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Outline

I Appearance of universal behavior
→ independence of the interaction details
→ equal long-range behavior but different short-range behavior

I Definition of the universal window for weakly bound systems
→ Weakly bound systems
→ Correlation between bound and scattering states

I Dynamics governed by a few parameters (control parameters)
→ Continuous (or discrete) scale invariance

Interplay of two aspects

I Weakly bound systems are strongly correlated

I In the universal regime details of the interaction are not important
→ Effective interactions
→ Gaussian (or other) characterization

I Are correlated systems and universal properties compatible?

I Transition from universal to non-universal regime
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The universal window

Low energy quantities

I We consider a short-range interaction: V (r > r0)→ 0

In this case low energy means E = k2~2/m < ~2/mr2
0

I In this regime the s-wave phase shift is well described by the effective range
expansion up to second order

k cot δ0 = −1/a + rek
2/2 + . . .

with a the scattering length defined from the Schrödinger equation, Hφ0 = 0
φ0(r →∞)→ u0 = 1− a/r

and re the effective range

re =
2

a2

∫ ∞
0

(φ2
0 − u2

0)r2dr



The universal window

The presence of a shallow bound (or virtual) state

A bound (virtual) state corresponds to the S-matrix pole:

S = e2iδ0 =
e iδ0

e−iδ0
=

k cot δ0 + ik

k cot δ0 − ik

So the pole is the solution of k cot δ0 − ik = 0

In general all terms in the expansion of k cot δ0 are needed.

However, when a shallow state appears (fine tuning), we can use the expansion up to
second order (iκ = k)

k cot δ0 = −1/a + rek
2/2 −→ κ = 1/a + reκ

2/2 + . . .

which introduces a strict correlation between the low energy parameters.



I The S-matrix representing one shallow state, virtual or bound, is

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

with the energy of the system E = ~2k2/m

I The energy pole is described by the energy length

1/κ = aB −→ E2 = −~2/ma2
B

I E2 is a bound or virtual state when aB > 0 or aB < 0

I the second pole is described by the length rB = a− aB

I re
aB

= 1−
√

1− 2re/a → re/a < 0.5
re
rB

= 1 +
√

1− 2re/a



The universal window: Protagonists of the story

a→ scattering length, re → effective range
aB → E = ~2/ma2

B → energy length, rB = a− aB → second pole
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Physical systems inside the universal window
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Effective description

I The S-matrix

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

is exactly represented by the Eckart potential:

V (r) = −2
~2

mr2
0

βe−r/r0

(1 + βe−r/r0)2


a = 4r0

β
β−1

aB = 2r0
β+1
β−1


re = 2r0

β+1
β

rB = 2r0



The universal window

I The figure shows the universal character of the window delimited by
−∞ < re/a < 0.5 and −∞ < re/aB < 1

I The systems can be related along the curve:
Systems with similar values of re/a, or equivalently similar values of β, are related
by scale transformation: r0 → λr0

I Many observables depend by the position on the curve:

helium dimer deuteron
exp. calc. exp. calc.

− ~2

ma2
B
≈ − ~2

mr2
e

(1−
√

1− 2re/a )2 1.3 mK 1.3mK 2.224MeV 2.223 MeV

< r2 >≈ a2

8

[
1 + ( rB

a )2
]

67.015a0 67.017a0 1.967fm 1.955fm

C 2
a ≈ 2

aB
1

1−re/aB
0.10898a

−1/2
0 0.10899a

−1/2
0 0.885fm−1/2 0.883fm−1/2



The gaussian interaction as a coordinate system
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The universal window in terms of the Gaussian parameters
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Effective description

I System inside the window have been described using different EFT frameworks

I The nuclear system is currently described using chiral potentials or using pionless
EFT

I Atomic helium has been extensively studied using potentials models (Aziz
potentials, TTY potential, etc) and also using contact EFT

I Halo nuclei are currently studied using potential models and also Halo EFT

I Hadron systems as N − Λ and hypernuclei are studied using potential models and
also using chiral or contact EFT

I The above figure suggests a common description of the systems on the plot based
on an effective potential

VLO = V [β(a, aB , re), r0(a, aB , re)]

I We consider this description a LO description



Examples

Contact EFT for two bosons

I At LO the potential is VΛ(r) = CΛ
Λ3

π3/2 e
−Λ2r2/4

I The coupling constant CΛ is fixed to reproduce the scateering length for
increasing values of the cutoff Λ→∞

Effective description using a Gaussian potential

I The effective potential is Vr0(r) = − ~2

mr2
0
βe−r

2/r2
0

I The coupling constant β and the range r0 are determined from the scattering
length a and the energy length aB

I For one value of the cutoff Λ = 2/r0 the two descriptions are equivalent

I The quantity r0 defines the two-body scale (to be discussed below)



