Hydrodynamic attractors-Fluid Dynamic beyond equilibrium

INSTITUT FÜR THEORETISCHE PHYSIK

Trento, 09/06/2025

Toshali Mitra

Universality in strongly-interacting system from QCD to Atoms

<u>Strongly interacting guantum systems</u>

- Strongly correlated quantum fluids.

Thomas et al (2012)

Holographic duality

Strong-weak duality

Strongly coupled field theory in R^4

Weakly coupled Gravity on AdS₅ black hole

CFT temperature

Hawking temperature.

CFT entropy and shear viscosity

Area of event horizon.

>AdS/CFT correspondence predicts a lower bound

 $\eta/s \geq 1/4\pi$

Kovtun, Son, Starinets 2005

Thomas Schäfer Lecture Schleching 2025

tline

- Strongly interacting system and hydro behaviour
- Hydrodynamics as universal effective theory
- Attractors in cold atoms
- Attractors and spontaneous symmetry breaking
- Summary and outlook

• Hydrodynamics Far from equilibrium in heavy ion collision

<u>Quark-Gluon Plasma</u>

- Fundamental particles of QCD
 - Quarks Proton and Neutron
 - Gluons- Mediator of strong interaction.
- > RHIC 2000 and 2010 Energy Frontier at LHC

Emergence of hydrodynamic

>QGP-

- Perfect fluid like behaviour
- Strong interaction
- Set Effective theory hydrodynamic

<u>Ultracold atoms</u>

> Table-top experiment

- Clouds of dilute fermions
- Deformed by harmonic trapping fields
- Tunable scattering length a(G)

Apparatus from Duke experiment

Thomas et al (2012)

Fluidity in cold atoms

> Elliptic flow

- Released from Cigar-shaped optical trap.
- Large pressure gradient.
- Low ratio of η/s in non-relativistic case.

O' Hara et al (2002) ⁶Li

Ŧ	I
_	Ŧ
lth	
	2.0
Ŧ	I
	2.0

Hydrodynamics

<u>Hydrodynamics</u>

> Effective description of many-body physics in the long wavelength limit.

> Applicable to non-equilibrium systems with large gradient expansion.

• Regime of applicability?

Relativistic Hydrodynamics

Solutions Macroscopic quantities of interest: $\nabla_{\mu} T^{\mu\nu} = 0$

Solution: $T^{\mu\nu} = (\varepsilon + P)u^{\mu}$ $P = P(\varepsilon)$

Some constitutive relation for dissipative correction:

$$\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \zeta \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} + high$$

1st order correction

 $\sigma_{\mu\nu} \propto V_{\mu} u_{\nu}$

shear viscosity

$$u^{\nu} + Pg^{\mu\nu} + \Pi^{\mu\nu}$$

Perfect fluid

Song and Heinz (QM 2009)

er order correction

How to describe equilibrium?

Hydrodynamic Attractors!!

How to describe Hydro beyond

Attractors in Heavy-ion collision

<u>Attractors in ultracold atoms</u>

Attractors in Heavy-ion collision

<u>Stages of heavy-ion collisions</u>

Figure taken from Heavy quarkonium in extreme conditions by Alexander Rothkopf.

Incoming nuclei ——Pre-thermalisation ——QGP ——Hadronisation ——Freeze-out

Bjorken Flow: Longitudinal expansion

> 1 - D model to describe nuclei-nuclei collisions.

- *x*, *y* independent
- Boost invariant

> Proper time: $\tau = \sqrt{t^2 - z^2}$

> Energy-momentum tensor:

 $T^{\mu}_{\nu} = diag(-\varepsilon(\tau), p_T(\tau), p_T(\tau), p_L(\tau)),$

 $\pi_{\mu\nu} = diag(0, \pi_T, \pi_T, \pi_L)$

Gradient expansion

$p = \varepsilon/3$ > For a conformal fluid:

> Evolution of energy density:

$\nabla_{\mu}T^{\mu\nu} = 0 \Rightarrow$

• Ideal hydro: $p_L = p$

$$\varepsilon = \tau^{-4/3}$$

Subscription: $\varepsilon(\tau) \approx \varepsilon_0 \left(\frac{\tau_0}{\tau}\right)^{4/3}$

