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Introduction

• In Gauge Field Theory, we have the simple principle:
”Physical observables are gauge independent.”

• The easiest way of fulfilling this requirement would be to work with (correlation
functions of) gauge-invariant operators.
”Correlation functions of gauge-invariant operators should be gauge independent.”

• However, in general, we deal with correlation functions of gauge variant fields, such
as Aµ(x) (gauge field) and ψ(x) (matter field).

• Gauge independence of S-matrix, physical masses, etc is controlled by the BRST
symmetry (Nielsen identities).

• Besides the gauge independence, what can gauge-invariant operators present?
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Higgs model as a laboratory

Let us consider the fundamental Euclidian SU(2) Higgs model, defined by the action

S =

∫
d4x

[
1

4
F a
µνF

a
µν + (Dµϕ)

†Dµϕ+ λ

(
ϕ†ϕ− v2

2

)2
]
, (1)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gϵabcAb

µA
c
ν , (2)

Dµϕ = ∂µϕ− ig
τ a

2
Aa
µϕ. (3)

By expanding ϕ around the minima ϕ0 =

(
v√
2

0

)
, i.e., writing ϕ = 1√

2

(
v + h + iρ3

iρ1 − ρ2

)
it follows that Aa

µ and h are massive fields (Higgs mechanism),

mA =
vg

2
, mh =

√
λv (4)

4 / 23



To quantize this model, we can employ the Rξ-gauge, namely,

Sgf = s

∫
d4xc̄a(−i

ξ

2
ba + ∂µA

a
µ − ξmρa) (5)

where

• ξ is a gauge parameter;

• s is the BRST operator:

sAa
µ = −Dab

µ cb, sh =
g

2
caρa, sρa = −g

2
(ca(v + h)− ϵabccbρc),

sca =
g

2
ϵabccbcc , sc̄a = iba, sba = 0. (6)
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REMARKS:

• This model is perturbatively renormalizable and leads to a unitary S-matrix;

• There exists a residual SU(2) global symmetry (Custodial Symmetry);

• This model can be formulated in the Lattice, and it shows a confining phase
continuously connected to the Higgs phase. (see [Fradkin and Shenker, 1979]);

• In the Lattice, there is no need for a gauge-fixing, thus, due to Elitzur’s Theorem
[Elitzur, 1975], the VEV of ϕ is zero;

• Frohlich, Morchio and Strocchi [Fröhlich et al., 1981] proposed a mechanism based
on gauge-invariant operators. See also the recent work of [Maas, 2019]
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Regarding this model, we calculated and analyzed the 2-point functions of Aa
µ(x) and

h(x) up to 1-loop [Dudal et al., 2021], i.e.,

⟨Aa
µ(p)A

b
ν(−p)⟩ = δab

[
A(p2)Tµν(p) + B(p2)Lµν(p)

]
and ⟨h(p)h(−p)⟩. (7)

In particular, we investigated the spectral functions,

⟨Φ(p)Φ(−p)⟩ =
∫ ∞

0
dt
ρΦ(t)

p2 + t
, (8)

where
ρΦ(t) = Zδ(t −M2

phys) + ρ̃Φ(t). (9)
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Figure: Spectral function of the transverse component of ⟨A(p)aµA(−p)bν⟩ for different values of ξ.

.

Figure: Spectral function of the Higgs propagator ⟨h(p)h(−p)⟩ for different values of ξ.

Notice that both spectral functions are gauge-dependent and show positivity violation.
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The same Higgs model allows us to construct the following local gauge-invariant
operators:

O(x) = ϕ†ϕ− v2

2

=
1

2
(h2 + 2vh + ρaρa) (10)

and

Ra
µ(x) =

1

2

[
−(v + h)∂µρ

a + ρa∂µh − ϵabcρb∂µρ
c +

g

2
(v + h)2Aa

µ

−g(v + h)ϵabcρbAc
µ − g

2
Aa
µρ

bρb + gρaAb
µρ

b
]
. (11)

Notice that, O(x) and Ra(x) have linear terms, which implies that

⟨O(p)O(−p)⟩ = v2⟨h(p)h(−p)⟩+ . . .

⟨Ra
µ(p)R

b
ν (−p)⟩ =

g2v4

16
⟨Aa

µ(p)A
b
ν(−p)⟩+ . . . (12)
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In [Dudal et al., 2021], we also computed ⟨O(p)O(−p)⟩ and ⟨Ra(p)Rb(−p)⟩ up to
1-loop and obtained the following spectral functions:

(a) (b)

Figure: Spectral functions of ⟨O(p)O(−p)⟩ (left) and ⟨Ra
µ(p)R

b(−p)ν⟩T (right).

Notice that they are both positive!.
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Understanding the situation here:

• The perturbative Higgs model has a physical space with semi-positive norm
[Kugo and Ojima, 1979]:

Vphys = {|α⟩;QBRST |α⟩ = 0},
⟨α|α⟩ ≥ 0 (13)

• In this case, the spectral functions of gauge-invariant correlators are indeed positive.
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Local Gauge-Invariant Dressings

• Since gauge-invariant operators may possess very desirable properties, it is
worthwhile to invest our efforts in studying them.

