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Parton distributions: Hadron scale

➢ At this scale, all properties of the hadron are 
contained within their valence quarks.

➢ QCD constraints are defined from here 
(e.g. large-x behavior of the PDF)
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 G. Grunberg, Phys.Rev.D 29 (1984) 2315-2338
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DGLAP: All orders evolution

Raya:2021zrz

Cui:2020tdf

DGLAP leading-order evolution equations

2



DGLAP: All orders evolution

Assumption: define an effective charge such that

Starting from fully-dressed 
quasiparticles, at 
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3

This ratio encodes the 
information of the charge 
and use isospin 
symmetry (pion case) 

Direct connection bridging from hadron to experimental 
scale: only one input is needed to evolve “all” the Mellin 
moments up and reconstruct the PDF. 

Capitalizing on the Mellin moments of asymptotically large order:

Under a sensible assumption at large momentum scale: Evolution

ASV data

Reconstruction after evolving: 

CSM output
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● Odd moments can be expressed in terms 
of previous even moments.

● Thus arriving at the recurrence relation on 
the left which is satisfied if, and only if, the 
source distribution is related by evolution to 
a symmetric one at the initial scale .

[99] C. Alexandrou et al., PRD104(2021)054504

Reported lattice moments 
agree very well with the 
recursion formula and so 
also does and estimate for 
the 7-th moment from lattice 
reconstruction. 

Moments from global fits can 
be also compared to the 
estimated from recursion !  

Moments computed from: P. Barry et al., 
PRL127(2021)232001  
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● Upper bound comes out from considering 
the opposite limit of a weekly interacting 
system of two (then fully decorrelated) 
partons: all the momentum fractions are 
equally probable. 

● Keeping isospin symmetry, implying:

Joo:2019bzr Sufian:2019bol Alexandrou:2021mmi

5

Lattice moments verifying the recurrence relation too. 

● Lower bound is imposed by considering 
the limit of a system of two strongly 
massive and maximally correlated) partons: 
both carry half of the momentum. 
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DGLAP: All orders evolution

Implication 4: glue and sea from valence

7

All quarks active

In terms of the moments for the 
sum of all valence-quark 
distributions at hadronic scale 

The only required input is the the momentum fraction at the 
probed empirical scale!!  R.S. Sufian et al., arXiv:2001.04960

 Z-F. Cui et al., arXiv:2006.1465

n=1 case 



Reverse engineering the PDF data



Pion PDF

 Let us assume the data can be parameterized 
with a certain functional form, i.e.:

Normalization
Free parameters

 Then, we proceed as follows:

1) Determine the best values α
i
 via least-

squares fit to the data.

2) Generate new values α
i
, distributed 

randomly around the best fit.

3) Using the latter set, evaluate:

Data point with error

4) Accept a replica with probability:

Repeat (2-5).5) Evolve back to 
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 Applying this algorithm to the ASV data yields:

CSM
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Data from [Aicher et al. Phys. Rev. Lett. 105, 252003 (2010)] 



Pion PDF: ASV analysis of E615 data

 Applying this algorithm to the ASV data yields:

✔ The produced moments are compatible with a 
symmetric PDF at the hadronic scale.

✔ It seems it favors a soft end-point behavior just 
like the CSM result.

✔ Then, we can reconstruct the moments produced by 
each replica, using the single-parameter Ansatz:

CSM
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Data from [Aicher et al. Phys. Rev. Lett. 105, 252003 (2010)] 



Kaon PDF

 Let us assume the data can be parameterized 
with a certain functional form, i.e.:

Pion’s free parameters:  

 Then, we proceed as follows:

1) Determine the best values α
i
 via least-

squares fit to the ASV data for the pion.
2) Use           data to fix the only free parameter 
for the kaon
3) Generate new values α

i
, distributed 

randomly around the best fit parameters
4) With these values, evaluate for the pion:

5) And for the kaon in terms of data for

6) Accept replicas with probabilities

7) Evolve back to         and repeat (2-7)     
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Z-N. Xu et al., arXiv:2411.15376v2 

… and, similarly, glue and sea-quark DFs can be also 
obtained, at different empirical scales!  
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2) Use           data to fix the only free parameter 
for the kaon
3) Generate new values α

i
, distributed 

randomly around the best fit parameters
4) With these values, evaluate for the pion:

5) And for the kaon in terms of data for

6) Accept replicas with probabilities

7) Evolve back to         and repeat (2-7)     

K,p
uK /uπ

K,p

Kaon’s :  

π

          ,

Z-N. Xu et al., arXiv:2411.15376v2 

… and, similarly, glue and sea-quark DFs can be also 
obtained, at different empirical scales!  
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[32] Alexandrou, et al., arXiv:2405.08529 [hep-lat]
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[32] Alexandrou, et al., arXiv:2405.08529 [hep-lat]

CSM = Z-F Cui, et al., Eur. Phys. J. C80 (2020) 1064.