The two-body scale: assigning dimensions
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Indications from Efimov Physics: K∗, the three-body parameter
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a

K

H

ξ

In contact interactions a = aB . The three-body sector is scale invariant and K∗, the
binding momentum at the unitary limit, fixes the branch in which the system is located

Ka = tan ξ and H = K∗e
∆(ξ)/2s0

with ∆(ξ) the universal function and s0 a universal number



The three-body parameter using the gaussian characterization

The case of three bosons: V =
∑
ij

V0e
−(rij/r0)2
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The three-body parameter: the helium case

Potential E2 E3 E4 r
(3)
0 (a0) r

(4)
0 (a0)

a: HFD-HE2 0.8301 117.2 535.6 11.146 11.840
b: LM2M2 1.3094 126.5 559.2 11.150 11.853
c: HFD-B3-FCH 1.4475 129.0 566.1 11.148 11.853
d: CCSAPT 1.5643 131.0 571.7 11.149 11.851
e: PCKLJS 1.6154 131.8 573.9 11.148 11.852
f: HFD-B 1.6921 133.1 577.3 11.149 11.854
g: SAPT96 1.7443 134.0 580.0 11.147 11.850

Table: Dimer, trimer and tetramer energies (in mK) for the indicated potential

Energies are from E. Hiyama and M. Kamimura, Phys.Rev.A 85, 062595 (2012), A. Kievsky et al, Phys.Rev.A
96, 040501(R) (2017), and P. Barletta and A. Kievsky, Phys.Rev.A 64, 042514 (2001)



The three-body parameter: the helium case
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The helium three-body parameter

Scaling each helium-helium potential Vλ = λVHe−He(r) such that E2(λ) = 0

E ∗3 = −~2

m
K 2
∗ = −~2

m

(0.4883)2

[r
(3)
0 ]2

≈ 83mK

E ∗4 = −~2

m
K 2
∗ = −~2

m

(1.1847)2

[r
(4)
0 ]2

≈ 433mK

All the Helium-Helium potentials taken into account share the same three-body
parameter and the same four-body parameter!

They were not explicitely included in the determination of the potentials!

r
(3)
0 and r

(4)
0 are the three-body and the four-body scale.

What information is encoded here?



The gaussian scale

I Along the gaussian path:

I The Helium dimer can move along the curve described by a gaussian potential

V0e
−(r/r

(2)
0 )2

with r
(2)
0 ≈ 10 a0.

I The Helium trimer can move along the curve described by a gaussian potential

V0

∑
i<j

e−(rij/r
(N)
0 )2

with r
(3)
0 ≈ 11.15 a0.

I The Helium tetramer can move along the curve described by a gaussian potential

V0

∑
i<j

e−(rij/r
(N)
0 )2

with r
(4)
0 ≈ 11.85 a0.

I The different ranges indicate how the clusters pack: the gaussian range → the
packing scale



van der Waals universality

For Helium r
(3)
0 ≈ 11.15 a0 and rvdW = 5.08 a0 → a− = −4.37r0 → a−/rvdW = −9.6



Predictions: the atom-dimer scattering length
aAD/aB = d1 + d2 tan[s0 ln(K∗r0(aB/r0) + Γ3) + d3 (A. Deltuva et al., PRC 102, 064001 (2020))
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Unifying the scales: the LO potential

I the two body scale describes the long range physics

I the three- and four body scale describe the packing

I we introduce the following LO potential

VLO = V0

∑
i<j

e−(rij/r
(2)
0 )2

+ W0

∑
i<j<k

e−(ρijk/ρ0)2

with W0, ρ0 fixing the three- and four-body parameters

I predictions:

I low energy scattering: atom-dimer, atom-trimer, etc

I the EN/N behavior up to the liquid



Unifying the scales: the LO potential
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The three-nucleon system: A gaussian characterization

V (1, 2, 3) =
∑
i<j

V (i , j) =
∑
i<j

(
V0e

−(r/r0)2P01 + V1e
−(r/r0)2P10

)
The np scattering lengths are: 0anp = −23.74 fm and 1anp = 5.419 fm

To construct the plot we follow the nuclear path defined as 0anp/
1anp = −4.38
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The three-nucleon system: A gaussian characterization

V (1, 2, 3) =
∑
i<j

V (i , j) =
∑
i<j

(
V0e

−(r/r0)2P01 + V1e
−(r/r0)2P10

)

