cal current can be determined from a corresponding lattice-QCD three-point function involving
the current and hadronic states, with successful applications in constraining matrix elements of
relevance to flavor physics [163, 210, 211]. The generalization of this formalism, known as Lellouch-
Lüscher method [212], is essential in determining the nn ! pp transition amplitude from lattice
QCD (see Refs. [213, 214] for early formalisms for two-nucleon transition amplitudes).

In particular, general model-independent formalisms for accessing one-to-two and two-to-two
hadronic transition amplitudes induced by local currents exist [215–217]. Therefore, once lattice
QCD determines the three-point functions relevant for the nn ! pp process with the higher-
dimensional local operators introduced in Sec. II D, these can be turned into the physical two-
nucleon matrix elements of interest. Similarly, if the matrix elements of relevance to the subprocess
n ! ⇡p are needed to constrain the hadronic EFTs, the path to evaluating such matrix elements is
clear. The challenge to be faced in the upcoming years is to not only accurately and precisely deter-
mine the relevant lattice-QCD matrix elements, but also to constrain two-nucleon elastic scattering
amplitudes at the quark masses at which the nn ! pp calculations are performed. This is because
the Lellouch-Lüscher-type matching conditions require information on the energy dependence of
the two-nucleon scattering amplitude near the transition energy. This puts further emphasis on
reliable and precise two-nucleon spectroscopy from lattice QCD, as described in Sec. III A.

Furthermore, for the scenario involving a light Majorana neutrino, matrix elements of two
spacetime-separated insertions of local currents are required, where hadronic and leptonic contri-
butions are convoluted via a neutrino propagator, hence complicating the matching process. In
fact, due to the long-range nature of the light-neutrino propagation between nuclear states, the
separation of short- and long-distance e↵ects necessary for arriving at a general model-independent
mapping is obscured, but the matching can be perfectly developed within a corresponding EFT.
Building upon the matching formalisms for one-to-one and simpler two-to-two bi-local matrix el-
ements [218–221], the formalism for matching to the leading-order pionless EFT for the 0⌫��
decay has been recently developed [222], hence providing the path to constraining the leading-
order unknown short-distance LEC gNN

⌫ introduced in Sec. II D. With a non-local matrix element,
another involved feature is the possibility of intermediate multi-hadron states with on-shell kine-
matics, which give rise to a di↵erent analytic structure of the four-point function in Euclidean
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TAKE-HOME MESSAGES FOR PART IV:

For theoretical proposals for scattering in atomic analog simulators, see Surace and Lerose, New 
J. Phys. 23, 062001 (2021) and Su, Osborne, and Halimeh, arXiv:2401.05489 [cond-mat.quant-gas].

Circuit QED platforms is a natural analog simulator for certain bosonic quantum field 
theories. We show how it can be used to simulate the Schwinger model with a CP 
violating -term in both confined and deconfined phases. 

This allows us to propose an analog scattering experiment on circuit-QED platforms, 
which would be an exciting possibility! 

Powerful iMPS tools allow creating bound and unbound particle excitations on top 
of interacting vacuum, generating wave packets, and scattering them, for an infinite 
system size with translational symmetry. 

We observe non-trivial dynamics: in the deconfined phase, quark-antiquark pairs get 
fragmented to two such pairs, and in the confined phase, meson-meson scattering 
generates other meson types, as well as fragmentation to quark-antiquark pairs. 
String formation and breaking clearly are in play!

θ

For iMPS, see: Vanderstraeten, Haegeman, and Verstraete, 
SciPost Phys. Lect. Notes , 7 (2019), Haegeman, Pirvu, Weir, 
Cirac, Osborne, Verschelde, and Verstraete, Phys. Rev. B 85, 
100408 (2012), Haegeman, Michalakis, Nachtergaele, Osborne, 
Schuch, and Verstraete, Phys. Rev. Lett. 111, 080401 (2013).



Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
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Bauer, ZD, Klco, and Savage, Nature 
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We have taken important steps in figuring out how to simulate hadron 
scattering using quantum computers but a lot more needs to be done to 
achieve quantum simulation of scattering in the Standard Model.
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