• In particular, we focus on local gauge-invariant dressings[Stueckelberg, 1938].

• These objects have direct applications in effective massive models that explicitly
break BRST symmetry, such as infrared-safe models [Tissier and Wschebor, 2011]
and the Refined Gribov–Zwanziger models
[Gribov, 1978, Zwanziger, 1989, Sorella, 2008].

• Recently, we (Prof. Antônio Pereira and I) investigated the possibility of constructing
local gauge-invariant dressings in a very important class of gauges, which we would
like to discuss here.
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Let us establish the general framework for constructing and quantizing gauge-invariant
dressed fields. For simplicity, we consider the SU(N) gauge group.
In addition to the gauge field Aa

µ, we introduce an auxiliary Stueckelberg field ξa to
construct the local gauge-invariant operator:

Ah
µ(A, h) = h†Aµh +

1

ig
h†∂µh (14)

where h = exp(−igξaT a). That is, Ah
µ(A

U , hU) = Ah
µ(A, h) under the gauge

transformations:

AU
µ = UAµU

† +
1

ig
∂µUU

†,

hU = Uh (15)
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Since ξa is an auxiliary field, we can eliminate it by imposing the constraint,

Fa[Ah] = 0, (16)

and then solve it for ξa as a function of Aµ,

ξa(A) ⇒ h(A). (17)

Notice that Fa[Ah] is gauge-invariant, which implies that

Ah
µ(A, h(A)) (18)

is also gauge-invariant.
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A very important class of gauges has the form

Fa[A] = ∂µA
a
µ + Pa(A), (19)

where Pa(A) is a polynomial of A.
By expanding h = exp(−igξaT a) in power series, and solving Fa[Ah] = 0 iteratively, we
obtain:

ξa = Oab(A, ∂)Fa[A] (20)

and, consequently,

Ah a
µ = Aa

µ +Rab(A, ∂)Fa[A] (21)

where Oab and Rab(A, ∂) are non-local operators.
Notice that if Aa

µ also satisfies the same gauge condition (Fa[A] = 0 )

ξa = 0 and Ah a
µ = Aa

µ. (22)
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At the quantum level, this construction can be implemented via the path integral using
the Faddeev–Popov trick.
Suppose that G [(Ah

µ)non-local] is a functional of the non-local field Ah
µ. It can then be

rewritten as:

G [(Ah
µ)non-local] = det

(
M[Ah]

)∫
Dξa δ

(
F [Ah]

)
G [Ah

µ], (23)

where

Mab[Ah] =
δFa[Ah]

δξb
, (24)

and equivalently,

G [(Ah
µ)non-local] =

∫
DξaDτ aDηaD η̄a exp

(
−
∫

d4x
[
iτ aFa[Ah] + η̄aMab[Ah]ηb

])
G [Ah

µ],

(25)
where τ a, ηa, and η̄a are additional auxiliary fields.
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Therefore, we end up working with the local BRST invariant action:

S = SYM [A] +

∫
d4x

(
ibaF a[A] + c̄aMab[A]cb

)
+

∫
d4x

(
iτ aFa[Ah] + η̄aMab[Ah]ηb

)
(26)

sAa
µ = −Dab

µ [A]cb, sca =
gf abc

2
cbcc , sc̄a = iba, sba = 0,

sξa = gab (ξ) cb, sτ a = 0, sηa = 0, s η̄a = 0. (27)
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If Aµ and Ah
µ satisfy the same condition, i.e.,

Fa = F a, (28)

The entire action is invariant under the dual transformations:

Aµ → Ah
µ, ξa → −ξa, ca → ηa, c̄a → η̄a, ba → τ a,

ηa → ca, η̄a → c̄a, τ a → ba (29)

Therefore, from these transformations, we have the following relationship for the
correlation functions:

⟨Φ(x1) . . .Φ(xn)⟩ = ⟨Φdual(x1) . . .Φ
dual(xn)⟩. (30)

In particular, we have:

⟨Aµ1(x1) . . .Aµn(xn)⟩ = ⟨Ah
µ1
(x1) . . .A

h
µn
(xn)⟩. (31)
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Conclusions

• Gauge-invariant operators exhibit very nice spectral properties—at least
perturbatively—for theories with a well-defined physical space. (What happens in the
non-perturbative regime?)

• It is possible to construct a gauge-invariant dressed field for each gauge fixing in the
class we discussed, in particular for the Maximal Abelian Gauge.

• By using the framework we proposed, the dual symmetry guarantees the validity of
the on-shell condition to all orders.

• The result that other gauges also allow a gauge-invariant dressing for the gauge field
opens up the possibility of comparisons between different effective massive models
formulated in different gauges.

19 / 23



References I

Dudal, D., Peruzzo, G., and Sorella, S. P. (2021).

Gauge (in)dependence of correlation functions in the su(2) higgs model.

Phys. Rev. D, 103(12):125002.

Elitzur, S. (1975).

Impossibility of spontaneously breaking local symmetries.

Phys. Rev. D, 12(12):3978–3982.

Fradkin, E. and Shenker, S. H. (1979).

Phase diagrams of lattice gauge theories with higgs fields.

Phys. Rev. D, 19:3682–3697.
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Thank you!
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