Heller and Janik 2007.

$$\Rightarrow \partial_{\tau} \varepsilon = -\frac{1}{\tau} \left(\varepsilon + p_L \right)$$

• First order hydrodynamics: $p_L = p - \frac{-\eta}{3}$

$$\varepsilon = \tau^{-4/3} + \cdots$$

$$^{3} + 6C_{\eta} \pi \epsilon_{0}^{4/3} \frac{\tau_{0}}{\tau^{2}} + \dots$$

classical gravity to compute A practical Mini-course (Matteo Bag Applied holography-

Phenomenological model: MIS theory

> MIS formulation: $\pi^{\mu\nu}$ independent dynamical variable,

 $\tau_{\pi} u^{\alpha} \nabla_{\alpha} \pi^{\mu\nu} + \pi^{\mu\nu} = -\eta \sigma^{\mu\nu}$

 $C_n \varepsilon^{3/4}$ Relaxation time $\tau_{\pi}\partial_{\tau}\pi_{L} + \pi_{L}\left(1 + \frac{4}{3}\tau_{\pi}\right) + \frac{4}{3}\frac{\eta}{\tau} = 0 \qquad \tau\partial_{\tau}\varepsilon + \frac{4}{3}\varepsilon - \pi_{L} = 0$ $C_{\pi}T^{-1}$

> Energy density: $\tau \partial_{\tau} \ln \varepsilon = -\frac{4}{3} + \frac{16C_{\eta}}{9\tau T} + \frac{C_{\eta}C_{\pi}}{27\tau^2 T^2}$

 $\tau \partial_{\tau} \ln \varepsilon = (\tau \partial_{\tau} \ln \varepsilon)_{attract} + (\tau \partial_{\tau} \ln \varepsilon)_{non-hydro}$

Kinetic theory and holographic attractors

Skinetic theory- Quasi-particle description

$$\partial_{\tau} f - \frac{p_z}{\tau} \partial_{p_z} f = C[f] \qquad \qquad \frac{\eta}{s} = \frac{5}{T} \tau_{rel}$$

>Holography - Strong-weak duality

<u>Attractors in other models</u>

Seauss-Bonnet Gravity

Hydrodynamic Attractors: Universal Phenomena

> Hydrodynamic attractor: *Evolution of non-equilibrium system for arbitrary initial* conditions to the same late-time behaviour characteristic by hydrodynamic degrees of freedom.

> Heavy-ion collision: Attractor has been observed in an expanding boost-invariant background.

> Hydrodynamic attractor in heavy- ion collision.

- Hydro far-from-equilibrium. Soloviev, review on hydrodynamic attractors (2021)
- Phenomenological implication.
- Rich mathematical structure. Heller and Spalinski (2015)

> Can attractor be observed experimentally?

Mazeliauskas et al(2019)

Attractors in ultra cold atom

Ultracold atom

- > Hydrodynamic relaxation model
 - Contact interaction
 - Scattering length *a*.
 - > Tunable by magnetic field.
 - Fluid remains uniform and rest.
 - Isotropic expansion. $\zeta \neq 0$

Fujii and Enss (2024)

• Unitarity limit:
$$\frac{1}{a} \to 0$$

• $\eta/s \sim 0.5$ and $\zeta/s \sim \frac{1}{a^2} \to 0$
 $a^2\zeta \to constant$

Relative size change between the fluid size & the scattering length

<u>Attractor in ultra cold atoms</u>

> MIS formulation

$$a(t)^{-1} \propto t^{-k}$$

> Periodic drive: New cyclic attractor

Anisotropic Periodic oscillation - ongoing work

> Periodic oscillation in z- direction.

 $1 + \beta \sin(\omega t)$

> Interpretation of oscillatory attractor in HIC??

Attractors and spontaneous symmetry breaking

Buza, Mitra, Soloviev (2024)

tractor meets symmetry breaking

Figure taken from Heavy quarkonium in extreme conditions by Alexander Rothkopf.

> Transition from symmetric phase to broken phase?