0 0.1 0.2 0.3 0.4 0.5
r
0
/a

B

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

r 0Κ

deuteron
3
H 1st excited state

3
H

r
0
/a

B
=0.457

E
*
=2.6 MeV

3
H

From the plot r0/aB = 0.457→ r0 = 1.97 fm and K∗ = 0.4883/r0 = 0.247 fm−1



The nuclear three-body parameter

I The two-nucleon potential alone does not determine the three-body parameter

Potential E2(MeV) E3(MeV) E4(MeV) r
(3)
0 (fm) r

(4)
0 (fm)

AV18 2.224 7.62 24.23 2.43 2.45
N3LO 2.224 7.85 25.38 2.15 2.20
CD Bonn 2.224 8.00 26.20 2.10 2.15
AV18+UR 2.224 8.48 28.45 1.97 2.07
Exp. 2.224 8.48 28.30 1.97 2.08

I A three-body force is an intrinsic ingredient of the nuclear potential

I Let us scale the NN potential bringing it to the unitary limit

Vλ =
∑
i<j

V λ
AV 18(i , j) =

∑
i<j

∑
ST

λSTVST (i , j) λ0,1 = 1.0616, λ1,0 = 0.8

I with these value Ed = 0 and 1anp →∞



The nuclear three-body parameter

physical point unitary limit
Potential E2(MeV) E3(MeV) E4(MeV) E2(MeV) E3(MeV) E4(MeV)
AV18 2.224 7.62 24.9 0 2.27 11.7
AV18+UR 2.224 8.48 29.2 0 2.65 14.1
Gaussian 2.224 8.48 29.1 0 2.53 13.7

I The nuclear potential follows the gaussian path

I the gaussian characterization helps us to determine the important scales:

I The two-body scale: 1r0 = 1.83 fm, 3r0 = 1.55 fm
I The three-body scale: r

(3)
0 = 1.97

I The four-body scale: r
(4)
0 = 2.08

I Accordingly we can define the nuclear three- and four-body parameter:

I For A = 3: r
(3)
0 = 1.97 fm −→ E 3

∗ = ~2

m
0.4883

(r
(3)
0 )2

= 2.53± 0.1 MeV

I For A = 4: r
(4)
0 = 2.08 fm −→ E 4

∗ = ~2

m
1.1847

(r
(4)
0 )2

= 13.7± 0.5 MeV



Unifying the scales: the LO potential
I The two-nucleon LO effective potential should describe the long-range physics. It

could have a simply gaussian (or other characteristic form)

VLO(2N) = V0e
−(r/r0)2P01 + V1e

−(r/r0)2P10

it could be taken from chiral-EFT fixing Λ = 2/r0

VLO(2N) = C 0
Λe
−Λ2r2/4P01 + C 1

Λe
−Λ2r2/4P10 + Vπ

I At LO a three-nucleon force should be also included. The cE term, considered in
chiral EFT at N2LO, has to be promoted to LO.

VLO(3N) = W0

∑
i<j<k

e−(rij/ρ0)2
e−(rik/ρ0)2

with W0, ρ0 fixed to reproduce E (3H) and E (4He)



E/A curves in helium and in nuclei at the physical point
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Predictions: the doublet neutron-deuteron scattering length
The doublet 2and ≈ 0.65 fm. Its very low value is not easy to understand. However the
gaussian characterization of the universal window shows that at the place in which the
3H is located the 2and/aB function is going through zero. A detailed analysis predict
2and ≈ 0.45 fm.
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Predictions: the α particle excited state
The 0+

2 state of 4He becomes a true ground state turning off the Coulomb force:

VC (r) = ε e
2

r . At ε = 1 we have studied the p − 3H 0+ phase-shift. The resonance
parameters are obtained from the S-matrix complex pole ER + iΓ/2.
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Using the N3LO-EM potential, we have obtained ER = 0.13(2) MeV and
Γ = 0.40(15) MeV compared to E exp

R = 0.39(2) MeV and Γ = 0.50(5) MeV (P.-Y.

Duerinck et al., submitted to PRC)



The α particle excited state: universal concepts

Using the VLO(2N) + VLO(3N) fixed to the N3LO-EM and the ACCC method we
obtain



Gaussian characterization of the universal window for A ≤ 8
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Mirroring the nuclear chart at the unitary limit
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Conclusions

I Based on the simplet S-matrix having one bound (or virtual) state we have
defined the universal window

I Many different systems are located inside the window

I The Eckart (or Gaussian) potential representing the one-state S-matrix can be
used to describe these systems. This characterization can be considered a LO
description.

I The Gaussian characterization of the universal window allows to assign dimensions
to the different system. We have shown the two-, three- and four-body scales.

I The three-body scale is related to the three-body parameter: The energy of the
triton at the unitary limit is linked to the physical point following the Gaussian
path.

I At the unitary point Ed = 0 and 3H shows the Efimov effect

I Using the gaussian path we suggest that the physical point and the unitary point
share the same microscopic theory!