Lattice = C. Alexandrou, et al., Phys. Rev. D 103 (1) (2021) 
014508; Phys. Rev. D 104 (5) (2021) 054504.
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Summary

➢ The EHM is argued to be intimately connected to a PI effective charge which enters a conformal 
regime, below a given momentum scale, where gluons acquiring a dynamical mass decouple from 
interaction. 

➢ Capitalizing on the latter, two main ideas emerge: (I) the identification of that decoupling with a 
hadronic scale at which the structure of hadrons can be expressed only in terms of valence 
dressed partons; and (ii) the reliability of an all-orders evolution scheme to describe the splitting of 
valence into more partons, generating thus the glue and sea, when the resolution scale decreases.    
                     

➢ Key implications stemming from both ideas have been derived and tested for the pion PDFs. 
Grounding on them, Lattice QCD and experimental data have been shown to confirm CSM results.  

➢ The robustness of the approach based on all-orders evolution from hadronic to experimental scale 
has been proved with its application to the pion, kaon and proton cases. A model featuring massless 
evolution for quark flavors activated after a hard-wall threshold and accounrting for Pauli blocking has 
been solved analytically, and seen to expose some of the main results implied by the approach.    

To be continued...
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Thank you!
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QCD effective charge

Modern continuum & lattice QCD analysis in the gauge 
sector delivers an analogue “Gell-Mann-Low” running 
charge, from which one obtains a process-independent, 
parameter-free prediction for the low-momentum 
saturation

● No landau pole

● Below a given mass scale, the interaction become scale-
independent and QCD practically conformal again (as in 
the lagrangian).  

Then, we define:

where

defines the screening mass and an associated 
wavelength, such that larger gluon modes 
decouple.
Then, we identify:  



QCD effective charge

The strength of the charge defines 
de input for the evolution  



QCD effective charge

The strength of the charge defines 
de input for the evolution  

Then, the glue, valence- and sea-quark DFs can 
be predicted, with no tuned parameter, on the 
ground of the effective charge definition, from the 
LFWF (or, equivalentely, from a symmetry-
preserving DSE/BSE computation of the valence-
quarks Mellin moments    
[M. Ding et al, CPC44(2020)3,031002] 

[Z-F. Cui et al, EPJC80(2020)11,1064]
[Z-F. Cui et al, EPJA57(2021)1,5] 





Pion PDF: from CSM (DSEs) to the experiment 

Symmetry-preserving DSE computation of the 
valence-quark PDF: 
[L. Chang et al., Phys.Lett.B737(2014)23] 
[M. Ding et al., Phys.Rev.D101(2020)054014 

Dilation 
owing to CSB and 
hence to the EHM
 

Farrar, Jackson, Phys.Rev.Lett 35(1975)1416
Berger, Brodsky, Phys.Rev.Lett 42(1979)940

● The EHM-triggered broadening shortens the 
extent of the domain of convexity lying on the 
neighborhood of the endpoints, induced too by the 
QCD dynamics

● It cannot however spoil the asymptotic QCD 
behaviour at large-x (and, owing to isospin 
symmetry, at low-x)       

CSM output

ASV data Evolution
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Pion PDF: from CSM (DSEs) to the experiment 

Symmetry-preserving DSE computation of the 
valence-quark PDF: 
[L. Chang et al., Phys.Lett.B737(2014)23] 
[M. Ding et al., Phys.Rev.D101(2020)054014 

Dilation 
owing to CSB and 
hence to the EHM
 

Farrar, Jackson, Phys.Rev.Lett 35(1975)1416
Berger, Brodsky, Phys.Rev.Lett 42(1979)940

● The EHM-triggered broadening shortens the 
extent of the domain of convexity lying on the 
neighborhood of the endpoints, induced too by the 
QCD dynamics

● It cannot however spoil the asymptotic QCD 
behaviour at large-x (and, owing to isospin 
symmetry, at low-x)       

Glue DF
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Proton PDF: from CSM (DSEs) to the experiment 

An analogous symmetry-preserving DSE 
computation of the valence-quark PDFs within 
a proton, based on diquark-quark approach:
[L. Chang et al., Phys.Lett.B, arXiv:2201.07870]  
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Proton PDF: from CSM (DSEs) to the experiment 

An analogous symmetry-preserving DSE 
computation of the valence-quark PDFs within 
a proton, based on diquark-quark approach:
[L. Chang et al., Phys.Lett.B, arXiv:2201.07870]  
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Producing an isovector distribution in fair 
agreement with lattice results 
[H-W. Lin et al., arXiv:2011.14791]
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Proton PDF: pion and proton in counterpoint  
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