<u>ydrodynamic + Condensate</u>

Solution Couple a viscous fluid with a scalar field $\Sigma = \sigma e^{i\psi}$ of mass $m \sim (T - T_c)$

> Energy-momentum tensor:

$$T^{\mu\nu} = T^{\mu\nu}_{fluid} + T^{\mu\nu}_{scalar}$$
$$T^{\mu\nu}_{ideal} + \Pi^{\mu\nu}$$

Scalar field equation

 $(Eom)_{scalar} - u \cdot \nabla \sigma = 0$

 σ : condensate and ψ : phase, constant phase

Potential as a function of temperature and condensate. Figure taken from Buza, Mitra, Soloviev (2024)

Modified fluid equations

Conservation of energy-momentum:

$$(\tau \partial_{\tau} \log T - \frac{1}{3}(\chi - 1)) = m_0 \frac{\sigma^2 + 2\tau \sigma \sigma'}{8T^3} + \frac{\tau}{4T^3} C_{\kappa_1} {\sigma'}^2$$

Scalar field equation:

$$\sigma'' + \frac{\sigma'}{\tau} + \lambda\sigma^3 + (m_0(T - T_c)\sigma + C_{\kappa_1}T\sigma') = 0$$

> MIS equation:

$$\tau \chi' + \frac{4}{3} \left(\chi - \frac{C_{\eta}}{C_{\pi}} \right) + 4\chi \frac{\tau T'}{T} + \frac{\tau}{C_{\pi}} \chi T = 0.$$

Buza, Mitra, Soloviev (2024)

Evolution of the system shown on $T - \sigma$ phase space

- >
- > Attractor time: Timescale from $\tau_{hyd}(\sigma = 0, \chi = 0)$ to $\tau_{\sigma}(\chi = 0, \sigma \neq 0)$.

For Bjorken flow,

$$\frac{\Delta \tau}{\tau_0} = \frac{\tau_\sigma - \tau_{hyd}}{\tau_0} \equiv |\sigma(\tau)| \le 10^{-2} \sim 13.2$$

> Freeze-out time

 $\tau/\tau_0 \sim 10$

Transition from hydro-like behaviour to the symmetry breaking fixed points.

Buza, Mitra, Soloviev (2024)

Summary and outlook

> Hydrodynamic attractor - Hydro beyond equilibrium. > Heavy-ion: Attractors observed in monotonically expanding system. Cold atoms: Cyclic attractor. Attractors + Condensate evolves the system out of hydro.

- Experimental observation of attractors in cold atoms?
- Cyclic attractor in HIC
- Attractor in a periodically driven system + condensate?
- Attractors close to superfluid phase transition in cold atoms?

Thank you

Plan to experimentally realise attractor in cold atoms.

The attractor behavior can be probed in current coldatom experiments, e.g., in a two-component Fermi gas of ⁴⁰K atoms with Fermi energy $E_F \sim h \times 20 \,\mathrm{kHz}$ at $T/T_F = 0.25$. The effect is expected to be large near unitarity, where the bulk viscous relaxation time is predicted as $\tau_{\zeta} \sim 0.7\hbar/k_BT \sim 0.15 \,\mathrm{ms} \,[35]$. Let us consider the power-law protocol with $\alpha = 1/2$ and $1/k_F \tilde{a} = 0.5$. As starting times of the ramp, one can choose $t_k/\tau_{\zeta} =$ 0.5, 1, 2; the maximum rate of change of $1/k_F a$ is then $\sim 4 \,\mathrm{kHz}$, well within experimental capabilities near the narrow Feshbach resonance at 202 G. The attractor is expected to occur in the time window $t \sim (5-10) \times \tau_{\zeta} \sim$ 0.75–1.5 ms. It will be visible in the time-dependent contact, which has already been measured with 0.1 ms time resolution [55, 56].

<u>Stages of heavy-ion collisions</u>

Hadronisation: t > 10 fm/c

Fluid expansion: $t \sim 1 - 10 fm/c$

QGP equilibration $t \sim 1 fm/c$

Deposition of initial energy

Incoming nuclei

Mazeliauskas et al (2021)

